<<

6572 J. Phys. Chem. A 2007, 111, 6572-6585

Publications of M. C. Lin

1. M. C. Lin and M. H. Back, “The Thermal Decomposition 20. W. H. Green and M. C. Lin, “Pulsed Discharge Initiated of Ethane. Part I. Initiation and Termination Steps”, Can. J. Chemical Lasers. III. Complete Population Inversion in HF”, Chem., 44, 505 (1966). J. Chem. Phys., 54, 3222 (1971). 2. M. C. Lin, “The Reaction of and Ethylene in 21. M. C. Lin and L. E. Brus, “Chemical CO Laser from the 1 1 + 1 + the Gas Phase”, Can. J. Chem., 44, 1237 (1966). O( D) + C3O2( Σ g ) f 3CO( Σ ) Reaction”, J. Chem. Phys., 3. M. C. Lin and M. H. Back, “The Thermal Decomposition 54, 5423 (1971). of Ethane. Part II. The Unimolecular Decomposition of the 22. L. E. Brus and M. C. Lin, “Chemical HF Lasers from Ethane Molecule and the Ethyl Radical”, Can. J. Chem., 44, Flash Photolysis of Various N2F4-RH Systems”, J. Phys. Chem., 2357 (1966). 75, 2546 (1971). 1 4. M. C. Lin and M. H. Back, “The Thermal Decomposition 23. M. C. Lin, “Chemical Lasers Produced from O( D) Atom of Ethane. Part III. Secondary Reactions”, Can. J. Chem., 44, Reactions. II. A New Hydrogen Fluoride Elimination Laser from 1 + ) 2369 (1966). the O( D) CHnF4-n (n 1, 2 and 3) Reactions”, J. Phys. Chem., 75, 3642 (1971). 5. M. C. Lin and K. J. Laidler, “Kinetics of the Decomposition 1 of Ethane and Propane Sensitized by Azomethane. The De- 24. M. C. Lin, “Chemical Lasers Produced from O( D) Atom Reactions. III. HCl Elimination Lasers from the O(1D) + composition of the Normal Propyl Radical”, Can. J. Chem., 44, ) 2927 (1966). CHnCl4-n (n 1, 2 and 3) Reactions”, J. Phys. Chem., 76, 811 (1972). 6. M. C. Lin and K. J. Laidler, “Thermal Decomposition of 25. M. C. Lin, “Chemical Lasers Produced from O(1D) Atom the Sec-Butyl Radical”, Can. J. Chem., 45, 1315 (1967). Reactions. IV. Competitive Eliminations of HCl and HF from 7. M. C. Lin and M. H. Back, “Importance of the Hetero- the Vibrationally Excited ClFHCOH, Cl2FCOH and ClF2COH geneous Termination in the Pyrolysis of Ethane”, Can. J. Chem., Molecules”, J. Phys. Chem., 76, 1425 (1972). 45, 3165 (1967). 26. L. E. Brus and M. C. Lin, “Chemical Lasers Produced 8. M. C. Lin and K. J. Laidler, “Theory of the Unimolecular from O(1D) Atom Reactions. V. Monoxide Stimulated Decomposition of Ethane and of Ethyl and Methoxymethyl Emission from Flash-Initiated O3 + XCN Systems”, J. Phys. Radicals”, Trans. Faraday Soc., 64, 79 (1968). Chem., 76, 1429 (1972). 9. M. C. Lin and K. J. Laidler, “Theoretical Aspects of the 27. M. C. Lin, “Chemical Lasers Produced from O(3P) Atom Gas-Phase Thermal Isomerizations”, Trans. Faraday Soc., 64, Reactions. I. Observation of CO and HF Laser Emissions from 94 (1968). Several O-Atom Reactions”, Int. J. Chem. Kinet., 5, 173 (1973). 10. M. C. Lin and K. J. Laidler, “Some Aspects of the 28. M. C. Lin, “Chemical Lasers Produced from O(3P) Atom Thermal cis-trans Isomerization Mechanisms”, Can. J. Chem., Reactions. II. A Mechanistic Study of 5-m CO Laser Emission 46, (1968). from the O + C2H2 Reaction”, Chemiluminescence and Biolu- 11. M. C. Lin and K. J. Laidler, “Falloff Behavior and Kinetic minescence - The Proceedings of the International Conference Isotope-Effects in Reactions of Cyclic Hydrocarbons”, Trans. on Chemiluminescence. Cormier, M. J., Hercules, D., Lee, J., Faraday Soc., 64, 927 (1968). Eds.; p 61; Plenum Press: New York, 1973. 12. M. C. Lin and S. H. Bauer, “Bimolecular Reaction of 29. R. J. Gordon and M. C. Lin, “Chemical HF Laser Emission from the CHF + O Reaction”, Chem. Phys. Lett., N2O with CO and the Recombination of O and CO as Studied 2 in a Single-Pulse Shock Tube”, J. Chem. Phys., 50, 3377 (1969). 22, 107 (1973). 13. M. C. Lin and S. H. Bauer, “Reactions of 30. R. J. Gordon and M. C. Lin, “The Reaction of Nitric Fluoride in Shock Waves. I. Kinetics and Mechanism of Oxygen with Vibrationally Excited Ozone”, Chem. Phys. Lett., Fluoride Decomposition”, J. Am. Chem. Soc., 91, 7737 (1969). 22, 262 (1973). 31. M. C. Lin, “The Mechanism of CO Laser Emission from 14. H. Henrici, M. C. Lin and S. H. Bauer, “Reactions of + - the CH NO Reaction”, J. Phys. Chem., 77, 2726 (1973). F2O in Shock Waves. II. Kinetics and Mechanism of the F2O 3 CO Reaction”, J. Chem. Phys., 52, 5834 (1970). 32. M. C. Lin, “Chemical Lasers Produced from O( P) Atom Reactions. III. 5 µm CO Laser Emission from the O + CH 15. M. C. Lin and W. H. Green, “Pulsed Discharge-Initiated Reaction”, Int. J. Chem. Kinet., 6, 1 (1974). Chemical Lasers. I. HF Laser Emission from CHF CL, CHFCl , 2 2 33. M. C. Lin, “Photoexcitation and Photodissociation Lasers. CHF , and CF Cl -H Systems”, J. Chem. Phys., 53, 3383 3 2 2 2 Part I. Laser Emissions Resulting from C(2Π) f (1970). A(2Σ+) and D(2Σ+) f A(2Σ+) Transitions”, IEEE J. Quantum + 16. M. C. Lin, “HCl Chemical Laser from H Cl2O”, Chem. Electron., QE-10, 516 (1974). Phys. Lett., 7, 209 (1970). 34. R. G. Shortridge and M. C. Lin, “Chemical Lasers 17. M. C. Lin and S. H. Bauer, “A Chemical CO Laser”, Produced from O(3P) Atom Reactions. IV. CO Laser Emission Chem. Phys. Lett., 7, 223 (1970). from the O + CN Reaction”, J. Phys. Chem., 78, 1451 (1974). - - 18. M. C. Lin, “Chemical HF Lasers from NF3 H2 and NF3 35. M. C. Lin, “Chemical CO and CO2 Lasers Produced from C2H6 Systems”, J. Phys. Chem., 75, 284 (1971). the CH + O2 Reaction”, J. Chem. Phys., 61, 1835 (1974). 19. W. H. Green and M. C. Lin, “Pulsed Discharge Initiated 36. M. C. Lin and R. G. Shortridge, “Electronic-to-Vibrational Chemical Lasers. II. HF Laser Emission from NF3 and N2F4 Energy Transfer Reactions. X* + CO (X ) O, I and Br)”, Chem. Systems”, IEEE J. Quantum Electron., QE-7, 98 (1971). Phys. Lett., 29, 42 (1974). 10.1021/jp079522s CCC: $37.00 © 2007 American Chemical Society Published on Web 07/19/2007 J. Phys. Chem. A, Vol. 111, No. 29, 2007 6573 37. R. G. Shortridge and M. C. Lin, “Mechanisms of HF 57. M. E. Umstead, R. G. Shortridge and M. C. Lin, “Energy Laser Emissions from Flash-Initiated CHFCl2 and CH2FCl- Partitioning in the Photodissociation of C3H4O Near 200 nm”, NO Mixtures”, IEEE J. Quantum Electron., QE-10, 873 (1974). J. Phys. Chem., 82, 1455 (1978). 38. M. C. Lin, “Photoexcitation and Photodissociation Lasers. 58. D. S. Y. Hsu and M. C. Lin, “Two-Laser Studies of E f II. CO Laser Emission from the Vacuum UV Photodissociation V Energy Transfer Reactions Involving CO and Electronically of COS”, Chem. Phys., 7, 433 (1975). Excited I2, ICl and NO2”, Chem. Phys. Lett., 56, 79 (1978). 39. M. C. Lin, “Photoexcitation and Photodissociation Lasers. 59. T. L. Burks and M. C. Lin, “Non-Statistical Energy III. Mechanisms of CO Laser Emission from the Vacuum UV Partitioning in the Decomposition of Chemically Activated CF3- Photodissociation of CH2CO-O2 and CH2CO-SO2 Mixtures”, OH and CH2FOH Molecules”, Chem. Phys., 33, (1978). Chem. Phys., 7, 442 (1975). 60. M. E. Umstead and M. C. Lin, “Effect of Laser Radiation 40. R. G. Shortridge and M. C. Lin, “CO Vibrational on the Catalytic Decomposition of Formic Acid on Platinum”, Population Distributions in the Reactions of OCS with O(3P) J. Phys. Chem., 82, 2047 (1978). 1 and O( D2) Atoms”, Chem. Phys. Lett., 35, 146 (1975). 61. J. E. Butler, J. W. Hudgens, M. C. Lin and G. K. Smith, 41. M. C. Lin, R. G. Shortridge and M. E. Umstead, “The “Observation of OH (V)0,1) in the reactions of O(3P) with Dynamics of Reactions of O(3P) Atoms with Allene and HCl (V)0, 1, 2) ”, Chem. Phys. Lett., 58, 216 (1978). Methylacetylene”, Chem. Phys. Lett., 37, 279 (1976). 62. D. S. Y. Hsu, M. E. Umstead, and M. C. Lin, “Kinetics 42. R. J. Gordon and M. C. Lin, “The Reaction of Nitric and Mechanisms of Reactions of CF, CHF and CF2 Radicals”, Oxide with Vibrationally Excited Ozone. II”, J. Chem. Phys., ACS Symposium Series Monograph on Kinetics and Dynamics 64, 1058 (1976). of Reactions with Atomic Fluorine and Fluorine-Rich Poly- 43. R. G. Shortridge and M. C. Lin, “The Dynamics of the atomic Radicals; American Chemical Society: Washington, 1 1 + D.C., 1978; Vol. 66, p 128. O( D2) + CO(X Σ , V)0) Reaction”, J. Chem. Phys., 64, 4076 (1976). 63. A. Baronavski, J. E. Butler, J. W. Hudgens, M. C. Lin, 44. T. L. Burks and M. C. Lin, “Mechanisms of CF + NO J. R. McDonald, and M. E. Umstead, “Chemical Applications 2 V and CF + NO Reactions via Mass Spectral and Chemical Laser of Lasers”, Ad ances in Laser Chemistry, Zewail, A., Ed.;, Emission Measurements”, J. Chem. Phys., 64, 4235 (1976). Springer-Verlag: New York, 1978; p 62. 45. D. S. Y. Hsu and M. C. Lin, “Electronic-to-Vibrational 64. M. E. Umstead, D. E. Tevault, and M. C. Lin, “The Effect + of Laser Radiation on Catalytic Reactions”, Proc. 22nd Int. Tech. Energy Transfer Reactions: Na(3 2P) + CO(X1Σ , V)0) ”, Chem. Phys. Lett., 42, 78 (1976). Symp. Instrument Display, “Laser Spectroscopy”, p 33, Vol. 158, SPIE (1978). 46. M. E. Umstead, R. G. Shortridge and M. C. Lin, “The 65. D. E. Tevault, M. C. Lin, M. E. Umstead, and R. R. Dynamics of CO Production from the O(3P) + Methylacetylene Smardzewski, “Evidence for Production of the Hydroxycarbonyl Reaction”, Chem. Phys., 20, 271 (1977). Radical in the Decomposition of Formic Acid on Platinum”, 47. D. S. Y. Hsu and M. C. Lin, “Evidence for Triplet CF2 Int. J. Chem. Kinet., 11, 445 (1979). Formation in the O(3P) + C F Reaction”, Chem. Phys., 21, 2 4 66. D. S. Y. Hsu, R. G. Shortridge, and M. C. Lin, “Products 235 (1977). Vibrational Energy Distribution in the O(3P) + CHF Reaction”, 48. R. R. Smardzewski and M. C. Lin, “Matrix Reactions of Chem. Phys., 38, 285 (1979). Oxygen Atoms with H 2S Molecules”, J. Chem. Phys., 66, 3197 67. M. E. Umstead, F. J. Woods, and M. C. Lin, “Mechanism (1977). of HF Production and Stimulated Emission from the Reaction 49. D. S. Y. Hsu and M. C. Lin, “The Production of O(3P) Atoms with Fluoroethenes”, J. Phys. Chem., 83, 1289 Vibrationally Excited CO from the Reaction of CH2 with O2 (1979). and CO2”, Int. J. Chem. Kinet., 9, 507 (1977). 68. J. E. Butler, L. P. Goss, M. C. Lin and J. W. Hudgens, 50. D. S. Y. Hsu and M. C. Lin, “CO Product Vibrational “Production, Detection and Reactions of the CH Radical”, Chem. 3 + Energy Distribution in the O( P) C3O2 Reaction”, ACS Symp. Phys. Lett., 63, 104 (1979). Ser., 56, 121 (1977). 69. G. K. Smith, J. E. Butler, and M. C. Lin, “The OH(X2Π, 51. M. E. Umstead and M. C. Lin, “The Dynamics of CO V)0) Rotational Energy Distribution in the Reaction of O(1D) 3 Production from the Reaction of O( P) with 1- and 2-Butyne”, + H2”, Chem. Phys. Lett., 65, 115 (1979). Chem. Phys., 25, 353 (1977). 70. L. D. Talley, D. E. Tevault, and M. C. Lin, “Laser 52. D. S. Y. Hsu, L. J. Colcord and M. C. Lin, “Laser Diagnostics of Matrix-Isolated OH Radicals from Oxidation of Emission and Energy Partitioning in the Reaction of Oxygen H2 on Platinum”, Chem. Phys.. Lett., 66, 584 (1979). Atoms with 3,3,3-Trifluoromethylacetylene”, J. Phys. Chem., 71. W. B. Shaub and M. C. Lin, “Predictive Modeling of 82, 121 (1978). Diborane Oxidation”, Proc. 10th Mater. Res. Symp. on Char- 53. M. C. Lin, “Energy Distribution in HF from the Reaction acterization of High-Temperature Vapors and Gases, NBS of CHF with O2 and NO”, J. Chem. Phys., 68, 2004 (1978). Special Pub. No. 561, p 1249 (1979). 54. D. S. Y. Hsu and M. C. Lin, “Chemical Lasers Produced 72. D. E. Tevault and M. C. Lin, “Catalytic Reactions Studied from O(3P) Atom Reactions V. CO Laser Emissions and by a Matrix Isolation Technique: Decomposition of HCOOH Vibrational Energy Distribution in the Flash-Initiated SO2- on Pt”, Proc. 10th Mater. Res. Symp. on Characterization of CFBr3 System”, Int. J. Chem. Kinet., 10, 839 (1978). High-Temperature Vapors and Gases, NBS Special Pub. No. 55. L. J. Colcord and M. C. Lin, “Evidence for HF 561, p 1551 (1979). Elimination Via a Five-Centered Complex in the Photolysis of 73. D. S. Y. Hsu, W. M. Shaub, T. L. Burks, and M. C. Lin, 3 3, 3, 3-Trifluoropropyne Near 200 nm”, J. Photochem., 8, 337 “Dynamics of Reactions of O( P) Atoms with CS, CS2 and (1978). OCS”, Chem. Phys., 44, 143 (1979). 56. D. S. Y. Hsu and M. C. Lin, “Dynamics of the Reaction 74. M. C. Lin and J. R. McDonald, “Production and Detection of Oxygen Atoms with Carbon ”, J. Chem. Phys., 68, of Reactive Species with Lasers in Static Systems”, A chapter 4347 (1978). in the book on “ReactiVe Intermediates in the Gas Phase: 6574 J. Phys. Chem. A, Vol. 111, No. 29, 2007

Generation and Monitoring.” Setser, D. W. Ed.; Academic 91. M. C. Lin and D. E. Tevault, “A Possible Role of Triplet- Press: New York, 1979 p 233-304. State Species as Chain-Initiators in High-Temperature Oxidation 75. G. K. Smith, J. E. Butler, and M. C. Lin, “Two-Laser of Aromatic Hydrocarbons”, Combust. Flame, 42, 139 (1981). 1 Study of the Dynamics of the O( D) + H2 Reaction”, Proc. 92. W. M. Shaub, D. S. Y. Hsu, T. L. Burks, and M. C. Lin, Int. Conf. on Lasers ’78; Corcoran, V. J., Ed.; STS Press: “Dynamics and Mechanisms of CO Production from the 3 McLean, VA, 1979; p 215. Reactions of CH2 Radicals with O( P) and O2”, 18th Symposium 76. D. E. Tevault, M. E. Umstead, and M. C. Lin, “Effects (International) on Combustion; The Combustion Institute: of Laser Radiation on Heterogeneous Reactions in Static and Pittsburgh, PA, 1981; p 811. Flow Systems”, Proc. Int. Conf. on Lasers ’78,Corcoran, V. J., 93. L. D. Talley, W. A. Sanders, D. J. Bogan, and M. C. Ed.; STS Press: McLean, VA, 1979; p 219. Lin, “Internal Energy of Hydroxyl Radicals Desorbing from 77. A. B. Harvey, H. Ravner, N. L. Jarvis, M. C. Lin, A. A. Polycrystalline Pt Surfaces”, Chem. Phys. Lett., 78, 500 (1981). Conte, and N. D. Rebuck, “Novel Lubricants: Deuterated 94. J. E. Butler, G. K. Smith, L. D. Talley, and M. C. Lin, Materials with Superior Properties”, Proc. of National Sympo- “Rotational and Vibrational Energy Distributions of 16OH(X2Π) 18 2 1 sium on Wear and Corrosion; American Chemical Society: and OH(X Π) Produced in the Reaction of O( D) with H2O 18 Washington, D.C., 1979; p 59. and H2 O”, J. Chem. Phys., 74, 4501 (1981). 78. M. E. Umstead, L. D. Talley, D. E. Tevault, and M. C. 95. J. E. Butler, J. W. Fleming, L. P. Goss, and M. C. Lin, Lin, “Laser Applications to Heterogeneous Catalysis: Reactant “Kinetics of CH Radical Reactions with Selected Molecules at Excitation and Product Diagnostics”, Opt. Eng., 19, 94 (1980). Room Temperature”, Chem. Phys. 56, 355 (1981). 79. W. M. Shaub, T. L. Burks, and M. C. Lin, “Dynamics of 96. A. P. Baronavski, M. E. Umstead, and M. C. Lin, “Laser Reactions of O(3P) Atoms with 1-Alkynes as Studied by a CO Diagnostics of Reaction Product Energy Distributions”, AdV. Laser Resonance Absorption Technique”, Chem. Phys., 45, 455 Chem. Phys. (Photoselective Chem., Part 2), 47, 85 (1981). (1980). 97. T. L. Burks and M. C. Lin, “The Dynamics of Formation 1 80. L. D. Talley and M. C. Lin, “Laser Diagnostics of HO of Vibrationally Excited HF in Reactions of O(2 D2) Atoms Radical Formation in the H2 + N2O Reaction on Platinum”, with Partially Fluorinated Alkanes”, Int. J. Chem. Kinet., 13, AIP Conf. Proc. Vol. 61, Aspects of the Kinetics and Dynamics 977 (1981). of Surface Reactions; p 297 (1980). 98. L. D. Talley, W. A. Sanders, D. J. Bogan, and M. C. 81. D. E. Tevault, L. D. Talley, and M. C. Lin, “Matrix Lin, “Dynamics of Hydroxyl Radical Desorption from a Isolation and Laser Diagnostic Studies of Catalytic Oxidation Polycrystalline Platinum Surface”, J. Chem. Phys., 75, 3107 of H2 and D2 on Platinum”, J. Chem. Phys., 72, 3314 (1980). (1981). 82. J. E. Butler, J. W. Fleming, L. P. Goss, and M. C. Lin, 99. T. G. DiGiuseppe, J. W. Hudgens, and M. C. Lin, “Kinetics of CH Radical Reactions Important to Hydrocarbon “Detection of Gas-Phase Methyl Radicals Using Multiphoton Combustion Systems”, ACS Symp. Ser., 134, 397 (1980). Ionization”, Chem. Phys. Lett., 82, 267 (1981). 83. W. M. Shaub and M. C. Lin, “ Laser 100. L. D. Talley and M. C. Lin, “Energetics and Mechanism Resonance Absorption Studies of O(3P) + 1-Alkynes and of Hydroxyl Radical Formation in the Catalytic Decomposition Methylene Radical Reactions”, ACS Symp. Ser., 134, 403 of Water on Pt Surfaces”, Chem. Phys., 61, 249 (1981). (1980). 101. M. E. Umstead, S. A. Lloyd, and M. C. Lin, “The 84. L. D. Talley and M. C. Lin, “Production of OH Radicals Mechanism of the Laser-Enhanced Reaction of NO2 with CO”, in the Catalytic Oxidation of H2 by NO2 over Pt”, Proc. Int. Proc. Int. Conf. on Lasers ’80; Collins, C. B., Ed.;, STS Press: Conf. on Lasers ’79; Corcoran, V. J., Ed.; STS Press: McLean, McLean, VA, 1981; p 286. VA, 1980; p 270. 102. W. A. Sanders and M. C. Lin, “Application of the Laser- 85. J. W. Fleming, G. T. Fujimoto, M. C. Lin, and A. B. Induced Fluorescence Technique to the Study of Heterogeneous Harvey, “Applications of Multiphoton Dissociation and Laser Catalytic Reactions”, in Laser Spectroscopy for SensitiVe Induced Fluorescence to Combustion: Reactions of CH Radicals Detection; SPIE Vol. 286, 1981; p 101. with Unsaturated Hydrocarbons”, Proc. Int. Conf. on Lasers 103. T. G. DiGiuseppe, J. W. Hudgens, and M. C. Lin, ’79; Corcoran, V. J., Ed.; STS Press: McLean, VA, 1980; p “Multiphoton Ionization of CH3 Radicals in the Gas Phase”, J. 246. Phys. Chem., 86, 36 (1982). 86. D. S. Y. Hsu and M. C. Lin, “The Dynamics of the 104. G. S. Selwyn, G. T. Fujimoto, and M. C. Lin, “Catalytic 2 1 + Quenching of Na(3 PJ) by CO(X Σ , V)0) ”, J. Chem. Phys., Removal of NH and NH2 Free Radicals by Polycrystalline Pt 73, 2188 (1980). and Fe Surfaces”, J. Phys. Chem., 86, 780 (1982). 87. M. E. Umstead, J. W. Fleming, and M. C. Lin, 105. W. M. Shaub, T. L. Burks, and M. C. Lin, “Formation 1 “Photonitration of Hydrocarbons with Lasers”, IEEE J. Quantum of Vibrationally Excited CO in the O( D2) + C2H2 Reaction”, Electron., QE-16, 1227 (1980). J. Phys. Chem., 86, 757 (1982). 88. G. T. Fujimoto, M. E. Umstead, and M. C. Lin, “Effects 106. G. T. Fujimoto, M. E. Umstead, and M. C. Lin, of Competitive Hydrogen Halide Elimination on CO Production “Dynamics of CO Formation in the Photodissociation of HNCO 3 from the Reaction of O( P) Atoms with Propargyl Chloride and and CH2CO at 193 nm”, Chem. Phys., 65, 197 (1982). Bromide”, Chem. Phys., 51, 399 (1980). 107. G. S. Selwyn and M. C. Lin, “Production of the NH 89. M. C. Lin, “Dynamics of Oxygen Atom Reactions”, AdV. Radical from the Catalytic Decomposition of NH3 on Polycrys- Chem. Phys. (Potential Energy Surfaces), 42, 113 (1980). talline Pt and Fe Surfaces at High Temperatures”, Chem. Phys., 90. J. J. DeCorpo, J. W. Hudgens, M. C. Lin, F. E. Saalfeld, 67, 213 (1982). M. E. Seaver, and J. R. Wyatt, “Characterization of Multiphoton 108. M. R. Berman, J. W. Fleming, A. B. Harvey, and M. C. Ionization Mass Spectrometry”, AdV. Mass Spectrom., 8A, 133 Lin, “Temperature Dependence of the Reactions of CH Radicals (1980). with Unsaturated Hydrocarbons”, Chem. Phys., 73, 27 (1982). J. Phys. Chem. A, Vol. 111, No. 29, 2007 6575 109. T. G. DiGiuseppe, J. W. Hudgens, and M. C. Lin, “New 126. G. T. Fujimoto, M. E. Umstead, and M. C. Lin, “CO Electronic States in CH3, Observed Using Multiphoton Ioniza- Product Energy Distribution in the Photodissociation of Meth- tion”, J. Chem. Phys., 76, 3338 (1982). ylketene and Acrolein at 193 nm”, J. Chem. Phys., 82, 3042 110. M. R. Berman, J. W. Fleming, A. B. Harvey, and M. C. (1985). Lin, “Temperature Dependence of CH Radical Reactions with 127. H. J. Robota, W. Vielhaber, M. C. Lin, J. Segner, and O2, NO, CO and CO2”, 19th Symposium (International) on G. Ertl, “Dynamics of Interaction of H2 and D2 with Ni(110) Combustion; The Combustion Institute: Pittsburgh, PA, 1982; and Ni(111) Surfaces”, Surf. Sci., 155, 101 (1985). p 73. 128. D. W. Squire, C. S. Dulcey, and M. C. Lin, “Formation 111. D. S. Y. Hsu, W. M. Shaub, M. Blackburn, and M. C. of CH3 Radicals in the Decomposition of Trimethyl Aluminum Lin, “Thermal Decomposition of Formic Acid at High Tem- on Hot Solid Surfaces”, Chem. Phys. Lett., 116, 525 (1985). peratures in Shock Waves”, 19th Symposium (International) on 129. D. A. Lichtin and M. C. Lin, “Kinetics of CN Radical Combustion; The Combustion Institute: Pittsburgh, PA, 1982; Reactions with Selected Molecules at Room Temperature”, p 89. Chem. Phys., 96, 473 (1985). 112. J. W. Hudgens, T. G. DiGiuseppe, and M. C. Lin, “Two 130. J. T. Keiser, M. A. Hoffbauer, and M. C. Lin, Photon Resonant Enhanced Multiphoton Ionization Spectros- “Production of OH on Polycrystalline Studied by copy and State Assignments of the Methyl Radical”, J. Chem. Thermal Desorption/Laser-Induced Fluorescence”, J. Phys. Phys., 79, 571 (1983). Chem., 89, 2635 (1985). 113. G. T. Fujimoto, G. S. Selwyn, J. T. Keiser, and M. C. 131. D. W. Squire, C. S. Dulcey, and M. C. Lin, “Mechanistic Lin, “Temperature Effect on the Removal of Hydroxyl Radicals Studies of the Decompostion of Trimethylaluminum on Heated by a Polycrystalline Platinum Surface”, J. Phys. Chem., 87, 1906 Surfaces”, J. Vac. Sci. Technol., B3, 1513 (1985). (1983). 132. C.-Y. Lin and M. C. Lin, “Unimolecular Decomposition 114. G. S. Selwyn and M. C. Lin, “Catalytic Oxidation of of the Phenoxy Radical in Shock Waves”, Int. J. Chem. Kinet., NH3 on a Polycrystalline Pt Surface Studied by Laser Induced 17, 1025 (1985). Fluorescence”, Surface Studies with Lasers; Aussenegg, F. R., 133. D. S. Y. Hsu and M. C. Lin, “Laser Probing and Kinetic Leitner A., and Lipitsch, M. E., Eds.; Springer-Verlag: New Modeling of NO and CO Production in Shock-Wave Decom- York, 1983; p 115. postion of Nitromethane Under Highly Diluted Conditions”, J. 115. D. S. Y. Hsu, W. M. Shaub, T. Creamer, D. Gutman, Energ. Mater., 3, 95 (1985). and M. C. Lin, “Kinetic Modeling of CO Production from the 134. T. G. DiGiuseppe, J. W. Hudgens and M. C. Lin, “Two- Reaction of CH3 with O2 in Shock Waves”, Ber. Bunsen.-Ges. and Three Photon Resonance Enhanced Multiphoton Ionization Phys. Chem., 87, 909 (1983). Spectroscopy of the Gas-Phase Methyl Radical”, Lasers as 116. M. C. Lin, M. E. Umstead, and N. Djeu, “Chemical Reactants and Probes in Chemistry; Jackson W. M., Harvey, Lasers”, Annu. ReV. Phys. Chem., 34, 557 (1983). A. B., Eds., p 121, Howard University Press, Washington, D.C. 117. M. R. Berman and M. C. Lin, “Kinetics and Mechanisms (1985). of the CH + N2 Reaction. Temperature- and Pressure- 135. G. S. Selwyn and M. C. Lin, “Laser Studies of Surface Dependence Studies and Transition-State-Theory Analysis”, J. Chemistry”, Lasers as Reactants and Probes in Chemistry; Phys. Chem., 87, 3933 (1983). Jackson, W. M., Harvey, A. B., Eds.; Howard University Press, 118. M. R. Berman and M. C. Lin, “Kinetics and Mechanisms Washington, D.C. (1985); p 269. of the Reactions of CH with CH4,C2H6 and n-C4H10”, Chem. 136. M. R. Berman, J. W. Fleming, and M. C. Lin, “Laser Phys., 82, 435 (1983). Studies of the Kinetics and Mechanisms of CH Racial Reac- 119. D. S. Y. Hsu, G. L. Burks, M. D. Beebe, and M. C. tions”, Lasers as Reactants and Probes in Chemistry; Jackson, Lin, “Thermal Decomposition of Methyl Nitrite in Shock Waves W. M., Harvey, A. B., Eds.; Howard University Press, Wash- Studied by Laser Probing”, Int. J. Chem. Kinet., 16, 1139 ington, D.C. (1985); p 451. (1984). 137. D. S. Y. Hsu, W. H. Shaub, and M. C. Lin, “Laser 120. D. A. Lichtin, M. R. Berman, and M. C. Lin, “NH (A3Π Probing of High-Temperature Reaction Kinetics in Shock -X3Σ-) Chemiluminescence from the CH(X2Π)+NO Reaction”, Waves”, Lasers as Reactants and Probes in Chemistry; Jackson, Chem. Phys. Lett., 108, 18 (1984). W. M., Harvey, A. B., Eds.; Howard University Press, Wash- 121. D. S. Y. Hsu and M. C. Lin, “Infrared Laser Probing of ington, D.C. (1985); p 421. Combustion and Energetic Molecule Decomposition Reactions 138. M. E. Umstead and M. C. Lin, “Infrared Chemical in Shock Waves”, SPIE Proc., 482, 79 (1984). Lasers”, Chemiluminescence and Bioluminescence; Burr, J. C., 122. M. R. Berman and M. C. Lin, “Kinetics and Mechanisms Ed.; Marcel Dekker (1985); p 187. of the Reactions of CH and CD with H2 and D2”, J. Chem. 139. A. Modl, H. Robota, J. Segner, W. Vielhaber, M. C. Phys., 80, 5743 (1984). Lin, and G. Ertl, “Rotational State Distributions of NO 123. D. S. Y. Hsu, C. Y. Lin, and M. C. Lin, “CO Formation Molecules after Interaction with Surfaces”, J. Chem. in Early Stage High Temperature Benzene Oxidation under Fuel Phys., 83, 4800 (1985). Lean Conditions: Kinetics of the Initiation Reaction, C6H6 f 140. M. E. Umstead, S. A. Lloyd, J. W. Fleming, and M. C. C6H5 + H”, 20th Symp. (International) on Combustion; The Lin, “Laser-Induced Reactions of NO2 in the Visible Region: Combustion Institute: Pittsburgh, PA, 1984; p 623. I. Kinetic Modeling of Nitrobutane Formation in the NO2- 124. G. S. Selwyn and M. C. Lin, “Free Radical Formation Isobutane System”, Appl. Phys. B, B38, 219 (1985). in the Catalytic Oxidation of NH3 over a Polycrystalline Pt 141. S. A. Lloyd, M. E. Umstead, and M. C. Lin, “Kinetics Surface at High Temperatures”, Langmuir, 1, 212 (1985). and Mechanism of Thermal Decomposition of Dimethylnitra- 125. C. S. Dulcey, M. C. Lin, and C. C. Hsu, “Thermal mine at Low Temperatures”, J. Energ. Mater., 3, 187 (1985). Desorption of the PO Radical from Polycrystalline Pt Surfaces”, 142. M. E. Umstead, S. A. Lloyd, and M. C. Lin, “Laser- Chem. Phys. Lett., 115, 481 (1985). Induced Reactions of NO2 in the Visible Region: II. Kinetic 6576 J. Phys. Chem. A, Vol. 111, No. 29, 2007 and Mechanistic Study of the NO2-CO System”, Appl. Phys., 159. C. S. Dulcey and M. C. Lin, “Detection of Small Organic B39, 55 (1986). Sulfides by Multiphoton Ionization Spectrometry”, Proc. 2nd 143. M. E. Umstead and M. C. Lin, “Laser-Induced Reactions Int. Symp. Protection Against Chemical Warfare Agents; Stock- - of NO2 in the Visible Region: III. Adamantane Nitration in holm, Sweden (1986); p 221 227. the Liquid Phase”, Appl. Phys., B39, 61 (1986). 160. S. Zabarnick, J. W. Fleming, and M. C. Lin, “Temper- 144. C.-Y. Lin and M. C. Lin, “Thermal Decomposition of ature Dependence of CH Radical Reactions with H2O and Methyl Phenyl Ether in Shock Waves: The Kinetics of Phenoxy CH2O”, 21st Symposium (International) on Combustion; The Radical Reactions”, J. Phys. Chem., 90, 425 (1986). Combustion Institute: Pittsburgh, PA, 1986; p 713. 145. M. A. Hoffbauer, D. S. Y. Hsu, and M. C. Lin, 161. W. A. Sanders, C. Y. Lin, and M. C. Lin, “On the “Rotational Energy Accommodation of OH Radicals Desorbing Importance of the Reaction CH2 + N2 f HCN + NH as a from a Pt Foil and a Pt (111) Single Crystal”, J. Chem. Phys., Precursor for Prompt NO Formation”, Combust. Sci. Technol., 84, 532 (1986). 51, 103 (1987). 146. C. Y. Lin and M. C. Lin, “The Combination Reaction 162. S. Zabarnick, J. W. Fleming, and M. C. Lin, “Kinetics 2 of CH3 with C6H5O”, Aust. J. Chem., 39, 723 (1986). of CH(X Π) Radical Reactions with Propane, Isobutane, and 147. D. A. Lichtin and M. C. Lin, “Temperature Dependence Neopentane”, Chem. Phys., 112, 409 (1987). of the Reactions of CN Radicals with C2H2 and C2H4”, Chem. 163. J. A. Dagata, D. W. Squire, C. S. Dulcey, D. S. Y. Hsu, Phys., 104, 325 (1986). and M. C. Lin, “MPI/MS Detection of SiF and SiF2 Radicals 148. M. C. Lin and W. A. Sanders, “Detection and Spec- Produced from the Reaction of F2 and NF3 with ”, Chem. troscopy of Methyl and Substituted Methyl Radicals by Reso- Phys. Lett., 134, 151 (1987). nance Enhanced Multiphoton Ionization”, AdVances in Mul- 164. W. A. Sanders and M. C. Lin, “Kinetics and Mechanism tiphoton Processes and Spectroscopy; Lin, S. H., Ed.; World of Reactions of NF2 with Olefins”, J. Chem. Soc., Faraday Scientific Pub. Co.: Singapore (1986); Vol. 2, p 333. Trans. 2, 83, 905 (1987). 149. D. K. Gaskill, N. Bottka, and M. C. Lin, “The Growth 165. D. S. Y. Hsu, M. A. Hoffbauer, and M. C. Lin, of GaN Using Trimethygallium and Hydrazine OMCVD”, Appl. “Dynamics of OH Desorption from Single-Crystal Pt (111) and Phys. Lett., 48, 1449 (1986). Polycrystalline Pt Foil Surfaces”, Surf. Sci., 184, 25 (1987). 150. D. S. Y. Hsu, M. A. Hoffbauer, and M. C. Lin, 166. D. S. Y. Hsu and M. C. Lin, “Laser Probing of OH “Activation Energies for Thermal Desorption of Hydroxyl Production in Catalytic Oxidation of NH3 by NO and NO2 over Radicals from Single-Crystal Platinum(111) and Polycrystalline a Polycrystalline Pt Surface at High Temperatures”, Appl. Surf. Platinum Foil Surfaces”, Langmuir, 2, 302 (1986). Sci., 28, 415 (1987). 151. M. C. Lin and G. Ertl, “Laser Probing of Molecules 167. J. A. Dagata, D. W. Squire, C. S. Dulcey, D. S. Y. Hsu Desorbing and Scattering from Solid Surfaces”, Annu. ReV. and M. C. Lin, “Chemical Processes Involved in the Etching Phys. Chem., 37, 587 (1986). of Silicon by Xenon Difluoride”, J. Vac. Sci. Technol., B, 5, 152. C. S. Dulcey, C. C. Hsu, J. V. Pistritto, and M. C. Lin, 1495 (1987). “The Catalytic Removal of DMMP and TMP Studied by Laser- 168. W. A. Sanders and M. C. Lin, “Kinetics and Mechanisms Induced Fluorescence and Multiphoton Ionization-Mass Spec- of Methylidyne Radical Reactions”, Chemical Kinetics of Small troscopy”, Proc. 1985 Scientific Conference on Chemical Organic Radicals; Alfassi, Z., Ed.; CRC Press: (1988); Vol. Defense Research; CRDEC: Aberdeen, MD (1986); p 469. III, p 103. 153. A. Modl, H. Robota, J. Segner, W. Vielhaber, M. C. 169. D. W. Squire, J. A. Dagata, D. S. Y. Hsu, C. S. Dulcey, Lin, and G. Ertl, “Reaction Dynamics of NO2 Decomposition and M. C. Lin, “Thermal Reactions of F2 and NF3 with Silicon- on Ge: An Example of Dissociative Desorption”, Surf. Sci., (110) Studied by Laser Ionization Mass Spectrometry”, J. Phys. 169, L341 (1986). Chem., 92, 2827 (1988). 154. D. W. Squire, C. S. Dulcey, and M. C. Lin, “MPI/MS 170. S. Zabarnick, J. W. Fleming, and M. C. Lin, “Kinetics Studies of Thin Film Deposition Processes: Methyl Production of Hydroxyl Radical Reactions with Formaldehyde and 1, 3, from Trimethylgallium Decomposition and the Effect of Added 5-Trioxane between 290 and 600K”, Int. J. Chem. Kinet., 20, Hydrazine”, Mater. Res. Soc. Symp. Proc.; Nemanich, R. J., 117 (1988). Ho, P. S., Lau, S. S., Eds.; Mater. Res. Soc.: Pittsburgh, PA 171. D. S. Y. Hsu and M. C. Lin, “A Comparison of the (1986); Vol. 54 (Thin Films-Interfaces and Phenomena), p 709. Rotational Energy Accommodation in OH and OD Desorbing 155. S. Zabarnick, J. W. Fleming, and M. C. Lin, “Kinetic from a Smooth Pt (111) Single Crystal”, J. Chem. Phys., 88, 2 3 Study of the Reaction CH(X Π) + H2 f CH2(X B1)inthe 432 (1988). Temperature Range 372 to 675 K”, J. Chem.. Phys., 85, 4373 172. S. Zabarnick, J. W. Fleming, and M. C. Lin, “Kinetics (1986). of CH(X2Π) Radical Reactions with Cyclopropane, Cyclopen- 156. D. W. Squire, C. S. Dulcey, and M. C. Lin, “Multiphoton tanes, and Cyclohexane”, J. Chem. Phys., 88, 5983 (1988). Ionization Mass Spectrometry as a Mechanistic Probe of 173. J. S. Horwitz, C. S. Dulcey, and M. C. Lin, “REMPI/ Chemical Vapor Deposition”, Proc. International Conference MS Studies of SiF2 Production from the Thermal Reaction of on Applications of Lasers and Electro-Optics (ICALEO ’85); F2 with Doped and Undoped Si(110)”, Inst. Phys. Conf. Ser. The Laser Institute of America: OH (1986); LIA Vols. 49, 51, No. 94, 1988, p 121. and 52, p 148. 174. S. Zabarnick, J. W. Fleming, and M. C. Lin, “The 157. D. W. Squire, C. S. Dulcey, and M. C. Lin, “Multipho- Reaction of OH and OD with Nitromethane and OD with ton-Ionization/Mass Spectrometric Detection of Atom Perdeuteronitromethane”, Chem. Phys., 120, 319 (1988). During the Trimethylgallium CVD Reaction”, Chem. Phys. Lett., 175. S. Zabarnick, J. W. Fleming, and M. C. Lin, “Kinetics 131, 112 (1986). of CH Reactions with Fluoromethanes and Carbon Tetrachlo- 158. D. K. Gaskill, N. Bottka, and M. C. Lin, “OMVPE of ride”, J. Chem. Phys., 120, 311 (1988). GaN and AlN Films by Metal Alkyls and Hydrazine”, J. Cryst. 176. D. S. Y. Hsu, D. W. Squire, and M. C. Lin, “The Growth, 77, 418 (1986). Rotational Energy Accommodation of the NO Formed in the J. Phys. Chem. A, Vol. 111, No. 29, 2007 6577 Catalytic Oxidation of Ammonia Over Pt (111)”, J. Chem. Phys., Thermal Etching of Silicon by Fluorine Containing Com- 89, 2861 (1988). pounds”, AIP Conf. Proc. No. 191, Opt. Sci. Eng. Ser. 10, Adv. 177. D. W. Squire, C. S. Dulcey, and M. C. Lin, “Surface Laser Sci. IV; Am. Inst. Phys., 1989; p 445. Reactions in OMCVD: Detection of Gas-Phase Radicals in 193. E. Villa, J. A. Dagata, and M. C. Lin, “Photochemistry GaAs Deposition under Single Gas-Surface Collision Condi- of Ga (CH3)3 at a Low-Temperature Surface”, AIP Conf. Proc. tions”, Mater. Res. Soc. Proc., 101, 301 (1988). No. 191, Opt. Sci. Eng. Ser. 10, Adv. Laser Sci. IV; Am. Inst. 178. Yisheng He, W. A. Sanders, and M. C. Lin, “Thermal Phys., 1989; p 379. Decomposition of Methyl Nitrite: Kinetic Modeling of Detailed 194. E. Villa, J. A. Dagata, and M.C. Lin, “Photochemistry Product Measurements by GLC and FTIR”, J. Phys. Chem., of Adsorbed Phenyl Iodide: Desorption and Photofragmentation 92, 5474 (1988). Dynamics by EI/REMPI-TOF Measurement”, J. Chem. Phys., 179. J. Horwitz, C. S. Dulcey, and M. C. Lin, “REMPI/MS 92, 1407 (1990). Detection of SiF2 Radicals by (1 + 3) and (3 + 1) Photoion- 195. T. K. Choudhury, Y. He, W. A. Sanders, and M. C. ization”, Chem. Phys. Lett., 150, 165 (1988). Lin, “CO Formation in Thermal Decomposition of CH3ONO 180. M. C. Lin, “Multiphoton Ionization/Mass Spectrometric at High Temperatures: Kinetic Modeling of the CH3O Decom- Study of OMCVD Mechanisms Under Single Gas-Surface position Rate”, J. Phys. Chem., 94, 2394 (1990). Collision Conditions”, Proc. NATO Workshop on Mechanisms 196. C. H. Wu, C.-Y. Lin, H.-T. Wang, and M. C. Lin, “A of Reactions of Organometallic Compounds with Surfaces; Cole- Shock Tube Study of the Oxidation of the Methyl Radical”, Hamilton, D. J., Williams, J. O., Eds.; Plenum: London, 1989; AIP Conference Proc. No. 208, Current Topics in Shock Waves; NATO ASI Series B, Vol. 198, p 191. Kim, Y. W., Ed., 1990; p 450. 181. T. Choudhury, W. A. Sanders, and M. C. Lin, “A Shock 197. J. S. Horwitz and M. C. Lin, “Laser and Mass Tube and Modeling Study of the CH3 + CH2O Reaction at High Spectrometric Studies of Silicon Etching”, Material Chemistry Temperatures”, J. Phys. Chem., 93, 5143 (1989). at High Temperatures, Processing and Performance; Hastie, J. 182. T.K. Choudhury and M.C. Lin, “Pyrolysis of Methyl W., Ed.;, Vol. 2, p 265; Humana Press: Clifton, NJ, 1990. High Nitrite and 1,3,5-Trioxane Mixtures in Shock Waves: Kinetic Temp. Sci. 27, 266-278 (1990). Modeling of the H + CH2O Reaction Rate”, Combust. Sci. 198. C.-Y. Lin, H.-T. Wang, M. C. Lin, and C. F. Melius, Technol., 64, 19 (1989). “A Shock Tube Study of the CH2O + NO2 Reaction at High 183. S. Zabarnick, J. W. Fleming, and M. C. Lin, “Kinetics Temperatures”, Int. J. Chem. Kinet., 22, 455 (1990). of CH Reactions with N2O, SO2, COS, CS2, and SF6”, Int. J. 199. T. K. Choudhury and M. C. Lin, “Homogeneous Chem. Kinet., 21, 765 (1989). Pyrolysis of Acetylacetone at High Temperatures in Shock 184. M. Page, M.C. Lin, Y. He, and T. Choudhury, “Kinetics Waves”, Int. J. Chem. Kinet., 20, 491 (1990). of the Methoxy Radical Decomposition Reaction: Theory and 200. C. H. Wu, H.-t. Wang, M. C. Lin, and R. A. Fifer, Experiment”, J. Phys. Chem., 93, 4404 (1989). “Kinetics of CO and H Atom Production from the Decomposi- 185. S. Zabarnick, J. W. Fleming, and M. C. Lin, “Kinetics tion of HNCO in Shock Waves”, J. Phys. Chem., 94, 3344 of Methylidyne (CH X2Π) Radical Reactions with Ammonia (1990). and Methylamines”, Chem. Phys., 132, 407 (1989). 201. T. K. Choudhury, M. C. Lin, C.-Y. Lin, and W. A. 186. Y. He, E. Kolby, P. Shumaker, and M. C. Lin, “Thermal Sanders, “Thermal Decomposition t-Butyl Alcohol in Shock Reaction of CH2O with NO2 in the Temperature Range of 393- Waves”, Combust. Sci. Technol., 71, 219 (1990). 476 K: FTIR Product Measurement and Kinetic Modeling”, 202. S.-P. Lee, T. Yu, and M. C. Lin, “Effects of Temperature Int. J. Chem. Kinet., 21, 1015 (1989). and on CH3 Radical Formation in the CH4 Oxidation 187. S. Zabarnick and M. C. Lin, “Kinetics of CN (X2Σ+) Coupling Reaction over MgO”, Int. J. Chem. Kinet., 22, 975 Radical Reactions with HCN, BrCN, and CH3CN”, Chem. Phys., (1990). 134, 185 (1989). 203. E. Villa, J. A. Dagata, J.S. Horwitz, D.W. Squire, and 188. T. K. Choudhury, W. A. Sanders, and M. C. Lin, M.C. Lin, “Production of CH3 Radicals from Hydrogenation “Kinetic Modeling of Methyl Radical Reactions with Formal- of C2H2 over Ta and W at High Temperatures”, J. Vac. Sci. dehyde and Isobutane: Reinterpretation of Existing Data Technol., A, 8, 3237 (1990). Obtained by Molecular Modulation Spectrometry”, J. Chem. 204. C. C. Hsu, C. S. Dulcey, J. S. Horwitz, and M. C. Lin, Soc., Faraday Trans. 2, 85, 801 (1989). “Mass Spectrometric Characterization of Performance of a Low- 189. N. S. Wang, D. L. Yang, and M. C. Lin, “Kinetics of Temperature Oxidation Catalyst”, J. Mol. Catal. 60, 389 (1990). CN Radical Reactions with NOx between 297 and 740 K”, 205. Q. Sun, D. Yang, N. S. Wang, J. M. Bowman, and M. Chem. Phys. Lett., 163, 480 (1989). C. Lin, “Experimental and Reduced Dimensionality Quantum + f + 190. S. Cooper, M. E. Umstead, E. Kolby, and M. C. Lin, Rate Coefficients for H2(D2) CN H(D)CN H(D)”, J. “Relative Rates of CH3NO2,CH3ONO, and CH3ONO2 Forma- Chem. Phys., 93, 4730 (1990). tion in the Thermal Reaction of NO2 with CH3CHO and Di-t- 206. J. A. Dagata, E. Villa, and M. C. Lin, “UV Desorption butyl at Low Temperatures”, J. Energ. Mater., 7,55 and Photochemistry of (CH3)2 Au (hfacac) Adsorbed on a Quartz (1989). Substrate”, Appl. Phys. B, 51 (Photophys. and Laser Chem.), 191. L. V. Novakoski, D. S. Y. Hsu, and M. C. Lin, 443 (1990). “Rotational Energy Accommodation of OH Produced in the 207. S. Zabarnick, J. W. Fleming, and M. C. Lin, “Direct Catalytic Reaction of NO2 + H2 over Pt (111) ”, AIP Conf. Measurement of Rate Constant for the Reactions of CH and Proc. No. 191; Opt. Sci. Eng. Ser. 10, Adv. Laser Sci. IV; Am. CD with HCN and DCN”, Chem. Phys., 150, 109 (1991). Inst. Phys., 1989; p 397. 208. N. S. Wang, D. L. Yang, M. C. Lin, and C. F. Melius, 192. J. S. Horwitz, J. A. Dagata, D. W. Shinn, and M. C. “Kinetics of CN Reactions with N2O and CO2”, Int. J. Chem. Lin, “Rotational Temperature of SiF2 Radical Produced in the Kinet., 23, 151 (1991). 6578 J. Phys. Chem. A, Vol. 111, No. 29, 2007

209. K. H. Aldridge, X. Liu, M. C. Lin, and C. F. Melius, 225. J. A. Tarr, S.-P. Lee, and M. C. Lin, “UV Photochemistry “Thermal Unimolecular Decomposition of 1,3,5-Trioxane: Com- of Trivinylantimony Adsorbed on Quartz”, Mater. Chem. Phys., parison of Theory and Experiment”, Int. J. Chem. Kinet., 23, 33, 93 (1993). 947 (1991). 226. Y. Bu, Jason C.S. Chu, D.W. Shinn, and M.C. Lin, 210. Y. He, X. Liu, M. C. Lin, and C. F. Melius, “The “Adsorption and Decomposition of Trimethyl on Si- Thermal Reaction of HNCO at Moderate Temperatures”, Int. (110) ”, Mater. Chem. Phys., 33, 99 (1993). J. Chem. Kinet., 23, 1129 (1991). 227. Michelle T. Butterfield, T. Yu, and M. C. Lin, “Kinetics 211. J. C. S. Chu, James Breslin, N. S. Wang, and M. C. of CN Reactions with Allene, Butadiene, Propylene and Lin, “Relative Stabilities of Tetramethyl and Tetraethyl Ortho- Acrylonitrile”, Chem. Phys., 169, 129 (1993). silicates in the Gas Phase”, Mater. Lett., 12, 179 (1991). 228. J.C.S. Chu, Y. Bu, and M. C. Lin, “Spectroscopy and 212. C. H. Wu, Y. He, and M. C. Lin, “Kinetics and Reactions of Hydrazoic Acid on Silicon Single-Crystal Surfaces. Mechanism of the HNCO deNOx Process at High Tempera- (III). HN3 and DN3 on Si(111)-7 × 7”, Surf. Sci., 284, 281 tures”, Proc. of 1st Int. Conf. on Combust. Technol. for a Clean (1993). EnViron., Reaction Fundamentals II, 1991; p 19-25. Also 229. Y. Bu, J. C. S. Chu, and M. C. Lin, “Thermal Stability appeared in Energy, Combustion, and the EnVironment, Com- of Trimethyl Indium on Si(100)-2 × 1 as Studied by HREELS, bustion Technologies for a Clean Environment; da Graco UPS and XPS: A Comparison with the Results from Si(111)-7 Carvalho, M., Fiveland, W. H., Lockwood, F. C., Papadopoulos, × 7 and Si(100) Surfaces”, Surf. Sci., 285, 243 (1993). C., Eds., 1995; Vol. 1, pp 743-756. 230. T. Yu and M. C. Lin, “Kinetics of Phenyl Radical 213. M. C. Lin, Y. He ,and C. F. Melius, “Theoretical Reactions Studied by the “Cavity-Ring-Down” Method”, J. Am. Interpretation of the Kinetics and Mechanisms of the HNO + Chem. Soc., 115, 4371 (1993). HNO and HNO + 2NO Reactions with a Unified Model”, Int. 231. Y. He, X. Liu, M.C. Lin, and C.F. Melius, “Thermal J. Chem. Kinet., 24, 489 (1992). Reaction of HNCO with NO2 at Moderate Temperatures”, Int. 214. Y. Bu, J. C. S. Chu, and M. C. Lin, “Temperature J. Chem. Kinet., 25, 845 (1993). Dependence of the UPS and HREELS of HN3 and DN3 on Si- 232. D. L. Yang, T. Yu, M. C. Lin, and C.F. Melius, “The (110) ”, Surf. Sci. Lett., 264, L151 (1992). Reaction of CN with CH4 and CD4: An Experimental and 215. D. L. Yang, T. Yu, N. S. Wang, and M. C. Lin, Theoretical Study”, Chem. Phys., 177, 271 (1993). “Temperature Dependence of Radical Reactions 233. M. C. Lin and T. Yu, “Kinetics of the Reaction of C6H5 with Selected Alkanes: CN Reactivities Toward Primary, with HBr”, Int. J. Chem. Kinet., 25, 875 (1993). Secondary and Tertiary C-H Bonds”, Chem. Phys., 160, 307 234. M. C. Lin, Y. He, and C. F. Melius, “Theoretical Aspects (1992). of Product Formation from the NCO + NO Reaction”, J. Phys. 216. D. L. Yang, T. Yu, N. S. Wang, and M. C. Lin, “CN Chem., 97, 9124 (1993). Radical Reactions with Selected Olefins in the Temperature 235. Y. Bu, L. Ma, and M. C. Lin, “Interaction of HCN/ Range 174-740 K”, Chem. Phys. 160, 317 (1992). DCN with Si(100)-2 × 1”, J. Phys. Chem., 97, 7081 (1993). 217. Y. He and M. C. Lin, “Effects of Nitric Oxide on the 236. Y. Bu and M. C. Lin, “Interaction of CO with Silicon Thermal Decomposition of Methyl Nitrite: Overall Kinetics and Single-Crystal Surfaces Studied by UPS, HREELS and TPD”, Rate Constants for HNO + HNO and HNO + 2NO Reactions”, Surf. Sci., 298, 94 (1993). Int. J. Chem. Kinet., 24, 743 (1992). 237. Y. Bu, L. Ma, and M. C. Lin, “Interaction of HCN- 218. T. Yu, D. L. Yang, and M. C. Lin, “Kinetics of CN (DCN) with Si(111)-7 × 7 Studied with HREELS, UPS and Radical Reactions with Selected Cycloalkanes: CN Reactivity XPS”, J. Phys. Chem., 97, 11797 (1993). Toward Secondary C-H Bonds”, Chem. Phys., 162, 449 238. Y. Bu, L. Ma, and M.C. Lin, “Laser-Assisted Chemical (1992). Vapor Deposition of InN on Si(100) ”, J. Vac. Sci. Technol., 219. D. L. Yang, T. Yu, M. C. Lin, and C. F. Melius, “CN A, 11, 2931 (1993). Radical Reactions with Hydrogen and Cyanogen: 239. D.L. Yang, T. Yu, and M.C. Lin, “Kinetics of CN Comparison of Theory and Experiment”, J. Chem. Phys., 97, Reactions Formaldehyde and 1,3,5-Trioxane”, Int. J. Chem. 222 (1992). Kinet., 25, 1053 (1993). 220. Y. He, M. C. Lin, C. H. Wu, and C. F. Melius, “The 240. Y. Bu and M.C. Lin, “The 308-nm Laser Photodisso- Reaction of HNCO with NO2 in Shock Waves”, 24th Sympo- ciation of HN3 Adsorbed on Si(111)-7 × 7”, Surf. Sci., 301, sium (International) on Combustion; The Combustion Insti- 118 (1994). tute: Pittsburgh, PA, 1992; p 711. 241. T. Yu and M.C. Lin, “Kinetics of the C6H5 + NO 221. Jason C. S. Chu, Y. Bu, and M. C. Lin, “Spectroscopy Association Reaction”, J. Phys. Chem., 98, 2105 (1994). and Reactions of Hydrazoic Acid on Silicon Single-Crystal 242. Y. Bu and M.C. Lin, “Surface Chemistry of N2H4 on Surfaces (II). HN3 and DN3 on Si(100)”, Proc. 6th Int. Si(100)-2 × 1”, Surf. Sci., 311, 385 (1994). Electronic Mat. and Processes Conference; Baltimore, MD, June 243. Y. Bu and M.C. Lin, “Nitridation of GaAs Single-Crystal 23-25, 1992; p 31-41. Surfaces Using Hydrazoic Acid and 308-nm Photon Beams”, 222. Y. Bu, Jason C. S. Chu, and M. C. Lin, “Decomposition Surf. Sci., 317, 152 (1994). of TMIn on Si(111)-7 × 7 Studied with XPS, UPS and 244. E.W.G. Diau, T. Yu, M.A.G. Wagner, and M.C. Lin, HREEL”, Mater. Lett., 14, 207 (1992). “Kinetics of the NH2 + NO Reaction: Effects of Temperature 223. M. C. Lin, Y. He, and C. F. Melius, “Implications of on the Total Rate Constant and the OH/H2O Branching Ratio”, the HCN f HNC Process to High-Temperature - J. Phys. Chem., 98, 4034 (1994). Containing Fuel Chemistry”, Int. J. Chem. Kinet., 24, 1103 245. T. Yu and M. C. Lin, “Kinetics of the Reaction of C6H5 (1992). with HBr and DBr”, Int. J. Chem. Kinet., 26, 771 (1994). 224. Y. Bu, D. W. Shinn, and M. C. Lin, “Adsorption and 246. T. Yu and M. C. Lin, “Kinetics of the C6H5 + CCl4 Thermal Decomposition of N2H4 and CH3N2H3 on Si(111)-7 Reaction in the Gas Phase: Comparison with Liquid-Phase × 7”, Surf. Sci., 276, 184 (1992). Data”, J. Phys. Chem., 98, 9697 (1994). J. Phys. Chem. A, Vol. 111, No. 29, 2007 6579 247. T. Yu, M. C. Lin and C.F. Melius, “Absolute Rate 266. T. Yu and M. C. Lin, “Kinetics of Phenyl Radical Constant for the Reaction of Phenyl Radical with Acetylene”, Reactions with Selected Cycloalkanes and Carbon Tetrachlo- Int. J. Chem. Kinet., 26, 1095 (1994). ride”, J. Phys. Chem., 99, 8599 (1995). 248. Y. Bu and M.C. Lin, “LPCVD of InN on GaAs(110) 267. Y. Bu and M. C. Lin, “Low-Pressure Chemical Vapor using HN3 and TMIn: Comparison with Si(100) Results”, Deposition of III/V-Nitrides Using Organometallics and Hy- Mater. Res. Soc. Symp. Proc., 335, 21 (1994). drazoic Acid Precursors”, J. Chin. Chem. Soc. (Taiwan), 42, 249. Y. Bu and M. C. Lin, “Thermal Dissociation of NH2- 423 (1995). CHO(ND2CDO) on Si(100)-2 × 1”, Langmuir, 10, 3621 (1994). 268. Y. Bu and M. C. Lin, “The Adsorption and Thermal 250. E.W. Diau, M.C. Lin, and C.F. Melius, “A Theoretical Decomposition of CH2CO(CD2CO) on Si(111)-7 × 7”, J. Chin. Study of the CH3 + C2H2 Reaction”, J. Chem. Phys., 101, 3923 Chem. Soc. (Taiwan), 42, 309 (1995). (1994). 269. M. C. Lin and A. M. Mebel, “Ab Initio Molecular 251. A.M. Mebel, K. Morokuma, and M.C. Lin, “Ab Initio Orbital Study of the O + C6H5O Reaction”, J. Phys. Org. Chem., Molecular Orbital Study of Potential Energy Surface for the 8, 407 (1995). NH + NO2 Reaction”, J. Chem. Phys., 101, 3916 (1994). 270. E. W. G. Diau, M. J. Halbgewachs, A. R. Smith, and 252. Y. Bu and M.C. Lin, “Surface Chemistry of s-Triazine M. C. Lin, “Thermal Reduction of NO by H2: Kinetic Modeling on Si(100)-2 × 1”, J. Phys. Chem., 98, 7871 (1994). of the HNO + NO Reaction”, Int. J. Chem. Kinet., 27, 867 253. T. Yu and M.C. Lin, “Kinetics of the C6H5 + O2 (1995). Reaction at Low Temperatures”, J. Am. Chem. Soc., 116, 9571 271. E. W. G. Diau and M. C. Lin, “Kinetic Modeling of he (1994). CH3 + C2H2 Reaction Data with Sensitivity Analyses”, Int. J. 254. A.M. Mebel and M.C. Lin, “Ab Initio Molecular Orbital Chem. Kinet., 27, 855 (1995). Calculations of C6H5O2 Isomers”, J. Am. Chem. Soc., 116, 9577 272. Y. He, C. H. Wu, M. C. Lin, and C.F. Melius, “The (1994). Reaction of CN with NO at High Temperatures in Shock 255. S.-P. Lee and M. C. Lin, “Laser-Induced Decomposition Waves”, Shock Waves @ Marseille II. Physico-Chemical of Dimethyl on a Quartz Substrate”, Appl. Surf. Sci., Processes; Brun, R., Dumitrescu, L. Z., Eds.; Springer, 1995; p 84 31 (1995). 89-94. 256. T. Yu, A.M. Mebel, and M.C. Lin, “Reaction of Phenoxy 273. A. M. Mebel, K. Morokuma, and M. C. Lin, “Modifica- Radical with Nitric Oxide”, J. Phys. Org. Chem., 8, 47 (1995). tion of the Gaussian-2 Theoretical Model: The Use of Coupled 257. Y. Bu, L. Ma, and M.C. Lin, “Thermal Decomposition Cluster Energies, Functional Geometries and Frequen- of C2N2 on Si(100)-2 × 1 and Si(111)-7 × 7”, J. Phys. Chem., cies”, J. Chem. Phys., 103, 7414 (1995). 99 1046 (1995). 274. A. M. Mebel, K. Morokuma, and M. C. Lin, “Ab Initio 258. J. C. S. Chu, R. Soller, M. C. Lin, and C. F. Melius, Molecular Orbital Study of Potential Energy Surface for the “Thermal Decomposition of Tetramethyl Orthosilicate in the Reaction of C2H3 with H2”, J. Chem. Phys., 103, 3440 Gas Phase: An Experimental and Theoretical Study of the (1995). Initiation Process”, J. Phys. Chem., 99, 663 (1995). 275. A. M. Mebel, C.-C. Hsu, M. C. Lin, and K. Morokuma, 259. T. Yu and M.C. Lin, “Kinetics of the Phenyl Radical “An ab Initio Molecular Orbital Study of Potential Energy + Reaction with Ethylene: An RRKM Theoretical Analysis of Surface of the NH2 NO2 Reaction”, J. Chem. Phys., 103, Low and High-Temperature Data”, Combust. Flame, 100, 169 5640 (1995). (1995). 276. J. Park and M. C. Lin, “Direct Determination of Product + 260. A.M. Mebel, K. Morokuma, M. C. Lin, and C.F. Melius, Branching for the NH2 NO Reaction at Temperatures between “Potential Energy Surface of the HNO + NO Reaction. An ab 302 and 1,060 K”, J. Phys. Chem., 100, 3317 (1996). Initio Molecular Orbital Study”, J. Phys. Chem., 99, 1900 277. D. L. Yang and M. C. Lin, “The Reactions of the CN (1995). Radical with Molecules Relevant to Combustion and Atmo- 261. Y. Bu, M. C. Lin, A.D. Berry, and D. G. Hendershot, spheric Chemistry”, The Chemical Dynamics and Kinetics of “Low-Pressure Chemical Vapor Deposition of InSb using Small Molecules; Liu, K., Wagner, A.F., Eds.; World Scientific Neopentylstibine and Trimethylindium”, J. Vac. Sci. Technol., Pub. Co.: Singapore, 1996; Part I, Chapter 5, pp 164-213. A, 13(2), Mar/Apr 230 (1995). 278. L. C. Chen, C. Y. Yang, D. M. Bhusari, K. H. Chen, 262. E. W. G. Diau, M. C. Lin, Y. He, and C. F. Melius, M. C. Lin, J. C. Lin, and T. J. Chuang, “Formation of Crystalline “Theoretical Aspects of the H/N/O-Chemistry Relevant to the Silicon Films by Microwave Plasma-Enhanced Thermal Reduction of NO by H2”, Prog. Energy Combust. Sci., Chemical Vapor Deposition”, Diamond Relat. Mater., 5, 514 21, 1 (1995). (1996). 263. E. W. G. Diau and M. C. Lin, “A Theoretical Study of 279. A. M. Mebel, E. W. G. Diau, M. C. Lin, and K. + H(D) + N2O: Effects of Pressure, Temperature, and Quantum- Morokuma, “Theoretical Rate Constants for the NH3 NOx Mechanical Tunneling on H(D)-Atom Decay and OH(D)- f NH2 + HNOx (x ) 1,2) Reactions by ab Initio MO/VTST Radical Production”, J. Phys. Chem., 99, 6589 (1995). Calculations”, J. Phys. Chem., 100, 7517 (1996). 264. A.M. Mebel, M. C. Lin, K. Morokuma, and C.F. Melius, 280. K. Watanabe, M. C. Lin, Y. A. Gruzdkov, and Y. “Theoretical Study of the Gas-Phase Structure, Thermochem- Matsumoto, “Mechanism for the Desorption of Molecularly and istry, and Decomposition Mechanisms of NH4NO2 and NH4N- Dissociatively Adsorbed Methane on Pt(111) by Pulse-Laser (NO2)2”, J. Phys. Chem., 99, 6842 (1995). Heating”, J. Chem. Phys., 104, 5974 (1996). 265. Y. Bu, M. C. Lin, L. P. Fu, D. G. Chtchekine, G. D. 281. A. M. Mebel, M. C. Lin, K. Morokuma, and C. F. Gilliland, Y. Chen, S. E. Ralph, and S. R. Stock, “Optical Melius, “Theoretical Study of Reactions of N2O with NO and Properties of GaN Epitaxial Films Grown by Low-Pressure OH Radicals”, Int. J. Chem. Kinet., 28, 693 (1996). Chemical Vapor Epitaxy Using a New Nitrogen Source: 282. Ruifeng Liu, Keiji Morokuma, Alexander M. Mebel, Hydrazoic Acid (HN)3”, Phys. Lett., 66, 2433 (1995). and M. C. Lin, “Ab Initio Study of the Mechanism for the 6580 J. Phys. Chem. A, Vol. 111, No. 29, 2007

Thermal Decomposition of the Phenoxy Radical”, J. Phys. 300. L. C. Chen, D. M. Bhusari, C. Y. Yang, K. H. Chen, T. Chem., 100, 9314 (1996). J. Chuang, and M. C. Lin, “Si-Containing Crystalline Carbon 283. A. M. Mebel, A. Luna, M. C. Lin, and K. Morokuma, Nitride Derived by Microwave Plasma-Enhanced Chemical “A Density Functional Study of the Global Potential Energy Vapor Deposition”, Thin Solid Films, 303, 66 (1997). Surfaces of the [H,C,N,O] System in the Singlet and Triplet 301. A. M. Mebel, M. C. Lin, T. Yu, and K. Morokuma, States”, J. Chem. Phys., 105, 6439 (1996). “Theoretical Study of Potential Energy Surface and Thermal 284. J. Park and M. C. Lin, “Mass-Spectrometric Determi- Rate Constants for the C6H5 + H2 and C6H6 + H Reactions”, nation of Product Branching Probabilities in the NH2 + NO2 J. Phys. Chem. A, 101, 3189 (1997). Reaction at Temperatures between 300 and 990 K”, Int. J. Chem. 302. L. K. Madden, L. V. Moskaleva, S. Kristyan, and M. Kinet., 28, 879 (1996). C. Lin, “Ab Initio MO Study of the Unimolecular Decomposi- 285. C.-C. Hsu, A. M. Mebel, and M. C. Lin, “Ab Initio tion of the Phenyl Radical”, J. Phys. Chem. A, 101, 6790 (1997). Molecular Orbital Study of the HCO + O2 Reaction: Direct vs 303. J. Park, I. V. Dyakov, A. M. Mebel, and M. C. Lin, Indirect Abstraction Channels”, J. Chem. Phys., 105, 2346 “Experimental and Theoretical Studies of the Unimolecular (1996). Decomposition of Nitrosobenzene: High-Pressure Rate Con- 286. A. M. Mebel, E. W. G. Diau, M. C. Lin, and K. stants and the C-N Bond Strength”, J. Phys. Chem. A, 101, Morokuma, “Ab Initio and RRKM Calculations for Multichan- 6043 (1997). nel Rate Constants of the C2H3 + O2 Reaction”, J. Am. Chem. 304. J. Park, I. V. Dyakov, and M. C. Lin, “FTIR and Mass- Soc., 118, 9759 (1996). Spectrometry Measurements of the Rate Constant for the C6H5 287. L. V. Moskaleva, A. M. Mebel, and M. C. Lin, “The + H2 Reaction”, J. Phys. Chem. A, 101, 8839 (1997). CH3 + C5H5 Reaction: A Potential Source of Benzene at High 305. C.-C. Hsu, J. W. Boughton, A. M. Mebel, and M. C. Temperatures”, 26th Symposium (International) on Combustion; Lin, “Theoretical Study of HONO Reactions with H, OH, NO, The Combustion Institute: Pittsburgh, PA, 1996; p 521. and NH2 Radicals”, in Challenges in Propellants and Combus- 288. M. J. Halbgewachs, E. W. G. Diau, A. M. Mebel, M. tion: 100 Years after Nobel; Begell House, Inc.: New York, C. Lin, and C. F. Melius, “Thermal Reduction of NO by NH3: Aug. 1997; pp 48-57. Kinetic Modeling of the NH2 + NO Product Branching Ratio”, 306. I. V. Tokmakov, C.-C. Hsu, L. V. Moskaleva, and M. 26th Symposium (International) on Combustion; The Combus- C. Lin, “Thermal Decomposition of Formic Acid in the Gas tion Institute: Pittsburgh, PA, 1996; p 2109. Phase: Bimolecular and H2O-Catalyzed Reactions”, Mol. Phys., 289. L. K. Madden, A. M. Mebel, M. C. Lin, and C. F. 92, 581 (1997). Melius, “A Theoretical Study of the Thermal Isomerization of 307. A. G. Thaxton, M. C. Lin, C.-Y. Lin, and C. F. Melius, Fulvene to Benzene”, J. Phys. Org. Chem., 9, 801 (1996). “Thermal Oxidation of HCN Oxidation by NO2 at High 290. J. Park and M. C. Lin, “Laser-Initiated NO Reduction Temperature”, In Shock WaVes (ISSW21); Houwing, A. F. P., by NH3: Total Rate Constant and Product Branching Ratio Editor-in-chief; Australia, 1997; Vol. I, pp 245-250. Measurements for the NH2 + NO Reaction”, J. Phys. Chem. 308. A. M. Mebel, M. C. Lin, and C. F. Melius, “Rate A, 101, 5 (1997). Constant of the HONO + HONO f H2O + NO + NO2 291. J. Park and M. C. Lin, “Kinetics for the Recombination Reaction from ab Initio MO and TST Calculations”, J. Phys. of Phenyl Radicals”, J. Phys. Chem. A, 101, 14 (1997). Chem. A, 102, 1803 (1998). 292. C.-C. Hsu, M. C. Lin, A. M. Mebel, and C.F. Melius, 309. R. N. Musin and M. C. Lin, “Novel Bimolecular “Ab Initio Study of the H + HONO Reaction: Direct Abstrac- Reactions between NH3 and HNO3 in the Gas Phase”, J. Phys. tion versus Indirect Exchange Processes”, J. Phys. Chem. A, Chem. A, 102, 1808 (1998). 101, 60 (1997). 310. L. V. Moskaleva and M. C. Lin, “A Theoretical Study 293. D. G. Chtchekine, L. P. Fu, G. D. Gilliland, Y. Chen, of the NH2 + C2H2 Reaction”, J. Phys. Chem. A, 102, 4687 S. E. Ralph, K. K. Bajaj, Y. Bu, M.C. Lin, F. T. Bacalzo, and (1998). S. R. Stock, “Properties of Low-Pressure Chemical Vapor 311. D. Chakraborty, J. Park and M. C. Lin, “Theoretical Epitaxial GaN Films Grown Using Hydrazoic Acid (HN3)”, J. Study of the OH + NO2 Reaction: Formation of Nitric Acid Appl. Phys., 81, 2197 (1997). and the Hydroperoxyl Radical”, Chem. Phys., 231, 39 (1998). 294. J. W. Boughton, S. Kristyan and M. C. Lin, “Theoretical 312. A. M. Mebel, M.C. Lin, and K. Morokuma, “Ab initio Study of the Reaction of Hydrogen with Nitric Acid: Ab Initio MO and TST Calculations for the Rate Constant of the HNO MO and TST/RRKM Calculations”, Chem. Phys., 214, 219 + NO2 ) HONO + NO Reaction”, Int. J. Chem. Kinet., 30, (1997). 729 (1998). 295. D. M. Bhusari, C. K. Chen, K. H. Chen, T. J. Chuang, 313. S. J. Klippenstein, D. L. Yang, T. Yu, S. Kristyan, and L. C. Chen, and M. C. Lin, “Composition of SiCN Crystals M. C. Lin, “A Theoretical and Experimental Study of the CN Consisting of a Predominantly Carbon-Nitride Network”, J. + NO Association Reaction”, J. Phys. Chem. A, 102, 6973 Mater. Res., 12, 322 (1997). (1998). 296. A. Grant Thaxton, C.-C. Hsu and M. C. Lin, “Rate 314. A. M. Mebel, L. V. Moskaleva, and M. C. Lin, Constant for the NH3 + NO2 f NH2 + HONO Reaction: “Reactions of NH2 in the Gas Phase”, N-Centered Radicals; Comparison of Kinetically Modeled and Predicted Results”, Int. Alfassi, Z. B., Ed.; Wiley & Sons: NY, 1998; Chapter 14, pp J. Chem. Kinet., 29, 245 (1997). 467-514. 297. Y. Bu, J. Breslin, and M. C. Lin, “Adsorption and 315. F. T. Bacalzo, D. G. Musaev, and M. C. Lin, “Theoreti- Thermal Decomposition of Acetaldehyde on Si (111)-7 × 7”, cal Studies of CO Adsorption on Si(100)-2 × 1 Surface”, J. J. Phys. Chem. B, 101, 1872 (1997). Phys. Chem. B, 102, 2221 (1998). 298. A. M. Mebel and M. C. Lin, “Reactions of NOx with 316. D. Chakraborty, C. -C. Hsu, and M. C. Lin, “Theoretical Nitrogen Hydrides”, Int. ReV. Phys. Chem., 16, 249 (1997). Studies of Nitroamino Radical Reactions: Rate Constants for 299. J. Park and M. C. Lin, “A Mass-Spectrometric Study of the Unimolecular Decomposition of HNNO2 and Related the NH2 + NO2 reaction”, J. Phys. Chem. A, 101, 2643 (1997). Bimolecular Processes”, J. Chem. Phys., 109, 8889 (1998). J. Phys. Chem. A, Vol. 111, No. 29, 2007 6581 317. S. Kristyan and M. C. Lin, “Theoretical calculations for 333. J. Park, S. Burova, A. S. Rodgers, and M. C. Lin, the kinetics of the HN + NO Reaction”, Chem. Phys. Lett., 29, “Experimental and Theoretical Studies of the C6H5 + C6H6 200 (1998). Reaction”, J. Phys. Chem. A, 103, 9036-41 (1999). 318. J. Park, D. Chakraborty and M. C. Lin, “Thermal 334. J. Park and M. C. Lin, “Product Branching Ratios in Decomposition of Gaseous ADN: Kinetic Modeling of Product the NH2 + NO Reaction: A Re-evaluation”, J. Phys. Chem. A Formation with ab Initio MO/RRKM Calculations”, 27th Symp. 103, 8906-07 (1999). (Int.) on Combustion, 1998; pp 2351-2357. 335. L. V. Moskaleva and M. C. Lin, “Unimolecular 319. J. Park and M. C. Lin, “Kinetic Applications of the Isomerization/Decomposition of Cyclopentadienyl and Related Pulsed Laser Photolysis/Mass Spectrometric Technique”, Recent Bimolecular Reverse Process: Ab Initio MO/Statistical Theory Research DeVelopment in Physical Chemistry; Transworld Study”, J. Comput. Chem., 21, 415 (2000). Research Network, 2, 965-979 (1998). 336. D. Chakraborty and M.C. Lin, “Gas-Phase Chemical 320. J. Park, Nevia D. Giles, Jesse Moore, and M. C. Lin, Kinetics of [C,H,N,O]-Systems Relevant to the Combustion of “A Comprehensive Kinetic Study of Thermal Reduction of NO2 Nitramines in Their Early Stages”, in Solid Propellant Chem- by H2”, J. Phys. Chem. A, 102, 10098 (1998). istry, Combustion, and Motor Interior Ballistics, Progress in 321. J. Park and M. C. Lin, “Kinetic Studies of Aromatic Astronautics and Aeronautics; Yang, V., Brill, T. B., Ren, W. Radical Reactions by Cavity Ringdown Spectrometry”, CaVity- Z., Eds.; , American Institute of Aeronautics and Astronautics: Ring-Down Spectrometry-A New Technique for Trace Absorp- Reston, VA, 2000; Vol. 185, pp 33-71. tion Measurements; ACS Publication Series 720, 196-209 337. Gi-Jung Nam, Wensheng Xia, J. Park, and M. C. Lin, (1999). “The Reaction of C6H5 with CO: Kinetic Measurement and 322. M. D. Brioukov, J. Park, and M. C. Lin, “Kinetic Theoretical Correlation with the Reverse Process”, J. Phys. Modeling of Benzene Decomposition near 1000 K: The Effects Chem. A, 104, 1233-39 (2000). of Toluene Impurity”, Int. J. Chem. Kinet., 31, 577-582 (1999). 338. Y. M. Choi, W. S. Xia, J. Park, and M. C. Lin, “Kinetics 323. A. M. Mebel, L. V. Moskaleva, and M. C. Lin, “Ab and Mechanism for the Reaction of Phenyl Radical with - Initio MO Calculations for the Reactions of NH2 with H2,H2O, Formaldehyde”, J. Phys. Chem. A, 104, 7030 35 (2000). NH2, and CH4: Prediction of Absolute Rate Constants and 339. Xin Lu, R. N. Musin, and M. C. Lin, “Gas-Phase Kinetic Isotope Effects”, J. Mol. Struct.: THEOCHEM, 461/ Reactions of HONO with HNO and NH3: An Ab Initio MO/ 462, 223-238 (1999). TST Study”, J. Phys. Chem. A, 104, 5141-48 (2000). 324. F. Bacalzo-Gladden, D. G. Musaev, and M. C. Lin, “A 340. Xin Lu, J. Park, and M. C. Lin, “Gas-Phase Reactions Model Calculation for the Isomerization and Decomposition of of HONO with NO2,O3 and HCl: An Ab Initio MO/TST Chemisorbed HCN on the Si(100)-2 × 1 Surface”, J. Chin. Study”, J. Phys. Chem. A, 104, 8730-38 (2000). Chem. Soc. (Taiwan), 46, 395 (1999). 341. X. Lu and M. C. Lin, “Bonding Configurations of 325. A. M. Mebel and M. C. Lin, “Prediction of Absolute Acetylene Adsorbed on the Si(100)-2 × 1 Surface Predicted Rate Constants for the Reactions of NH2 with Alkanes from ab by Density Functional Cluster Model Calculations”, Phys. Chem. Initio G2M/TST Calculations”, J. Phys. Chem. A, 103, 2088- Chem. Phys., 2, 4213 (2000). 2096 (1999). 342. Rongshun Zhu and M. C. Lin, “The NCO + NO 326. D. Chakraborty and M. C. Lin, “Theoretical Studies of Reaction Revisited: Ab Inito MO/VRRKM Calculations for Methyleneamino (CH2N) Radical Reactions: (I) Rate Constant Total Rate Constant and Product Branching Ratios”, J. Phys. and Product Branching for the CH2N + N2O Process by ab Chem. A, 104, 10807 (2000). Initio MO/Statistical Theory Calculations”, J. Phys. Chem. A, 343. L. V. Moskaleva, W. S. Xia, and M. C. Lin, “The CH - 103, 601 606 (1999). + N2 Reaction over the Ground Electronic Doublet Potential 327. V. Tokmakov, J. Park, S. Gheyas, and M. C. Lin, Energy Surface: A Detailed Transition State Search”, Chem. “Experimental and Theoretical Studies of the Reaction of Phenyl Phys. Lett., 331, 269-77 (2000). Radical with Methane”, J. Phys. Chem. A, 103, 3636-3645 344. W. S. Xia and M. C. Lin, “A Computational Study of (1999). the C6H5 + CH2O Reaction”, Phys. Chem. Chem. Phys., 2, 328. R. N. Musin, D. G. Musaev, and M. C. Lin, “Quantum- 5566-70 (2000). Chemical Study of the Structure and Properties of Hypothetical 345. W. S. Xia and M. C. Lin, “Ab Initio MO/Statistical Superhard Materials Based on the Cubic Silicon-Carbon Ni- Theory Prediction of the OH + HONO Reaction Rate: Evidence trides”, J. Phys. Chem. B, 103, 797-803 (1999). for the Negative Temperature Dependence”, PhysChemComm 329. F. Bacalzo-Gladden and M. C. Lin, “A Model Study of (Electronic Journal), 13 (2000). CO-CO Adsorbate Interaction on Si(100)-2 × 1”, J. Phys. 346. L. V. Moskaleva and M. C. Lin, “The Spin-Conserved - Chem. B, 103, 7270 7276 (1999). Reaction CH + N2 f H + NCN: A Major Pathway to Prompt 330. J. Park, D. Chakraborty, D. M. Bhusari, and M. C. Lin, NO Studied by Quantum/Statistical Theory Calculations and “Kinetics of C6H5 Radical Reactions with Toluene and Kinetic Modeling of Rate Constant”, Proc. Combust. Intst., 28 by Cavity Ringdown Spectrometry”, J. Phys. Chem. A, 103, (Part II), 2393-401 (2000). 4002, (1999). 347. L. C. Chen, K. H. Chen, J.-J. Wu, D. M. Bhusari, and 331. J. Park, S. I. Gheyas, and M. C. Lin, “Kinetics of C6H5 M. C. Lin, “Silicon Carbon Nitride: A New Wideband Gap Radical Reactions with 2-Methylpropane, 2,3-Dimethylbutane, Material”, in Silicon Based Materials and DeVices; Nalwa, H. and 2,3,4-Trimethylpentane”, Int. J. Chem. Kinet. 31, 645-53 S., Ed.;, Academic Press: New York, 2001; Vol. 1, Chapter 2, (1999). pp 73-125. 332. L. V. Moskaleva, L. K. Madden, and M. C. Lin, 348. J. Park, S. Gheyas, and M. C. Lin, “Kinetics of Phenyl “Unimolecular Isomerization/ Decomposition of ortho-Ben- Radical Reactions with Ethane and Neopentane: Reactivity of zyne: Ab Initio MO/Statistical Theory Study”, Phys. Chem. C6H5 Toward the Primary C-H Bond of Alkanes”, Int. J. Chem. Chem. Phys., 1, 3967 (1999). Kinet., 33,64-69 (2001). 6582 J. Phys. Chem. A, Vol. 111, No. 29, 2007

349. W. S. Xia and M. C. Lin, “A Multifacet Mechanism for 366. R. S. Zhu, E. G. W. Diau, M. C. Lin, and A. M. Mebel, the OH + HNO3 Reaction: An Ab Initio MO/Statistical Theory “A Computational Study of the OH(OD) + CO Reactions: Study”, J. Chem. Phys., 114, 4522-32 (2001). Effects of Pressure, Temperature, and Quantum-Mechanical 350. L. V. Moskaleva and M. C. Lin, “Computational Study Tunneling on Product Formation”, J. Phys. Chem. A, 105, on the Energetics of NCN Isomers and the Kinetics of the C + 11249-59 (2001). N2 a N + CN Reaction”, J. Phys. Chem. A, 105, 4156-63 367. J. Park, D. Chakraborty, S. Jamindar, W. S. Xia, M. C. (2001). Lin, and C. Bedford, “Thermal Decomposition of 2,2-Bis- 351. A.M. Mebel, M. C. Lin, D. Charkraborty, J. Park, S. H. (difluoroamino) Propane Studied by FTIR Spectrometry and Lin, and Y. T. Lee, “Ab Initio MO/RRKM Study of Multi- Quantum Chemical Calculations: The Primary Decomposition channel Rate Constants for the H + C6H5 Reaction and the Kinetics and the Mechanism for the Decomposition of the Unimolecular Decomposition of Benzene”, J. Chem. Phys., 114, (CH3)2CNF2 Radical”, Thermochim. Acta, 384, 101-11 (2002). 8421-35 (2001). 368. D. Chakraborty and M. C. Lin, “Formation and 352. R. S. Zhu, C.-C. Hsu, and M. C. Lin, “Ab Initio Study Decomposition of CH2N and CH2NO in the Combustion of of the CH3 + O2 Reaction: Kinetics, Mechanism and Product RDX and HMX Studied by Quantum Chemical and Statistical Branching Probabilities”, J. Chem. Phys. 115, 195-203 (2001). Theory Calculations”, Proc. 5th Intern. Symp. on Special Topics 353. R. S. Zhu and M. C. Lin, “The CH3 + HO2 Reaction: in Chemical Propulsion and Combustion of Energetic Materials; First Principles Prediction of its Rate Constants and Product Kuo, K. K., DeLuca, L. T., Eds.; Begell House: London, 2002; Branching Probailities”, J. Phys. Chem. A, 105, 243-48 (2001). pp 31-39. 354. F. Bacalzo-Gladden, X. Lu, and M. C. Lin, “Adsorption, 369. Xin Lu and M.C. Lin, “Reactions of Some [C,N,O]- Isomerzation, and Decomposition of HCN on Si (100)-2 × 1: Containing Molecules with Silicon Surfaces: Experimental and A Computational Study with a Double-Dimer Cluster Model”, Theoretical Studies”, Int. ReV. Phys. Chem., 21, 137-84 (2002). J. Phys. Chem. A, 105, 4368-73 (2001). 370. R. S. Zhu and M. C. Lin, “Ab Initio Study of the 355. Xin Lu, G. Fu, N. Wang, Q. Zhang, and M. C. Lin, “A Catalytic Effect of H2O on the Self- Reaction of HO2”, Chem. Theoretical Study of HN3 Reaction with the C(100)-2 × 1 Phys. Lett., 354, 217 (2002). Surface”, Chem. Phys. Lett., 343, 212-18 (2001). 371. Thomas B. Brill, Merrill C. Beckstead, Joseph E. 356. Hongbo Luo and M. C. Lin, “A Computational Study Flanagan, M. C. Lin, Thomas A. Litzinger, R. H. Woodward of the Mechanism for Self-Assembly of N-Pyrrolyl Radicals Waesche, and Charles A. Wight, “Chemical Speciation and on Si(100)-2 × 1”, Chem. Phys. Lett., 343, 219-24 (2001). Dynamics in the Surface Combustion Zone of Energetic - 357. I. V. Tokmakov and M. C. Lin, “Kinetics and Mecha- Materials”, J. Propul. Power, 18, 824 34 (2002). nism for the H-for-X Exchange Process in the H + C6H5X(X 372. J. Park, Y. M. Choi, I. V. Dyakov, and M. C. Lin, “An ) D, CH3) Reactions: A Computational Study”, Int. J. Chem. Experimental and Computational Study of the Thermal Oxida- Kinet., 33, 633-53 (2001). tion of C6H5NO by NO2”, J. Phys. Chem. A, 106, 2903-08 358. W. S. Xia, R. S. Zhu, M. C. Lin, and A. M. Mebel, (2002). “Low-Energy Paths for the Unimolecular Decomposition of 373. X. Lu, X. Xu, N. Wang, Q. Zhang, and M. C. Lin, “High CH3OH: A G2M/Statistical Theory Study”, Faraday Discuss., Charge Flexibility of the Surface Dangling Bonds on the Si- 119, 191-205 (2001). (111)-7 × 7 Surface and the NH3 Chemisorption: A DFT - 359. L. V. Moskaleva and M. C. Lin, “The CH + N2 Study”, Chem. Phys. Lett., 355, 365 71 (2002). Association Reaction at Low Temperatures: Ab Initio MO/ 374. R. S. Zhu, Z. F. Xu, and M. C. Lin, “Ab Initio Studies VRRKM- Theory Analysis of Temperature and Pressure Ef- of ClOx Reactions: I. Kinetics and Mechanism for the OH + fects”, Z. Phys. Chem., 215, 1043-54 (2001). ClO Reaction”, J. Chem. Phys., 116, 7452-60 (2002). 360. X. Lu, Q. Zhang, and M. C. Lin, “Adsorption of 375. R. S. Zhu and M. C. Lin, “Ab Initio Studies of ClOx Methanol, Formaldehyde and Formic Acid on the Si(100)-2 × Reactions: II. Unimolecular Decomposition of s-ClO3 and the 1 Surface: A Computational Study”, Phys. Chem. Chem. Phys., Bimolecular O + OClO Reaction”, J. Phys. Chem. A, 106, 3, 2156-61 (2001). 8386-90 (2002). 361. X. Lu, M. C. Lin, N. Wang, and Q. Zhang, “Theoretical 376. J. Park, R. S. Zhu and M. C. Lin, “Thermal Decomposi- Study of [4 + 2] Cycloadditions of Some 6- and 5-Member tion of Ethanol. 1. Ab Initio MO/RRKM Prediction of Rate Ring Aromatic Compounds of the Si(001)-2 × 1 Surface: Constant and Product Branching Ratios”, J. Chem. Phys., 117, Correlation between Binding Energy and Resonance Energy”, 3224-31 (2002). PhysChemComm, 13,1-4 (2001). 377. Chih-Chang Hsiao, Yuan-Pern Lee, N. S. Wang, J. H. 362. X. Lu, X. Xu, N. Wang, Q. Zhang, and M. C. Lin, Wang, and M. C. Lin, “Experimental and Theoretical Studies “Chemisorption and Decomposition of Thiophene and Furan of Rate Coefficients of the Reaction O (3P) + HCl at High on the Si(100)-2 × 1 Surface: A Quantum Chemical Study”, Temperatures”, J. Phys. Chem. A, 106, 10231-237 (2002). J. Phys. Chem. B, 105, 10069-75 (2001). 378. I. V. Tokmakov and M. C. Lin, “Kinetics and Mecha- 363. J. Park and M. C. Lin, “Does CH3 Addition to C6H6 nism for the OH + C6H6 Reaction: A Detailed Analysis with Occur as Reported?”, Int. J. Chem. Kinet., 33, 803-07 (2001). First Principles Calculations”, J. Phys. Chem. A, 106, 11309- 364. R. S. Zhu and M. C. Lin, “The Self-Reaction of 326 (2002). Hydroperoxy Radicals: Ab initio Characterization of Dimer 379. B. H. Bui, R. S. Zhu and M. C. Lin, “Thermal Structures and Reaction Mechanisms”, PhysChemComm, 23, Decomposition of iso-Propanol: First-Principles Prediction of 1-6 (2001). Total and Product-Branching Rate Constants”, J. Chem. Phys., 365. R. S. Zhu and M. C. Lin, “Ab Initio Study of 117, 11188-95 (2002). Ammonium Perchlorate Combustion Initiation Processes: Uni- 380. L. V. Moskaleva and M. C. Lin, “Computational Study molecular Decomposition of Perchloric Acid and the Related of the Kinetics and Mechanisms for the Reaction of H Atoms OH + ClO3 Reaction”, PhysChemComm, 25,1-5 (2001). with c-C5H6”, Proc. Combust. Inst., 29, 1319-27 (2002). J. Phys. Chem. A, Vol. 111, No. 29, 2007 6583

381. Z. F. Xu, R. S. Zhu, and M. C. Lin, “Ab Initio Studies ficients for Pyrolysis of SO2 and the Reaction O + SO at of ClOx Reactions: III. Kinetics and Mechanism for the OH + High Temperatures”, J. Phys. Chem. A, 107, 11020-11029 OClO Reaction”, J. Phys. Chem. A, 107, 1040-49 (2003). (2003). 382. I. V. Tokmakov, L. V. Moskaleva, D. V. Paschenko, 398. J. Park, Liming Wang, and M. C. Lin, “Kinetics of and M. C. Lin, “Computational Study of the HCCO + NO Phenyl Radical Reactions with Propane, n-Butane, n-Hexane, Reaction: Ab Initio MO/vRRKM Calulcations of the Total Rate and n-Octane: Reactivity of C6H5 toward the Secondary C-H Constants and Product Branching Ratios”, J. Phys. Chem. A, Bond of Alkanes”, Int. J. Chem. Kinet., 36,49-56 (2004). 107, 1066-76 (2003). 399. I. V. Tokmakov, L. V. Moskaleva, and M. C. Lin, 383. R. S. Zhu and M. C. Lin, “Ab Initio Studies of ClOx “Quantum Chemical/vRRKM Study on the Thermal Decom- Reactions: IV. Kinetics and Mechanism for the Self-Reaction position of Cyclopentadiene”, Int. J. Chem. Kinet., 36, 139- of ClO Radicals”, J. Chem. Phys., 118, 4094-4106 (2003). 51 (2004). 384. R. S. Zhu and M. C. Lin, “Ab Initio Studies of ClOx 400. Y. M. Choi and M. C. Lin, “Kinetics and Mechansism Reactions: V. Evidence of a New Path in the Cl + ClOOCl for the Reactions of Phenyl Radicals with Ketene and its Reaction”, J. Phys. Chem. A, 107, 3836-40 (2003). Isotopomer: An Experimental and Computational Study”, 385. Z. F. Xu, R. S. Zhu, and M. C. Lin, “Ab Initio Sudies ChemPhysChem., 5, 225-32 (2004). of ClOx Reactions: VI. Prediction of Total Rate Constant and 401. Z. F. Xu and M. C. Lin, “Computational Study on the Product Branching Probabilities for the HO2 + ClO Reaction”, Kinetics and Mechanisms for the Reactions of HCO with HONO J. Phys. Chem. A, 107, 3841-50 (2003). and HNOH”, Int. J. Chem. Kinet., 36, 178-87 (2004). 386. Z. F. Xu and M. C. Lin, “Kinetics and Mechanism for 402. Z. F. Xu and M. C. Lin, “A Computational Study of the CH2O + NO2 Reaction: A Computational Study”, Int. J. the Kinetics and Mechanism for the Reaction of HCO with Chem. Kinet., 35, 184-90 (2003). HNO”, Int. J. Chem. Kinet., 36, 205-15 (2004). 387. R. S. Zhu and M. C. Lin, “Ab Initio Sudies of ClOx 403. Y. M. Choi and M. C. Lin, “Kinetics and Mechanism Reactions: VII. Isomers of Cl2O3 and Their Roles in the ClO for the C6H5 + CH3CHO Reaction: A Computational and + OClO Reaction”, J. Chem. Phys., 118, 8645-55 (2003). Experimental Study”, ChemPhysChem., 5, 661-68 (2004). 388. M. T. Nguyen, H. T. Le, B. Hajgato, T. Veszpremi, and 404. Z. F. Xu, J. Park and M. C. Lin, “Thermal Decomposi- M. C. Lin, “Nitromethane-Methyl Nitrite Rearrangement: A tion of Ethanol. III. Kinetics and Mechanism for the CH3 + Persistent Discrepancy Between Theory and Experiment”, J. C2H5OH Reaction”, J. Chem. Phys., 120, 6593 - 99 (2004). Phys. Chem. A, 107, 4286-91 (2003). 405. R. S. Zhu, Z. F. Xu and M. C. Lin, “Ab Initio Study of 389. J. Park, Z. F. Xu, and M. C. Lin, “Thermal Decomposi- Alkyl Radical Reactions: Combination and Disproportionation tion of Ethanol. II. Kinetics and Mechanism for the H + C2H5- Reactions of CH3 with C2H5 and the Decomposition of OH Reaction”, J. Chem. Phys., 118, 9990-96 (2003). Chemically Activated C3H8”, J. Chem. Phys., 120, 6566-73 390. R. S. Zhu and M. C. Lin, “Ab Initio Studies of ClOx (2004). Reactions. VIII. Isomerization and Decomposition of ClOO and 406. I. V. Tokmakov and M. C. Lin, “A Combined Quantum Related Bimolecular Processes”, J. Chem. Phys., 119, 2075 Chemical/RRKM-ME Computational Study of the Phenyl + (2003). Ethylene, Vinyl + Benzene and H + Styrene Reactions”, J. - 391. R. S. Zhu and M. C. Lin, “H2O-Catalyzed Formation Phys. Chem. A, 108, 9697 714 (2004). of O3 in the Self-Reaction of HO2: A Computational Study on 407. Jeng-Han Wang and M. C. Lin, “Adsorption and the Effect of n-H2O(n ) 1-3)”, PhysChemComm, 6(13), 51- Reaction of C2N2 on Si(100)-2 × 1: A Computational Study 54 (2003). with Single- and Double-Dimer Cluster Models”, J. Phys. Chem. 392. Y. M. Choi and M. C. Lin, “Experimental and B, 108, 9189-97 (2004). Computational Studies of the Kinetics and Mechanisms for C6H5 408. Y. M. Choi, J. Park, Liming Wang, and M. C. Lin, Reactions with Acetone-h6 and d6”, J. Phys. Chem. A., 107(39), “Formation and Decomposition of Peroxyphenylvinyl Radicals 7755-61 (2003). in the C6H5C2H2 + O2 Reaction”, ChemPhysChem, 5, 1231- 393. R. S. Zhu and M. C. Lin, “Towards Reliable Prediction 34 (2004). of Kinetics and Mechanisms for Elementary Reactions: Key 409. Jenghan Wang and M. C. Lin, “Low-Pressure Organo- Combustion Initiation Processes of Ammonium Perchlorate”, metallic Chemical Vapor Deposition of Indium Nitride on a chapter of book on Energetic Materials, Part 2, Detonation Oxide Nanoparticles”, ChemPhysChem, 5, 1615-18 and Combustion; Politzer, P., Murray, J. S., Eds.; Elsevier (2004). Science Pub., 2003; Chapter 11, pp 373-443. 410. Cheng-Ming Tzeng, Y. M. Choi, Cheng-Liang Huang, 394. I. V. Tokmakov and M. C. Lin, “Reaction of Phenyl Chi-Kung Ni, Yuan T. Lee, and M. C. Lin, “Photodissociation Radical with Acetylene: A Quantum Chemical Investigation of Nitrosobenzene and Decomposition of Phenyl Radical”, J. of the Mechanism and Master Equation Analysis of the Phys. Chem. A, 108, 7928-35, (2004). Kinetics”, J. Am. Chem. Soc., 125, 11397-408 (2003). 411. Chih-Wei Lu and Yu-Jong Wu, Yuan-Pern Lee, R. S. 395. Z. F. Xu and M. C. Lin, “Ab Initio Studies of ClOx Zhu, and M. C. Lin, “Experimental and Theoretical Investiga- 3 Reactions. IX. Combination and Disproportionation Reactions tions of Rate Coefficients of the Reaction S( P) + O2 in the of ClO and s-ClO3 Radicals”, J. Chem. Phys., 119, 8897-8904 Temperature range 298-878 K”, J. Chem. Phys., 121, 8271- (2003). 78 (2004). 396. R. S. Zhu and M. C. Lin, “Ab initio Study of the HO2 412. R. S. Zhu and M. C. Lin, “Ab initio Studies of ClOx + NO Reaction: Prediction of the Total Rate Constant and Reactions: X. Prediction of the Rate Constants of ClO + NO Product Branching Ratios for the Forward and Reverse Pro- for the Forward and Reverse Processes”, ChemPhysChem, 5, cesses”, J. Chem. Phys., 119, 10667-10677 (2003). 1864-70 (2004). 397. Chih-Wei Lu, Yu-Jong Wu, Yuan-Pern Lee, R. S. Zhu, 413. Huzeifa Ismail, Joonbum Park, Bryan M. Wong, W. H. and M. C. Lin, “Experiments and Calculations on Rate Coef- Green, Jr., and M. C. Lin, “A Theoretical and Experimental 6584 J. Phys. Chem. A, Vol. 111, No. 29, 2007

Kinetic Study of Phenyl Radical Addition to Butadiene”, Proc. OCH2 Complex on the H-Abstraction Kinetics”, Int. J. Chem. Combust. Inst., 30, 1049-56 (2005). Kinet., 38, 322-6 (2006). 414. Y. M. Choi and M. C. Lin, “Kinetics and Mechanisms 431. Jenghan Wang, Fe Bacalzo-Gladden, and M. C. Lin, for Reactions of HNO with CH3 and C6H5 Studied by Quantum- “A Computational Study of the Adsorption and Reactions of Chemical and Statistical-Theory Calculations”, Int. J. Chem. HN3 on Si(100)-2 × 1”, Surf. Sci., 600, 1113-24 (2006). Kinet., 37, 261-74 (2005). 432. S. C. Xu, G. D. Musaev, S. Irle, amd M. C. Lin, 415. J. H. Wang and M. C. Lin, “Adsorption and Reaction “Computational Studies of the Mechanisms for the W and W+ of N2H4 on Si(100)-2 × 1: A Computational Study with Single- + H2O Reactions”, J. Phys. Chem. A, 110, 4495-01 (2006). and Double-Dimer Cluster Models”, Surf. Sci., 579, 197-214 433. Y. M. Choi, Charles Compson, M. C. Lin, and Meilin (2005). Liu, “A Mechanistic Study for H2S Decomposition on Ni- and 416. Chih-Liang Huang, Shiang Yang Tseng, Tzu Yi Wang, Cu-based Anode Surfaces in Solid Oxide Fuel Cells”, Chem. N. S. Wang, Z. F. Xu, and M. C. Lin, “Reaction Mechanism Phys. Lett., 421, 179-83 (2006). and Kinetics of the NCN + NO Reaction: Comparison of 434. Jenghan Wang, Meilin Liu, and M. C. Lin, “Oygen - Theory and Experiment”, J. Chem. Phys., 122, 184321/1 Reduction in the SOFC Cathode of Ag/CeO2”, Solid Stae Ionics, 184321/9 (2005). 177, 939-47 (2006). 417. Shucheng Xu and M. C. Lin, “A Computational Study 435. Kun Xu, Z. F. Xu, and M. C. Lin, “Ab Initio Kinetics on the Kinetics and Mechanism for the Unimolecular Decom- of the FCO Reaction with NO”, J. Phys. Chem. A, 110, 6718- position of C6H5NO2 and the Related C6H5 + NO2 and C6H5O 23 (2006). + - NO Reactions”, J. Phys. Chem. B, 109, 8367 8373 (2005). 436. Jenghan Wang and M. C. Lin, “Reactions of HN3 and 418. R. S. Zhu and M. C. Lin, “Ab initio Studies of ClOx Trimethyl Indium on Rutile TiO2 (11O): A Computational Reactions: XI. Prediction of the Rate Constants of ClO + NO2 Study on the Formation of the First Monolayer InN”, J. Phys. for the Forward and Reverse Processes”, ChemPhysChem, 5, Chem. B, 110, 2263-70 (2006). 1864-1870 (2005). 437. Y. M. Choi, Harry Abernathy, Hsin-Tsung Chen, M. C. 419. Jenghan Wang, M. C. Lin, and Ying-Chieh Sun, Lin, and Meilin Liu, “Characterization of O2-CeO2 Interactions “Reactions of Hydrazoic Acid on TiO2 Nanoparticles: An using in-Situ Raman Spectroscopy and First-Principles Calcula- Experimental and Computational Study”, J. Phys. Chem. B, 109, tions”, ChemPhysChem, 7, 1957-63 (2006). 5133-42 (2005). 438. C. W. Lu, W. J. Wu, Yuan-Pern Lee, R. S. Zhu, and M. 420. R. S. Zhu and M. C. Lin, “Ab Initio Study of the C. Lin, “Experimental and Theoretical Investigation of Rate 3 Oxidation of NCN by O2”, Int. J. Chem. Kinet., 37, 593-98 Coefficients of the Reaction S ( P) + OCS in the Temperature (2005). Range 298-985 K”, J. Chem. Phys., 125, 164329/1-164329/ 421. J. Park, I. V. Tokmakov, and M. C. Lin, “Experimental 10 (2006). and Computational Studies of the Phenyl Radical Reaction with 439. G. J. Nam, J. Park, I. V. Tokmakov, and M. C. Lin, Propyne”, ChemPhysChem, 6, 2075-85 (2005). “Experimental and Theoretical Studies of the Phenyl Radical 422. Chih-Wei Lu, Shen-Long Chou, Yuan-Pern Lee, Shucheng Reaction with Propene”, J. Phys. Chem. A, 110, 8729-35 Xu, Z. F. Xu, and M. C. Lin, “Experimental and Theoretical (2006). 3 Studies of Rate Coefficients for the Reaction O ( P) + CH3OH 440. S. C. Chen, Shucheng Xu, Eric. W. G. Diau, and M. C. at High Temperatures”, J. Chem. Phys., 122, 244314/1-244314/ Lin, “A Computational Study on the Kinetics and Mechanism 11 (2005). for the Unimolecular Decomposition of o-Nitrotoluene”, J. Phys. 423. Jenghan Wang and M. C. Lin, “Reactions of Trimethyl Chem. A, 110, 10130-34, (2006). Indium on TiO2 Nanoparticles: An Experimental and Compu- 441. R. S. Zhu and M. C. Lin, “A Computational Study on - tational Study”, J. Phys. Chem. B, 109, 20858 67 (2005). the Decomposition of NH4ClO4: Comparison of the Gas-Phase 424. R. S. Zhu, J. Park and M. C. Lin, “Ab initio Kinetic and Condensed-Phase Results”, Chem. Phys. Lett., 431,272- Study of the Low-Energy Paths of the HO + C2H4 Reaction”, 77 (2006). Chem. Phys. Lett., 408,25-30 (2005). 442. S. C. Xu, S. Irle, D. G. Musaev, and M. C. Lin, 425. Z. F. Xu, H.-C. Hsu, and M. C. Lin, “Ab Initio Kinetics “Quantum Chemical Prediction of Reaction Pathways and Rate of the HCO Reaction with NO: Abstraction vs. Association/ Constants for Dissociative Adsorption of COx and NOx on the Elimination Mechanism”, J. Chem. Phys., 122, 234308/1- Graphite (0001) Surface”, J. Phys. Chem. B, 110, 21135-44 234308/11 (2005). (2006). 426. I.V. Tokmakov, G.-S. Kim, V. V. Kislov, A. M. Mebel, 443. Y. M. Choi, Charles Compson, M. C. Lin, and Meilin and M. C. Lin, “The Reaction of Phenyl Radical with Molecular Liu, “Ab initio Analysis of Tolerance of Ni, Cu, Ni-Cu Oxygen: A G2M Study of the Potential Energy Surface”, J. Alloys for Solid Oxide Fuel Cells”, J. Alloys Compd., 427,25-7 Phys. Chem. A, 109, 6114-27 (2005). (2007). 427. Z. F. Xu and M. C. Lin, “A DFT Computational Study 444. S. C. Xu, S. Irle, D. G. Musaev, and M. C. Lin, of the C6H5 + C6H5NO Kinetics and Mechanism”, J. Phys. “Quantum Chemical Study of the Dissociative Adsorption of Chem. A, 109, 9054-60 (2005). OH and H2O on Pristine and Defective Graphite (0001) 428. S. C. Xu, S. Irle, D. G. Musaev, and M. C. Lin, “Water Surfaces: Reaction Mechanisms and Kinetics”, J. Phys. Chem. Clusters on Graphite: Methodology for Quantum Chemical A C, 111, 1355-65 (2007). Priori Prediction of Reaction Rate Constants”, J. Phys. Chem. 445. Z. F. Xu and M. C. Lin, “Computational Studies on the A, 109, 9563-72 (2005). Kinetics and Mechanisms for NH3 Reactions with ClOx (x ) 429. Z. F. Xu and M. C. Lin, “Ab Initio Kinetics for the 0-4) Radicals”, J. Phys. Chem. A, 111, 584-90 (2007). Unimolecular Reaction C6H5OH f CO + C5H6”, J. Phys. 446. Hsin-Tsung Chen, Djamaladdin G. Musaev, Stephan Irle, Chem. A, 110, 1672-77 (2006). and M. C. Lin, “The Mechanisms of the Reactions of W and + 430. Shucheng Xu, R. S. Zhu, and M. C. Lin, “Ab Initio W with NOx (x ) 1,2): A Computational Study”, J. Phys. Study of the OH + CH2O Reaction: The Effect of the OH‚‚ Chem. A, 111, 982-91 (2007). J. Phys. Chem. A, Vol. 111, No. 29, 2007 6585 447. Z. F. Xu and M. C. Lin, “Ab Initio Study on the Kinetics 456. Yi-Ren Tzeng, P. Raghunath, Szu-Chen Chen, and M. and Mechanisms for O3 Reactions with HO2 and HNO”, C. Lin, “A Computational Study of Reaction Pathways for the Chem. Phys. Lett., 440,12-18 (2007). Formation of Indium Nitride from Trimethylindium with HN3: 448. S. C. Xu and M. C. Lin, “Theoretical Study on the Comparison of the Reaction with NH3 and that on TiO2 Rutile Kinetics for OH Reactions with CH3OH and C2H5OH”, Proc. (110) Surface”, J. Phys. Chem. A, 111, 6781-88 (2007). Combust. Inst., 31, 159-66 (2007). 457. R. S. Zhu and M. C. Lin, “Ab Initio Study of the ClO 449. G. Nam, I. V. Tokmakov, J. Park, and M. C. Lin, + NH2 Reaction: Prediction of the Total Rate Constant and “Kinetics for the Reaction of Phenyl Radical with Phenyl- Product Branching Ratios”, J. Phys. Chem. A, 111, 3977-83 ethyne and Phenylethene”, Proc. Combust. Inst., 31, 249-56 (2007). (2007). 458. D. G. Musaev, Stephan Irle, and M. C. Lin, “The + 450. Ming-Fu Lin, Yuan T. Lee, Chi-Kung Ni, Shucheng Xu, Mechanisms of the Reactions of W and W with COx (x ) 1, and M.C. Lin, “Photodissociation Dynamics of Nitrobenzene 2): A Computational Study”, J. Phys. Chem. A, 111, 6665-73 and o-Nitrotoluene”, J. Chem. Phys., 126, 064310 (2007). (2007). 451. Y. M. Choi, David S. Mebane, M. C. Lin, and Meilin 459. J. Park, I. V. Tokmakov and M. C. Lin, “Experimental Liu, “Oxygen Reduction on LaMnO3-based Cathode Materials and Computational Studies of the Phenyl Radical Reaction with in Solid Oxide Fuel Cells”, Chem. Mater., 19, 1690-99 (2007). Allene”, J. Phys. Chem. A, 111, 6881-89 (2007). 452. H. T. Chen, Y. M. Choi, Meilin Liu, and M. C. Lin, “A 460. P. Raghunath and M. C. Lin, “Computational Study on Mechanistic Study on the Reduction of CeO2 (111) and (110) the Mechanisms and Energetics of Trimethylindium Reactions Surfaces by H2”, ChemPhysChem, 8, 849-55 (2007). with H2O and H2S”, J. Phys. Chem. A, 111, 6481-88 (2007). 453. Binh Bui, Ti Jo Tsay, M. C. Lin, and C. F. Melius, 461. Y. M. Choi, M. C. Lin and Meilin Liu, “Computational “Theoretical and Experimental Studies of the DiketeneSystem: Study of Catalytic Mechanism toward Oxygen Reduction on Product Branching Decomposition Rate Constants and Energet- La0.5Sr0.5MnO3 in Solid Oxide Fuel Cells”, Angew. Chem., Int. ics of Isomers”, Int. J. Chem. Kinet., in press. Ed., in press. 454. J. G. Chang, J. H. Wang, and M. C. Lin, “Adsorption 462. Chih-Wei Wu, Yuan-Pern Lee, S. C. Xu, and M. C. Configurations and Energetics of BClx (x ) 0-3) on TiO2 Lin, “Experimental and Theoretical Studies of Rate Coefficients 3 Anatase (101) and Rutile (110) Surfaces”, J. Phys. Chem. A, for the Reaction O( P) + C2H5OH at High Temperatures”, J. 111, 6746-54 (2007). Phys. Chem. A, 111, 6693-6703 (2007). 455. J. G. Chang, Hsin-Tsung Chen, Shucheng Xu, and M.C. 463. R. S. Zhu and M. C. Lin, “Ab Initio Study on the Lin, “A Computational Study on the Kinetics and Mechanisms Oxidation of NCN by O(3P): Prediction of the Total Rate for the Unimolecular Decomposition of Formic Acid and Oxalic Constant and Product Branching Ratios”, J. Phys. Chem. A, 111, Acid”, J. Phys. Chem. A, 111, 6789-97 (2007). 6766-71 (2007).