Alder Reactions of [60]Fullerene with 1,2,4,5-Tetrazines and Additions to [60]Fullerene-Tetrazine Monoadducts

Total Page:16

File Type:pdf, Size:1020Kb

Alder Reactions of [60]Fullerene with 1,2,4,5-Tetrazines and Additions to [60]Fullerene-Tetrazine Monoadducts University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2002 Diels -Alder reactions of [60]fullerene with 1,2,4,5-tetrazines and additions to [60]fullerene-tetrazine monoadducts Mark Christopher Tetreau University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Tetreau, Mark Christopher, "Diels -Alder reactions of [60]fullerene with 1,2,4,5-tetrazines and additions to [60]fullerene-tetrazine monoadducts" (2002). Doctoral Dissertations. 81. https://scholars.unh.edu/dissertation/81 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6* x 9* black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Learning 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DIELS-ALDER REACTIONS OF [60JFULLERENE WITH 1,2,4,5-TETRAZINES AND ADDITIONS TO [60]FULLERENE-TETRAZINE MONOADDUCTS BY Mark Christopher Tetreau B.S. Principia College, 1995 DISSERTATION Submitted to the University o f New Hampshire in Partial Fulfillment of the Requirements for the Degree o f Doctor o f Philosophy in Chemistry M ay, 2002 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3045341 — .. (f t UMI UMI Microform 3045341 Copyright 2002 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17. United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This dissertation has been examined and approved. ration Director, Glen P. M iller, iate Professor o f Chemistry R. Richard P. Johnson, r o f Chemistry Roy P. Plaiialp. fessor o f Chemistry l (a Charles K. Zercher, Associate Professor o f Chemistry Robert Jerald, Professor o f Mechanical Engineering 5 , Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. D ED IC A TIO N This work is dedicated to my wife, Gillian, who is a constant reminder that “Love never faileth.” Without her love, support, and inspiration this work would not have come to fruition. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor, D r. Glen M ille r. His input and direction kept me on the road to success. I would also like to thank the rest of the faculty on my thesis committee, Dr. Zercher, Dr. Johnson, Dr. Planalp, and Dr. Jerard, for their comments, questions, corrections and suggestions during my stay at the University o f New Hampshire. In addition, I would like to thank Dr. Weisman and Dr. Wong, two gentlemen who, while not on my committee, provided valuable suggestions and instruction. Thanks goes out to the rest o f the faculty and staff o f the UNH chemistry department for their contributions, however small, to this work. I would like to gratefully acknowledge Dr. Vem Reinhold for providing the mass spectrometry data, and Dr. Alan Balch for providing crystallographic data. I must also thank Kathy Gallagher o f the UNH Instrumentation Center for her technical expertise in obtaining NMR spectra. I would be remiss if I didn’t thank the members o f the M iller Research Group with whom I had the pleasure o f working over the years. James Mack’s invaluable advice got me started in the early days, and Steve Mathieu kept it interesting. I want to thank Jon, Julie, and Ingyu for adding to the good working atmosphere in the M iller Group. Most importantly, I want to thank my family -the Lincolns, Holcombs, Moores, and Tetreaus- for their unceasing support o f this endeavour. iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS D E D IC A T IO N ............................................................................................................. iii ACKNOWLEDGEMENTS.......................................................................................... iv LIST OF FIGURES.....................................................................................................vii LIST OF SCHEMES....................................................................................................ix LIST OF NUMBERED STRUCTURES..................................................................... x iii ABSTRACT............................................................................................................ xv iii 1. INTRODUCTION ..................................................................................................... 1 1.1. [60]Fullerene.............................................................................................. 1 1.1.1. History and Physical Properties o f [60]Fullerene........................... 1 1.1.2. Chemistry of Cm ......................................................................... 10 1.2. 1.2.4,5-Tetrazines..................................................................................... 29 1.2.1 History and Physical Properties o f 1,2.4,5-Tetrazines................... 29 1.2.2 Chemistry of 1,2.4,5-Tetrazines.................................................... 37 2. RESULTS AND DISCUSSION ............................................................................... 59 2.1. Synthesis of 1.2.4.5-Tetrazines................................................................. 59 2.2. Reaction Between Cm and 1,2.4.5-Tetrazines........................................... 69 2.3 Hydration of CM-Tetrazine Monoadducts.................................................. 83 2.4 Addition of Primary Amines to CM-Tetrazine Monoadducts.....................1 ''•0 2.5 Reaction of Monoprotic Nucleophiles with CM-Tetrazine Monoadducts ............................................................................................ 119 2.5.1. Towards Formation of a "Holey" Fullerene...............................119 V Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.52. Addition o f Aliphatic Thiols to 1 6 .............................................. 121 2.5.3 Addition of Aromatic Thiols to 1 6 ............................................... 128 2.5.4 Addition o f Alcohols to CwTetrazine Monoadducts ................... 134 2.5.5. Addition o f Secondary Amines to Cm-Tetrazine Monoadducts ........................................................................................136 2.6. Other Reactions Involving Caj-Tetrazine Monoadducts............................ 138 2.6.1 Addition o f Electrophiles to C6o-Tetrazine Monoadducts ............ 138 2.6.2 Free Radical Addition to C6o-Tetrazine Monoadducts................. 143 2.6.3. Electrocyclic Additions to CtfrTetrazine Monoadducts ............ 146 2.7. Miscellaneous Reactions with Ceo ............................................................ 148 3. CONCLUSION AND FUTURE WORK ................................................................. 153 4. EXPERIMENTAL ...................................................................................................155 4.1. General Methods...................................................................................... 155 4.2. Solvents.................................................................................................... 156 4.3. Chromatography...................................................................................... 157 4.4 Reagents.................................................................................................... 158 4.5 Syntheses..................................................................................................
Recommended publications
  • Some Organometallic Reactions with Heterocyclic Compounds Justin Ward Diehl Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1959 Some organometallic reactions with heterocyclic compounds Justin Ward Diehl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Diehl, Justin Ward, "Some organometallic reactions with heterocyclic compounds " (1959). Retrospective Theses and Dissertations. 2574. https://lib.dr.iastate.edu/rtd/2574 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. SOME ORGANOMETALLIC REACTIONS WITH HETEROCYCLIC COMPOUNDS Justin Ward Diehl A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. D ! College Iowa State University Of Science and Technology Ames, Iowa 1959 11 TABLE OF CONTENTS Page I. INTRODUCTION 1 II. HISTORICAL 4 A. Thlaxanthene Chemistry 4 1. Introduction 4 2. Thlaxanthene 6 3. 10-Thiaxanthenol 8 4. 10-Thlaxanthenone 9 B. Reactions of Organosllylmetalllc Reagents. 13 1. With carbonyls 13 2. In metalation reactions 15 3. With organic halldes 17 C. Aromatic Heterocyclic Silicon Systems. ... 23 1. Organosilanes containing heterocyclic groups 23 a. Furan. 23 b. Thiophene 24 c. Benzothiophene 26 d. Dibenzothiophene 26 e. Dibenzofuran 27 f. Benzothiazole 27 g.
    [Show full text]
  • Gas-Phase Boudouard Disproportionation Reaction Between Highly Vibrationally Excited CO Molecules
    Chemical Physics 330 (2006) 506–514 www.elsevier.com/locate/chemphys Gas-phase Boudouard disproportionation reaction between highly vibrationally excited CO molecules Katherine A. Essenhigh, Yurii G. Utkin, Chad Bernard, Igor V. Adamovich *, J. William Rich Nonequilibrium Thermodynamics Laboratories, Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43202, USA Received 3 September 2006; accepted 21 September 2006 Available online 30 September 2006 Abstract The gas-phase Boudouard disproportionation reaction between two highly vibrationally excited CO molecules in the ground elec- tronic state has been studied in optically pumped CO. The gas temperature and the CO vibrational level populations in the reaction region, as well as the CO2 concentration in the reaction products have been measured using FTIR emission and absorption spectroscopy. The results demonstrate that CO2 formation in the optically pumped reactor is controlled by the high CO vibrational level populations, rather than by CO partial pressure or by flow temperature. The disproportionation reaction rate constant has been determined from the measured CO2 and CO concentrations using the perfectly stirred reactor (PSR) approximation. The reaction activation energy, 11.6 ± 0.3 eV (close to the CO dissociation energy of 11.09 eV), was evaluated using the statistical transition state theory, by comparing the dependence of the measured CO2 concentration and of the calculated reaction rate constant on helium partial pressure. The dispro- À18 3 portionation reaction rate constant measured at the present conditions is kf =(9±4)· 10 cm /s. The reaction rate constants obtained from the experimental measurements and from the transition state theory are in good agreement.
    [Show full text]
  • Cycloaddition
    molecules Review Review IndolizinesIndolizines andand TheirTheir Hetero/BenzoHetero/Benzo DerivativesDerivatives inin ReactionsReactions ofof [8+2][8+2] Cycloaddition EugeneEugene V.V. BabaevBabaev1,2,3, 1,2,3,** andand Ivan Ivan A. A.Shadrin Shadrin 1 1 11 ChemistryChemistry Department, Department, Moscow Moscow State State University, University, Leninskie Leninskie gory, Gory, 1 1 str.3, Str. 3, 119899 119899 Moscow, Moscow, Russia; Russia; [email protected]@gmail.com 22 HigherHigher School School of of Economics, Economics, National National Research Research University, University, 7 7 Vavilova Vavilova Str., 117312 Moscow, RussiaRussia 33 N.N. D. D. Zelinsky Zelinsky Institute Institute of of Or Organicganic Chemistry, Chemistry, Russian Russian Academy Academy of of Sciences, Sciences, 47 Leninsky Ave., 119991119991 Moscow, Moscow, Russia Russia ** Correspondence:Correspondence: [email protected]; [email protected]; Tel.: Tel.: +7-985-997-94-75 +7-985-997-94-75 Abstract: PeculiaritiesPeculiarities ofof [8+2][8+2] cycloaddition of acetylenesacetylenes toto indolizinesindolizines areare reviewed.reviewed. EspeciallyEspecially mentioned are are indolizines indolizines with with leaving leaving groups groups at positions at positions 3 and 3 and 5. Cycloaddition 5. Cycloaddition to aza- to and aza- benzo and benzoderivatives derivatives are reviewed, are reviewed, as well as 1,10-cyclizations well as 1,10-cyclizations and processe ands processes leading to leading cyclazines to cyclazines where in- wheredolizines indolizines are intermediates. are intermediates. Mechanistic Mechanistic features features(adducts (adducts and cycloadducts) and cycloadducts) and theoretical and theoretical aspects aspects(one- or (one- two-steps or two-steps mechanism) mechanism) are reviewed. are reviewed. Keywords: indolizine; azaindolizines; benzoindolizines;benzoindolizines; cyclazine; [8+2] cycloaddition; mechanism; 1,10-cyclizations;1,10-cyclizations; catalystscatalysts 1.
    [Show full text]
  • Lnm- NWN-Mln Hunter, A
    Organometallics 1991, 10, 2141-2152 2141 iterations, X:wA2[w = ~/U(F~)~,A = (IFo( - (FC()3was minimized. Note Added in Proof. After submission of this paper, Bond lengths and angles are listed in Table I. Tables I1 and I11 extended Huckel calculations on a series of binuclear represent the atomic coordinates. Further details of data collection complexes of Zr(II1) exhibiting Zr-Zr distances ranging and refinement are represented in Table 1V.- from 3.05 to 4.25 A were carried out. These calculations Acknowledgment. We thank the Alexander von suggest the existence of "a substantial amount of Humboldt Foundation for a research grant (B.M.) and the through-space metal-metal interaction at distances larger Deutsche Forschungsgemeinschaft for financial support than 3.5 A". This conclusion strongly supports ours, (Leibniz program, W.A.H.). thereby reinforcing it.% Supplementary Material Available: For 3 and 4, lists of bond lengths and angles, least-squares planes, atomic fractional (63) Kiprof, P.; Herdtweck, E.; Schmidt, R. E.; Birkhahn, M.; Maaaa, coordinates, and thermal parameters and ORTEP stereo plots (35 W. STRUX-11. A System of Computer Programs To Handle X-ray Dif- fraction Data, Technieche UniversitAt Mihchen, 1987, and Universitit pages); listings of observed and calculated structure factors (42 Marburg, 1978. pages). Ordering information is given on any current masthead (64) Frenz, B. A. ENRAF-NONIUSSDP-Plus Structure Determina- page. tion Package, version 4.0; Enraf-Nonius: Delft, Holland, 1988. (65) Keller, E. SCHAKAL. A Plot Program for Crystal Structure Illus- trations. University of Freiburg, 1988. (66) Rohmer, M.-M.; BBnard, M. Organometallics 1991, 10, 157.
    [Show full text]
  • Some Unusual, Astronomically Significant Organic Molecules
    'lL-o Thesis titled: Some Unusual, Astronomically Significant Organic Molecules submitted for the Degree of Doctor of Philosophy (Ph,D.) by Salvatore Peppe B.Sc. (Hons.) of the Department of Ghemistty THE UNIVERSITY OF ADELAIDE AUSTRALIA CRUC E June2002 Preface Gontents Contents Abstract IV Statement of Originality V Acknowledgments vi List of Figures..... ix 1 I. Introduction 1 A. Space: An Imperfect Vacuum 1 B. Stellff Evolution, Mass Outflow and Synthesis of Molecules 5 C. Astronomical Detection of Molecules......... l D. Gas Phase Chemistry.. 9 E. Generation and Detection of Heterocumulenes in the Laboratory 13 L.2 Gas Phase Generation and Characterisation of Ions.....................................16 I. Gas Phase Generation of Ions. I6 A. Positive Ions .. I6 B. Even Electron Negative Ions 17 C. Radical Anions 2t tr. Mass Spectrometry 24 A. The VG ZAB 2}lF Mass Spectrometer 24 B. Mass-Analysed Ion Kinetic Energy Spectrometry......... 25 III. Characterisation of Ions.......... 26 A. CollisionalActivation 26 B. Charge Reversal.... 28 C. Neutralisation - Reionisation . 29 D. Neutral Reactivity. JJ rv. Fragmentation Behaviour ....... 35 A. NegativeIons.......... 35 Preface il B. Charge Inverted Ions 3l 1.3 Theoretical Methods for the Determination of Molecular Geometries and Energetics..... ....o........................................ .....39 L Molecular Orbital Theory........ 39 A. The Schrödinger Equation.... 39 B. Hartree-Fock Theory ..44 C. Electron Correlation ..46 D. Basis sets............ .51 IL Transition State Theory of Unimolecular Reactions ......... ................... 54 2. Covalently Bound Complexes of CO and COz ....... .........................58 L Introduction 58 tr. Results and Discussion........... 59 Part A: Covalently bound COz dimers (OzC-COr)? ............ 59 A. Generation of CzO¿ Anions 6I B. NeutralCzO+........
    [Show full text]
  • Download Download
    The Preparation of Aromatic Esters of Malonic Acid 1 John H. Billman, R. Vincent Cash 2 and Eleanor K. Wakefield The preparations of four aromatic esters of malonic acid have been described in the literature. These are the diphenyl-, di-/3-naphthyl-, di- p-tolyl-, and di-p-nitrophenyl malonates. The preparation of diphenyl malonate by Bischoff and von Heden- strom (5) in 1902 illustrates one of the synthetic methods employed. Phenol and malonyl chloride were warmed on a water bath for a short time; hydrogen chloride was envolved and the solid ester crystallized on cooling. -* C1-C-CH.-C-C1 + 2 CeHtfOH C 6 H 5 -0-C-CH a -C-0-C 6 H 6 + 2 HC1 These workers tried without success to prepare this ester from malonic acid, phenol, and thionyl chloride. However, Auger and Billy (1) were able to synthesize diphenyl malonate from malonic acid, phenol, and phosphorus oxychloride. Guia (6) obtained di-/3-naphthnyl malonate rather than the desired counmarin-type compound when he heated /3-naphthol, malonyl chloride, and aluminum chloride in carbon disulfide. Backer and Lolkema (2) synthesized di-p-tolyl malonate and di-p-nitrophenyl malonate from malonyl chloride according to the above equation. The latter ester was also prepared by these investigators by treatment of the diphenyl malonate with nitric acid at 0°. Since carbon suboxide has been reported (7) to react with alcohols to yield dialkyl malonates, it seemed of interest to attempt to extend the reaction to phenols. -* 0=C=C=C=0 + 2 HOAr Ar-0-C-CH 2 -C-0-Ar Five phenols were successfully esterified with carbon suboxide, with sulfuric acid or p-toluenesulfonic acid present at catalyst.
    [Show full text]
  • Non-Empirical Calculations on the Electronic Structure of Olefins and Aromatics
    NON-EMPIRICAL CALCULATIONS ON THE ELECTRONIC STRUCTURE OF OLEFINS AND AROMATICS by Robert H. Findlay, B.Sc. Thesis presented for the Degree of Doctor of philosophy University of Edinburgh December 1973 U N /),, cb CIV 3 ACKNOWLEDGEMENTS I Wish to express my gratitude to Dr. M.H. Palmer for his advice and encouragement during this period of study. I should also like to thank Professor J.I.G. Cadogan and Professor N. Campbell for the provision of facilities, and the Carnegie Institute for the Universities of Scotland for a Research Scholarship. SUMMARY Non-empirical, self-consistent field, molecular orbital calculations, with the atomic orbitals represented by linear combinations of Gaussian-type functions have been carried out on the ground state electronic structures of some nitrogen-, oxygen-, sulphur- and phosphorus-containing heterocycles. Some olefins and olefin derivatives have also been studied. Calculated values of properties have been compared with the appropriate experimental quantities, and in most cases the agreement is good, with linear relationships being established; these are found to have very small standard deviations. Extensions to molecules for which there is no experimental data have been made. In many cases it has been iôtrnd possible to relate the molecular orbitals to the simplest member of a series, or to the hydrocarbon analogue. Predictions of the preferred geometry of selected molecules have been made; these have been used to predict inversion barriers and reaction mechanisms. / / The extent of d-orbital participation in molecules containing second row atoms has been investigated and found to be of trivial importance except in molecules containing high valence states of the second row atoms.
    [Show full text]
  • The Infrared Absorption Spectrum of Carbon Sub Oxide
    AUGUST, 1937 JOURNAL OF CHEMICAL PHVSICS VOLUME 5 The Infrared Absorption Spectrum of Carbon Suboxide R. C. LORD, JR.* AND NORMAN WRIGHT Departments of Chemistry and Physics, University of Michigan, A nn Arbor, Michigan (Received "May 24, 1937) The infrared absorption spectrum of carbon suboxide vapor has been studied under low dispersion in the region from 2).1 to 25).1. The vibrational bands observed may be satisfactorily accounted for on the basis of a linear symmetric structure for the carbon suboxide molecule, in agreement with evidence obtained from Raman spectra and from electron diffraction investigations. ECENT studies of the structure of the material was prepared by the pyrolysis of R carbon suboxide molecule by electron dif­ diacetyl tartaric anhydride8 and was purified by fractiont ,2 and by ultraviolet absorption and two distillations in an all-glass system. Measure­ 3 Raman spectra - 5 have made desirable an in­ ments of the vapor pressure of the suboxide over vestigation of the molecule's absorption spectrum a range of temperatures up to O°C agreed in the infrared region. The information to be satisfactorily with those in the literature. 9 The gained from such an investigation should be absorption cell was filled by distilling the middle particularly helpful since the spectroscopic and fraction of the particular sampJe at hand into electron diffraction evidence indicates that the the evacuated ce1l, the desired pressure being most probable form of the carbon suboxide obtained by surrounding the distilling vessel molecule is one possessing a symmetry center. with a bath of acetone of the proper temperature.
    [Show full text]
  • Carbon Dioxide Hydrogenation to Aromatic Hydrocarbons by Using an Iron/Iron Oxide Nanocatalyst
    Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst Hongwang Wang*1, Jim Hodgson1, Tej B. Shrestha2, Prem S. Thapa3, David Moore3, Xiaorong Wu4, Myles Ikenberry5, Deryl L. Troyer2, Donghai Wang4, Keith L. Hohn5 and Stefan H. Bossmann*1 Full Research Paper Open Access Address: Beilstein J. Nanotechnol. 2014, 5, 760–769. 1Kansas State University, Department of Chemistry, 201CBC doi:10.3762/bjnano.5.88 Building, Manhattan, KS 66506, USA, 001-785-532-6817, 2Kansas State University, Department of Anatomy & Physiology, 130 Coles Received: 11 March 2014 Hall, Manhattan, KS 66506, USA, 3University of Kansas, Microscopy Accepted: 30 April 2014 and Analytical Imaging Laboratory, 1043 Haworth, Lawrence, KS Published: 02 June 2014 66045, USA, 4Kansas State University, Department of Biological and Agricultural Engineering, 150 Seaton Hall, Manhattan, KS 66506, Associate Editor: J. J. Schneider USA and 5Kansas State University, Department of Chemical Engineering, 1016 Durland Hall, Manhattan, KS 66506, USA © 2014 Wang et al; licensee Beilstein-Institut. License and terms: see end of document. Email: Hongwang Wang* - [email protected]; Stefan H. Bossmann* - [email protected] * Corresponding author Keywords: aromatic hydrocarbons; carbon dioxide reduction; heterogenous catalysis; iron/iron oxide nanocatalyst Abstract The quest for renewable and cleaner energy sources to meet the rapid population and economic growth is more urgent than ever before. Being the most abundant carbon source in the atmosphere of Earth, CO2 can be used as an inexpensive C1 building block in the synthesis of aromatic fuels for internal combustion engines. We designed a process capable of synthesizing benzene, toluene, xylenes and mesitylene from CO2 and H2 at modest temperatures (T = 380 to 540 °C) employing Fe/Fe3O4 nanoparticles as cata- lyst.
    [Show full text]
  • Wildland Fire Emission Factors in North America: Synthesis of Existing Data, Measurement Needs and Management Applications
    CSIRO PUBLISHING International Journal of Wildland Fire 2020, 29, 132–147 https://doi.org/10.1071/WF19066 Wildland fire emission factors in North America: synthesis of existing data, measurement needs and management applications Susan J. PrichardA,E, Susan M. O’NeillB, Paige EagleA, Anne G. AndreuA, Brian DryeA, Joel DubowyA, Shawn UrbanskiC and Tara M. StrandD AUniversity of Washington School of Environmental and Forest Sciences, Box 352100, Seattle, WA 98195-2100, USA. BPacific Wildland Fire Sciences Laboratory, US Forest Service Pacific Northwest Research Station, 400 N. 34th Street, Seattle, WA 98103, USA. CMissoula Fire Sciences Laboratory, US Forest Service Rocky Mountain Research Station, 5775 W Broadway Street, Missoula, MT 59808, USA. DScion Research, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua 3010, Private Bag 3020, Rotorua 3046, New Zealand. ECorresponding author. Email: [email protected] Abstract. Field and laboratory emission factors (EFs) of wildland fire emissions for 276 known air pollutants sampled across Canada and the US were compiled. An online database, the Smoke Emissions Repository Application (SERA), was created to enable analysis and summaries of existing EFs to be used in smoke management and emissions inventories. We evaluated how EFs of select pollutants (CO, CO2,CH4,NOx, total particulate matter (PM), PM2.5 and SO2) are influenced by combustion phase, burn type and fuel type. Of the 12 533 records in the database, over a third (n ¼ 5637) are represented by 23 air pollutants, most designated as US Environmental Protection Agency criteria air pollutants, greenhouse gases, hazardous air pollutants or known air toxins. Among all pollutants in the database, including the most common pollutants PM, CO, CO2 and CH4, records are unevenly distributed with a bias towards flaming combustion, prescribed burning and laboratory measurements.
    [Show full text]
  • Effects of Pressure and Particle Size on the Carbonization of a Packed Bed of Biomass
    Effects of Pressure and Particle Size on the Carbonization of a Packed Bed of Biomass A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING May 2014 By Gregory Patrick Specht Thesis Committee: Michael J. Antal Jr., Chairperson Weilin Qu Beei-Huan Chao i We certify that we have read this thesis and that, in our opinion it is satisfactory in scope and quality as a dissertation for a degree of Master of Science in Mechanical Engeineering. THESIS COMMITTEE Chairperson ii © Copyright 2014 By Gregory Patrick Specht All Rights Reserved iii Abstract A relatively new technique for charcoal production has been developed called Flash CarbonizationTM and has proven to be efficient and most importantly fast. The technique begins with a packed bed of biomass pressurized at 1-2 MPa. A fire is ignited at the bottom of the bed while air is introduced through the top. The flame travels up the bed converting the biomass to bio carbon otherwise known as charcoal. One of the most important metrics a charcoal has is its Fixed Carbon Yield (yfc) or the percentage of carbon left in it after it is carbonized. Many factors affect the yfc of charcoal three in particular were investigated in this thesis; feedstock, pressure, and particle size. Each feedstock that was used in the FC process and analyzed in this thesis was sent out to a lab to discover its elemental composition. Using this data calculations were performed to discover the highest theoretical yfc each feedstock could produce.
    [Show full text]
  • Plasmachemical Synthesis of Carbon Suboxide
    PLASMACHEMICAL SYNTHESIS OF CARBON SUBOXIDE A Thesis by ROBERT PAUL GEIGER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, David Staack Committee Members, Nicole Zacharia Sergio Capareda Head of Department, Jerry Caton May 2013 Major Subject: Mechanical Engineering © 2013 Robert Paul Geiger ABSTRACT A nonthermal carbon monoxide plasma is known to produce a solid deposition which is thought to be a polymer of carbon suboxide (C3O2); however there are very few investigations of this deposition in the literature. This thesis contains an analysis of the theoretical thermodynamics and kinetics of carbon suboxide formation as well as experimental results. The theoretical analysis suggests that carbon suboxide may be an equilibrium product even at ambient conditions but favors lower temperatures; furthermore if solid carbon is considered to be kinetically limited, and therefore not a product, then carbon suboxide is more likely to be a product under these pseudo-equilibrium conditions. Experimentally, solid films were produced in a dielectric barrier discharge (DBD) containing pure carbon monoxide. Optical emission spectroscopy was used to analyze the plasma and models of the emission spectra were created to determine the plasma temperatures. Deposition rates were determined to be on the order of 0.2 mg/min at a power of about 10W; it is expected however that these conditions are not optimized. The overall kinetics of carbon suboxide was analyzed and optimal conditions for operation can be estimated. Characterization of the solid depositions were carried out using Solid State Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Electrospray Ionization Mass Spectroscopy (ESI-MS), and Matrix-assisted Laser Desorption Ionization Mass Spectroscopy (MALDI-MS).
    [Show full text]