Wildland Fire Emission Factors in North America: Synthesis of Existing Data, Measurement Needs and Management Applications

Total Page:16

File Type:pdf, Size:1020Kb

Wildland Fire Emission Factors in North America: Synthesis of Existing Data, Measurement Needs and Management Applications CSIRO PUBLISHING International Journal of Wildland Fire 2020, 29, 132–147 https://doi.org/10.1071/WF19066 Wildland fire emission factors in North America: synthesis of existing data, measurement needs and management applications Susan J. PrichardA,E, Susan M. O’NeillB, Paige EagleA, Anne G. AndreuA, Brian DryeA, Joel DubowyA, Shawn UrbanskiC and Tara M. StrandD AUniversity of Washington School of Environmental and Forest Sciences, Box 352100, Seattle, WA 98195-2100, USA. BPacific Wildland Fire Sciences Laboratory, US Forest Service Pacific Northwest Research Station, 400 N. 34th Street, Seattle, WA 98103, USA. CMissoula Fire Sciences Laboratory, US Forest Service Rocky Mountain Research Station, 5775 W Broadway Street, Missoula, MT 59808, USA. DScion Research, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua 3010, Private Bag 3020, Rotorua 3046, New Zealand. ECorresponding author. Email: [email protected] Abstract. Field and laboratory emission factors (EFs) of wildland fire emissions for 276 known air pollutants sampled across Canada and the US were compiled. An online database, the Smoke Emissions Repository Application (SERA), was created to enable analysis and summaries of existing EFs to be used in smoke management and emissions inventories. We evaluated how EFs of select pollutants (CO, CO2,CH4,NOx, total particulate matter (PM), PM2.5 and SO2) are influenced by combustion phase, burn type and fuel type. Of the 12 533 records in the database, over a third (n ¼ 5637) are represented by 23 air pollutants, most designated as US Environmental Protection Agency criteria air pollutants, greenhouse gases, hazardous air pollutants or known air toxins. Among all pollutants in the database, including the most common pollutants PM, CO, CO2 and CH4, records are unevenly distributed with a bias towards flaming combustion, prescribed burning and laboratory measurements. Across all EFs, records are most common for south-eastern and western conifer forests and western shrubland types. Based on identified data gaps, we offer recommendations for future studies, including targeting underrepresented air pollutants, smouldering combustion phases and improved source characterisation of wildland fire emissions. Additional keywords: air quality, greenhouse gas emissions, particulate matter, prescribed fire emissions, smoke management, wildfire emissions. Received 24 April 2019, accepted 26 October 2019, published online 7 January 2020 Introduction fire management, smoke modelling and emission inventories in Over the past decade, field and laboratory studies have made North America. substantial progress in characterising the chemical composition The Smoke Emissions Repository Application (SERA) pre- of wildland fire smoke and quantifying emission factors (EFs) in sented here is a searchable online database of existing EFs of 276 North America. EFs are defined as the mass of a gas or aerosol known air pollutants in standardised units (g kgÀ1) (https://depts. pollutant per dry weight unit mass of consumed fuel (Urbanski washington.edu/nwfire/sera, accessed 26 November 2019). 2014). Since the seminal review of Andreae and Merlet (2001), EF records include modified combustion efficiency (MCE, several reviews have summarised existing EFs by vegetation Yokelson et al. 1996), fuel type, study type (laboratory or field), type or region (Akagi et al. 2011; Yokelson et al. 2013; Urbanski measurement platform (ground, tower or air-based), geographic 2014), and studies were compiled into a summary dataset using location and source reference. The database was created to enable unpublished and published data from the 1960s to 2011 (Lincoln analysis and summaries of existing EFs, and creation of average et al. 2014). These developments, including several more recent EFs to be used in decision support tools for smoke management, studies, represent a large advancement in emissions character- including Consume (Prichard 2007), FOFEM (Reinhardt et al. isation and justify the creation of a master repository of EFs that 1997) and the BlueSky Smoke Modelling Framework (Larkin can be used to produce consistent values applicable for wildland et al. 2009), as well as future updates to national emissions Journal compilation Ó IAWF 2020 Open Access CC BY-NC-ND www.publish.csiro.au/journals/ijwf Wildland fire emission factors in North America Int. J. Wildland Fire 133 inventories (e.g. US EPA 2017). Prior to updates provided by generally associated with marginally combustible fuels such as Urbanski (2014), models that predict wildland fire emissions such coarse wood (i.e. stumps and downed logs .7.6 cm in diameter) as Consume, FOFEM and BlueSky used EFs published within the and duff that generally have incomplete combustion and smoulder 2001 Smoke Management Guide (Hardy et al. 2001) and sup- for extended periods (Ottmar 2014). ported a relatively small list of pollutants, including particulate Smoke management guides have traditionally summarised matter (PM), carbon monoxide (CO), carbon dioxide (CO2), EFs by major vegetation or fuel type. For example, the 2001 methane (CH4), non-methane organic compounds (NMOCs) Smoke Management Guide (Hardy et al. 2001) compiled and sulfur dioxide (SO2). SERA was designed to provide a pollutant EFs from existing studies of prescribed burns, includ- synthesis of existing EFs and summary values for emissions ing EFs summarised from broadcast burned slash of Douglas fir, modelling that can facilitate more rapid incorporation of EFs than juniper and ponderosa pine forests (Ward et al. 1989), broadcast was previously available through a relational database main- burned brush (Hardy et al. 1996) and wildfires (Hardy et al. tained by the US Forest Service Pacific Wildland Fire Sciences 1992). Hardy et al. (2001) also provided EFs by flaming, short- Laboratory (Seattle, WA). term smouldering and long-term residual smouldering phases of For many air pollutants, selecting the most appropriate EFs combustion. Summarising EFs by combustion phase is gener- to represent emissions from biomass burning needs to consider ally useful for fire managers to inform smoke reduction techni- the combustion of fuels that burn in smouldering combustion ques, such as finding optimal burn windows that maximise and low-heat pyrolysis phases (e.g. coarse wood and organic flaming combustion and minimise long-term smouldering soils). Modified combustion efficiency (MCE ¼ DCO2/ (MACTEC Federal Programs 2004), which can contribute to (DCO2 þ DCO)) is a measure of the relative fraction of flaming greater overall pollutant emissions of PM and CO and nighttime and smouldering combustion, and has been demonstrated to intrusions into communities (Miller et al. 2019). be highly correlated with EFs for pollutant emissions (such as Since the original smoke management guide was published in CO, CH4 and NMOCs) that are more concentrated in smoul- 2001, a large number of prescribed burn studies and a relatively dering combustion phases (Urbanski 2014). Emissions studies small number of wildfire emissions studies have been conducted. often include a measure of MCE to characterise source com- Urbanski (2014) synthesised fire-average EFs for major pollutant bustion phase (Yokelson et al. 1996; Urbanski 2014). For species by burn type (i.e. prescribed burns and wildfires) and example, Urbanski (2013) found that Rocky Mountain wildfire region and/or vegetation type. Fire-average flaming and smoul- emissions from prescribed fires in moderate to heavy coarse dering EFs and their estimated uncertainty were summarised wood had a much lower MCE than that observed in studies of based on six prescribed fire groupings in the US, including prescribed fires in the south-east, from where the majority of south-eastern (SE) conifer, south-western (SW) conifer and the EFs reported in the literature for NMOCs and PM2.5 north-western (NW) conifer forests, western shrublands and have been derived. More recently, Sekimoto et al. (2018) western grasslands, and two wildfire categories including W examined relationships between high- and low-temperature conifer wildfires and boreal wildfires. Additional residual pyrolysis and found that these two variables explained most of smouldering EFs were included for coarse wood, temperate forest the variability in non-methane organic gas emissions and organic soils and boreal forest organic soils (referred to hereafter outperformed MCE. The relationship between wildland fire as duff). More recently, sampled plumes from western US emissions and combustion highlights the need to develop wildfires suggest that the quantity and composition of fuels algorithms for extrapolating EFs to broadly representative burned in summer (May–October) wildfires may substantially fuel types and burning conditions (e.g. flaming v. smouldering increase estimates of pollutant emissions, including greenhouse and prescribed underburn v. crown fire). Because many gases (e.g. CO2 and CH4) and particulate matter (Liu et al. 2017). smoke management issues associated with wildland fire The objectives of this study were to develop a centralised emissions are from residual long-term smouldering sources, repository for evaluating and synthesising emissions factor characterising the fuels and EFs associated with these burning datasets for major fuel types in North America and to provide conditions is critical for fire management applications updates to best-estimate EFs for major pollutant species. (Urbanski 2013; Yokelson et al. 2013; Hu et al. 2018; Peterson Because wildland fire emissions
Recommended publications
  • Gas-Phase Boudouard Disproportionation Reaction Between Highly Vibrationally Excited CO Molecules
    Chemical Physics 330 (2006) 506–514 www.elsevier.com/locate/chemphys Gas-phase Boudouard disproportionation reaction between highly vibrationally excited CO molecules Katherine A. Essenhigh, Yurii G. Utkin, Chad Bernard, Igor V. Adamovich *, J. William Rich Nonequilibrium Thermodynamics Laboratories, Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43202, USA Received 3 September 2006; accepted 21 September 2006 Available online 30 September 2006 Abstract The gas-phase Boudouard disproportionation reaction between two highly vibrationally excited CO molecules in the ground elec- tronic state has been studied in optically pumped CO. The gas temperature and the CO vibrational level populations in the reaction region, as well as the CO2 concentration in the reaction products have been measured using FTIR emission and absorption spectroscopy. The results demonstrate that CO2 formation in the optically pumped reactor is controlled by the high CO vibrational level populations, rather than by CO partial pressure or by flow temperature. The disproportionation reaction rate constant has been determined from the measured CO2 and CO concentrations using the perfectly stirred reactor (PSR) approximation. The reaction activation energy, 11.6 ± 0.3 eV (close to the CO dissociation energy of 11.09 eV), was evaluated using the statistical transition state theory, by comparing the dependence of the measured CO2 concentration and of the calculated reaction rate constant on helium partial pressure. The dispro- À18 3 portionation reaction rate constant measured at the present conditions is kf =(9±4)· 10 cm /s. The reaction rate constants obtained from the experimental measurements and from the transition state theory are in good agreement.
    [Show full text]
  • Alder Reactions of [60]Fullerene with 1,2,4,5-Tetrazines and Additions to [60]Fullerene-Tetrazine Monoadducts
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2002 Diels -Alder reactions of [60]fullerene with 1,2,4,5-tetrazines and additions to [60]fullerene-tetrazine monoadducts Mark Christopher Tetreau University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Tetreau, Mark Christopher, "Diels -Alder reactions of [60]fullerene with 1,2,4,5-tetrazines and additions to [60]fullerene-tetrazine monoadducts" (2002). Doctoral Dissertations. 81. https://scholars.unh.edu/dissertation/81 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Emission Factors ⇑ Shawn Urbanski
    Forest Ecology and Management 317 (2014) 51–60 Contents lists available at SciVerse ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Wildland fire emissions, carbon, and climate: Emission factors ⇑ Shawn Urbanski Missoula Fire Sciences Laboratory, Rocky Mountain Research Station, US Forest Service, 5775 US Highway 10 W, Missoula, MT 59808, USA article info abstract Article history: While the vast majority of carbon emitted by wildland fires is released as CO2, CO, and CH4, wildland fire Available online 21 June 2013 smoke is nonetheless a rich and complex mixture of gases and aerosols. Primary emissions include sig- nificant amounts of CH4 and aerosol (organic aerosol and black carbon), which are short-lived climate Keywords: forcers. In addition to CO2 and short-lived climate forcers, wildland fires release CO, non-methane organic Biomass burning compounds (NMOC), nitrogen oxides (NOx =NO+NO2), NH3, and SO2. These species play a role in radia- Greenhouse gases tive forcing through their photochemical processing, which impacts atmospheric levels of CO2,CH4, tro- Emission factors pospheric O3, and aerosol. This paper reviews the current state of knowledge regarding the chemical composition of emissions and emission factors for fires in United States vegetation types as pertinent to radiative forcing and climate. Emission factors are critical input for the models used to estimate wild- land fire greenhouse gas and aerosol emission inventories. Published by Elsevier B.V. 1. Introduction Fuels are defined as biomass (dead and live) that is available for combustion (Sandberg et al., 2001). While most emission models Emissions from wildland fires are a significant source of carbo- are based on Eq.
    [Show full text]
  • Some Unusual, Astronomically Significant Organic Molecules
    'lL-o Thesis titled: Some Unusual, Astronomically Significant Organic Molecules submitted for the Degree of Doctor of Philosophy (Ph,D.) by Salvatore Peppe B.Sc. (Hons.) of the Department of Ghemistty THE UNIVERSITY OF ADELAIDE AUSTRALIA CRUC E June2002 Preface Gontents Contents Abstract IV Statement of Originality V Acknowledgments vi List of Figures..... ix 1 I. Introduction 1 A. Space: An Imperfect Vacuum 1 B. Stellff Evolution, Mass Outflow and Synthesis of Molecules 5 C. Astronomical Detection of Molecules......... l D. Gas Phase Chemistry.. 9 E. Generation and Detection of Heterocumulenes in the Laboratory 13 L.2 Gas Phase Generation and Characterisation of Ions.....................................16 I. Gas Phase Generation of Ions. I6 A. Positive Ions .. I6 B. Even Electron Negative Ions 17 C. Radical Anions 2t tr. Mass Spectrometry 24 A. The VG ZAB 2}lF Mass Spectrometer 24 B. Mass-Analysed Ion Kinetic Energy Spectrometry......... 25 III. Characterisation of Ions.......... 26 A. CollisionalActivation 26 B. Charge Reversal.... 28 C. Neutralisation - Reionisation . 29 D. Neutral Reactivity. JJ rv. Fragmentation Behaviour ....... 35 A. NegativeIons.......... 35 Preface il B. Charge Inverted Ions 3l 1.3 Theoretical Methods for the Determination of Molecular Geometries and Energetics..... ....o........................................ .....39 L Molecular Orbital Theory........ 39 A. The Schrödinger Equation.... 39 B. Hartree-Fock Theory ..44 C. Electron Correlation ..46 D. Basis sets............ .51 IL Transition State Theory of Unimolecular Reactions ......... ................... 54 2. Covalently Bound Complexes of CO and COz ....... .........................58 L Introduction 58 tr. Results and Discussion........... 59 Part A: Covalently bound COz dimers (OzC-COr)? ............ 59 A. Generation of CzO¿ Anions 6I B. NeutralCzO+........
    [Show full text]
  • Download Download
    The Preparation of Aromatic Esters of Malonic Acid 1 John H. Billman, R. Vincent Cash 2 and Eleanor K. Wakefield The preparations of four aromatic esters of malonic acid have been described in the literature. These are the diphenyl-, di-/3-naphthyl-, di- p-tolyl-, and di-p-nitrophenyl malonates. The preparation of diphenyl malonate by Bischoff and von Heden- strom (5) in 1902 illustrates one of the synthetic methods employed. Phenol and malonyl chloride were warmed on a water bath for a short time; hydrogen chloride was envolved and the solid ester crystallized on cooling. -* C1-C-CH.-C-C1 + 2 CeHtfOH C 6 H 5 -0-C-CH a -C-0-C 6 H 6 + 2 HC1 These workers tried without success to prepare this ester from malonic acid, phenol, and thionyl chloride. However, Auger and Billy (1) were able to synthesize diphenyl malonate from malonic acid, phenol, and phosphorus oxychloride. Guia (6) obtained di-/3-naphthnyl malonate rather than the desired counmarin-type compound when he heated /3-naphthol, malonyl chloride, and aluminum chloride in carbon disulfide. Backer and Lolkema (2) synthesized di-p-tolyl malonate and di-p-nitrophenyl malonate from malonyl chloride according to the above equation. The latter ester was also prepared by these investigators by treatment of the diphenyl malonate with nitric acid at 0°. Since carbon suboxide has been reported (7) to react with alcohols to yield dialkyl malonates, it seemed of interest to attempt to extend the reaction to phenols. -* 0=C=C=C=0 + 2 HOAr Ar-0-C-CH 2 -C-0-Ar Five phenols were successfully esterified with carbon suboxide, with sulfuric acid or p-toluenesulfonic acid present at catalyst.
    [Show full text]
  • The Infrared Absorption Spectrum of Carbon Sub Oxide
    AUGUST, 1937 JOURNAL OF CHEMICAL PHVSICS VOLUME 5 The Infrared Absorption Spectrum of Carbon Suboxide R. C. LORD, JR.* AND NORMAN WRIGHT Departments of Chemistry and Physics, University of Michigan, A nn Arbor, Michigan (Received "May 24, 1937) The infrared absorption spectrum of carbon suboxide vapor has been studied under low dispersion in the region from 2).1 to 25).1. The vibrational bands observed may be satisfactorily accounted for on the basis of a linear symmetric structure for the carbon suboxide molecule, in agreement with evidence obtained from Raman spectra and from electron diffraction investigations. ECENT studies of the structure of the material was prepared by the pyrolysis of R carbon suboxide molecule by electron dif­ diacetyl tartaric anhydride8 and was purified by fractiont ,2 and by ultraviolet absorption and two distillations in an all-glass system. Measure­ 3 Raman spectra - 5 have made desirable an in­ ments of the vapor pressure of the suboxide over vestigation of the molecule's absorption spectrum a range of temperatures up to O°C agreed in the infrared region. The information to be satisfactorily with those in the literature. 9 The gained from such an investigation should be absorption cell was filled by distilling the middle particularly helpful since the spectroscopic and fraction of the particular sampJe at hand into electron diffraction evidence indicates that the the evacuated ce1l, the desired pressure being most probable form of the carbon suboxide obtained by surrounding the distilling vessel molecule is one possessing a symmetry center. with a bath of acetone of the proper temperature.
    [Show full text]
  • Carbon Dioxide Hydrogenation to Aromatic Hydrocarbons by Using an Iron/Iron Oxide Nanocatalyst
    Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst Hongwang Wang*1, Jim Hodgson1, Tej B. Shrestha2, Prem S. Thapa3, David Moore3, Xiaorong Wu4, Myles Ikenberry5, Deryl L. Troyer2, Donghai Wang4, Keith L. Hohn5 and Stefan H. Bossmann*1 Full Research Paper Open Access Address: Beilstein J. Nanotechnol. 2014, 5, 760–769. 1Kansas State University, Department of Chemistry, 201CBC doi:10.3762/bjnano.5.88 Building, Manhattan, KS 66506, USA, 001-785-532-6817, 2Kansas State University, Department of Anatomy & Physiology, 130 Coles Received: 11 March 2014 Hall, Manhattan, KS 66506, USA, 3University of Kansas, Microscopy Accepted: 30 April 2014 and Analytical Imaging Laboratory, 1043 Haworth, Lawrence, KS Published: 02 June 2014 66045, USA, 4Kansas State University, Department of Biological and Agricultural Engineering, 150 Seaton Hall, Manhattan, KS 66506, Associate Editor: J. J. Schneider USA and 5Kansas State University, Department of Chemical Engineering, 1016 Durland Hall, Manhattan, KS 66506, USA © 2014 Wang et al; licensee Beilstein-Institut. License and terms: see end of document. Email: Hongwang Wang* - [email protected]; Stefan H. Bossmann* - [email protected] * Corresponding author Keywords: aromatic hydrocarbons; carbon dioxide reduction; heterogenous catalysis; iron/iron oxide nanocatalyst Abstract The quest for renewable and cleaner energy sources to meet the rapid population and economic growth is more urgent than ever before. Being the most abundant carbon source in the atmosphere of Earth, CO2 can be used as an inexpensive C1 building block in the synthesis of aromatic fuels for internal combustion engines. We designed a process capable of synthesizing benzene, toluene, xylenes and mesitylene from CO2 and H2 at modest temperatures (T = 380 to 540 °C) employing Fe/Fe3O4 nanoparticles as cata- lyst.
    [Show full text]
  • Wildland Fire Emission Sampling at Fishlake National Forest, Utah Using an Unmanned Aircraft System
    Atmospheric Environment 247 (2021) 118193 Contents lists available at ScienceDirect Atmospheric Environment journal homepage: http://www.elsevier.com/locate/atmosenv Wildland fire emission sampling at Fishlake National Forest, Utah using an unmanned aircraft system J. Aurell a, B. Gullett b,*, A. Holder b, F. Kiros a, W. Mitchell b, A. Watts c, R. Ottmar d a University of Dayton Research Institute, 300 College Park, Dayton, OH, 45469, USA b U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive Research Triangle Park, NC, 27711, USA c Desert Research Institute, 2215 Raggio Parkway, Reno, NV, 89512, USA d U.S. Forest Service, Pacific Wildland Forest Sciences Laboratory, 400 North 34th Street, Seattle, WA, 98103, USA HIGHLIGHTS GRAPHICAL ABSTRACT • An unmanned aircraft system was used to measure air pollutants from a wild­ land fire. • The prescribed fire included slash pile burns and crown fires. • Emission factors were determined for a comprehensive list of gases and particles. • Emissions typically decreased with increasing combustion efficiency. • The system enabled unprecedented ac­ cess to the fire while minimizing risk. ARTICLE INFO ABSTRACT Keywords: Emissions from a stand replacement prescribed burn were sampled using an unmanned aircraft system (UAS, or Prescribed fire “drone”) in Fishlake National Forest, Utah, U.S.A. Sixteen flightsover three days in June 2019 provided emission Wildfire factors for a broad range of compounds including carbon monoxide (CO), carbon dioxide (CO2), nitric oxide Emissions (NO), nitrogen dioxide (NO2), particulate matter < 2.5 μm in diameter (PM2.5), volatile organic compounds Measurements (VOCs) including carbonyls, black carbon, and elemental/organic carbon.
    [Show full text]
  • Critical Assessment of Wildland Fire Emissions Inventories: Methodology, Uncertainty, Effectiveness Final Report Joint Fire Sciences Program Project # 12-1-07-1
    Critical Assessment of Wildland Fire Emissions Inventories: Methodology, Uncertainty, Effectiveness Final Report Joint Fire Sciences Program Project # 12-1-07-1 Principal Investigator: Wei Min Hao US Forest Service, Rocky Mountain Research Station Missoula Fire Sciences Laboratory 5775 W US Highway 10 Missoula, MT 59808 Co-Principal Investigators Shawn Urbanski, US Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences Laboratory, Missoula, MT Helen Naughton, University of Montana Department of Economics University of Montana Missoula, MT 59812-4572 Background and Purpose Fires emit a substantial amount of atmospheric pollutants (CO, CH4, non-methane organic compounds (NMOC), NOx, PM2.5), greenhouse gases (CO2, CH4, N2O), and black carbon that can have major impacts on regional air quality and global climate. In addition to being primary pollutants, the photochemical processing of NOX and NMOC leads to the formation of ozone and secondary PM2.5. The most important criteria for assessing the impacts of fires on the regional and global environment are accurate, reliable information on the spatial and temporal distribution of fire emissions (Riebau and Fox, 2010). Fire Emission Inventories (FEI) provide a spatially and temporally resolved accounting of air pollutants released to the atmosphere by wildland fires. On a national level FEI typically indicate fires as a major source of PM2.5 on an annual basis (Figure 1). However, since most fires occur during the wildfire season, the annual, CONUS wide figures greatly understate the potential impact of fire emissions on air quality. During active periods of the wildfire season, fire emissions are believed to dwarf anthropogenic sources of PM2.5 and NMOC (Figure 2), the latter of which includes hazardous air pollutants (HAP) and reactive gases that can lead to the formation of ozone and secondary PM2.5.
    [Show full text]
  • Wildland Fire Emissions, Carbon, and Climate: Emission Factors
    Forest Ecology and Management 317 (2014) 51–60 Contents lists available at SciVerse ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Wildland fire emissions, carbon, and climate: Emission factors ⇑ Shawn Urbanski Missoula Fire Sciences Laboratory, Rocky Mountain Research Station, US Forest Service, 5775 US Highway 10 W, Missoula, MT 59808, USA article info abstract Article history: While the vast majority of carbon emitted by wildland fires is released as CO2, CO, and CH4, wildland fire Available online 21 June 2013 smoke is nonetheless a rich and complex mixture of gases and aerosols. Primary emissions include sig- nificant amounts of CH4 and aerosol (organic aerosol and black carbon), which are short-lived climate Keywords: forcers. In addition to CO2 and short-lived climate forcers, wildland fires release CO, non-methane organic Biomass burning compounds (NMOC), nitrogen oxides (NOx =NO+NO2), NH3, and SO2. These species play a role in radia- Greenhouse gases tive forcing through their photochemical processing, which impacts atmospheric levels of CO2,CH4, tro- Emission factors pospheric O3, and aerosol. This paper reviews the current state of knowledge regarding the chemical composition of emissions and emission factors for fires in United States vegetation types as pertinent to radiative forcing and climate. Emission factors are critical input for the models used to estimate wild- land fire greenhouse gas and aerosol emission inventories. Published by Elsevier B.V. 1. Introduction Fuels are defined as biomass (dead and live) that is available for combustion (Sandberg et al., 2001). While most emission models Emissions from wildland fires are a significant source of carbo- are based on Eq.
    [Show full text]
  • Abstracts and Presenter Biographical Information Oral Presentations
    ABSTRACTS AND PRESENTER BIOGRAPHICAL INFORMATION ORAL PRESENTATIONS Abstracts for oral presentations and biographical information for presenters are listed alphabetically below by presenting author’s last name. Abstracts and biographical information appear unmodified, as submitted by the corresponding authors. Day, time, and room number of presentation are also provided. Abatzoglou, John John Abatzoglou, Assistant Professor of Geography, University of Idaho. Research interests span the weather-climate continuum and both basic and applied scientific questions on past, present and future climate dynamics as well as their influence on wildfire, ecology and agriculture and is a key player in the development of integrated climate scenarios for the Pacific Northwest, US. Oral presentation, Wednesday, 2:30 PM, B114 Will climate change increase the occurrence of megafires in the western United States? The largest wildfires in the western United States account for a substantial portion of annual area burned and are associated with numerous direct and indirect geophysical impacts in addition to commandeering suppression resources and national attention. While substantial prior work has been devoted to understand the influence of climate, and weather on annual area burned, there has been limited effort to identify factors that enable and drive the very largest wildfires, or megafires. We hypothesize that antecedent climate and shorter-term biophysically relevant meteorological variables play an essen- tial role in favoring or deterring historical megafire occurrence identified using the Monitoring Trends in Burn Severity Atlas from 1984-2010. Antecedent climatic factors such as drought and winter and spring temperature were found to vary markedly across geographic areas, whereas regional commonality of prolonged extremely low fuel moisture and high fire danger prior to and immediately following megafire discovery.
    [Show full text]
  • Effects of Pressure and Particle Size on the Carbonization of a Packed Bed of Biomass
    Effects of Pressure and Particle Size on the Carbonization of a Packed Bed of Biomass A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING May 2014 By Gregory Patrick Specht Thesis Committee: Michael J. Antal Jr., Chairperson Weilin Qu Beei-Huan Chao i We certify that we have read this thesis and that, in our opinion it is satisfactory in scope and quality as a dissertation for a degree of Master of Science in Mechanical Engeineering. THESIS COMMITTEE Chairperson ii © Copyright 2014 By Gregory Patrick Specht All Rights Reserved iii Abstract A relatively new technique for charcoal production has been developed called Flash CarbonizationTM and has proven to be efficient and most importantly fast. The technique begins with a packed bed of biomass pressurized at 1-2 MPa. A fire is ignited at the bottom of the bed while air is introduced through the top. The flame travels up the bed converting the biomass to bio carbon otherwise known as charcoal. One of the most important metrics a charcoal has is its Fixed Carbon Yield (yfc) or the percentage of carbon left in it after it is carbonized. Many factors affect the yfc of charcoal three in particular were investigated in this thesis; feedstock, pressure, and particle size. Each feedstock that was used in the FC process and analyzed in this thesis was sent out to a lab to discover its elemental composition. Using this data calculations were performed to discover the highest theoretical yfc each feedstock could produce.
    [Show full text]