Development of a Synthetic Poxvirus-Based SARS-Cov-2 Vaccine
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.183236; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Development of a Synthetic Poxvirus-Based SARS-CoV-2 Vaccine 2 Flavia Chiuppesi1, Marcela d’Alincourt Salazar1, Heidi Contreras1, Vu H Nguyen1, Joy Martinez1, 3 Soojin Park1, Jenny Nguyen1, Mindy Kha1, Angelina Iniguez1, Qiao Zhou1, Teodora Kaltcheva1, 4 Roman Levytskyy1, Nancy D Ebelt2, Tae Hyuk Kang3, Xiwei Wu3, Thomas Rogers4, Edwin R 5 Manuel2, Yuriy Shostak5, Don J Diamond1*, Felix Wussow1* 6 1Department of Hematology and Transplant Center, City of Hope National Medical Center, 7 Duarte CA 91010, USA; 2Department of Immuno-Oncology and 3Genomic core facility, 8 Beckman Research Institute of the City of Hope, Duarte CA 91010, USA; 4University of 9 California San Diego, School of Medicine, Division of Infectious Diseases and Global Public 10 Health, 9500 Gilman Dr, La Jolla, CA 92093; Scripps Research, Department of Immunology and 11 Microbiology, 10550 N Torrey Pines Rd, La Jolla, CA 92037; 5Research Business Development, 12 City of Hope, Duarte CA 91010, USA 13 *co-corresponding and co-senior authors 14 One sentence summary: Chiuppesi et al. demonstrate the use of a uniquely designed and fully 15 synthetic poxvirus-based vaccine platform to rapidly develop a SARS-CoV-2 vaccine candidate 16 enabling stimulation of potent humoral and cellular immune responses to multiple antigens.
[Show full text]