Evaluation of Recombinant Vaccinia Virus—Measles Vaccines in Infant Rhesus Macaques with Preexisting Measles Antibody
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vaccinia Belongs to a Family of Viruses That Is Closely Related to the Smallpox Virus
VACCINIA INFECTION What is it? Vaccinia belongs to a family of viruses that is closely related to the smallpox virus. Because of the similarities between the smallpox and vaccinia viruses, the vaccinia virus is used in the smallpox vaccine. When this virus is used as a vaccine, it allows our immune systems to develop immunity against smallpox. The smallpox vaccine does not actually contain smallpox virus and cannot cause smallpox. Vaccination usually prevents smallpox infection for at least ten years. The vaccinia vaccine against smallpox was used to successfully eradicate smallpox from the human population. More recently, this virus has also become of interest due to concerns about smallpox being used as an agent of bioterrorism. How is the virus spread? Vaccinia can be spread by touching the vaccination site before it has fully healed or by touching clothing or bandages that have been contaminated with the live virus during vaccination. In this manner, vaccinia can spread to other parts of the body and to other individuals. It cannot be spread through the air. What are the symptoms of vaccinia? Vaccinia virus symptoms are similar to smallpox, but milder. Vaccinia may cause rash, fever, headache and body aches. In certain individuals, such as those with weak immune systems, the symptoms can be more severe. What are the potential side effects of the vaccinia vaccine for smallpox? Normal reactions are mild and go away without any treatment.These include: Soreness and redness in the arm where the vaccine was given Slightly swollen, sore glands in the armpits Low grade fever One in approximately three people will feel badly enough to miss school, work or recreational activities Trouble sleeping Serious reactions are not very common but can occur in about 1,000 in every 1 million people who are vaccinated for the first time. -
Environmental Risk Assessment Deliberate Release of the GMO MVA
Environmental Risk Assessment Deliberate release of the GMO MVA-NSmut in a proposed clinical trial Conducted according to the principles described in: S.I. No. 500 of 2003 Genetically Modified Organisms (Deliberate Release) Regulations, 2003, Second Schedule Guideline on Scientific Requirements for the Environmental Risk Assessment of Gene Therapy Medicinal Products EMEA/CHMP/GTWP/125491/2006, 30 May 2008 Background MVA-NSmut is a recombinant virus vaccine derived from the attenuated virus, Modified Vaccinia Ankara. It has a genetic modification leading to the expression of NSmut – which encodes a 1,985 amino acid sequence encompassing NS3 to NS5b of the non-structural region of HCV genotype 1b – the commonest subtype of Hepatitis C virus in Europe. Modified Vaccinia virus Ankara (MVA) is a highly attenuated vector that is unable to replicate efficiently in human and most mammalian cells. Recombinant vaccines lead to protein expression that may have the native conformation, glycosylation and post-translational modifications that may occur during natural infection. They may lead to antibody responses as well as cytotoxic responses. These are non-replicating, non-integrating viral vectors. They are not expected to be able to persist in the body or the environment. This means that the vector will only be transiently present in the human body. The mechanism of action of both vectors is the expression of the HCV immunogen NSmut encoded by the viral vectors and stimulation of a humoral and cellular immune response to the expressed protein. Step 1 – Identification of wild type and GMO characteristics which may cause adverse effects MVA-NSmut is the GMO we propose to use. -
Vaccinia Viruses As Vectors for Vaccine Antigens Vaccinia Viruses As Vectors for Vaccine Antigens
Vaccinia Viruses as Vectors for Vaccine Antigens Vaccinia Viruses as Vectors for Vaccine Antigens Proceedings of the Workshop on Vaccinia Viruses as Vectors for Vaccine Antigens, held November 13-14, 1984, in Chevy Chase, Maryland, U. S.A. Editor: GeraldV.Quinnan,Jr.,M.D. Director, Division of Virology Center for Drugs and Biologics Food and Drug Administration Bethesda, Maryland Elsevier New York • Amsterdam. Oxford .... i © 1985 by Elsevier Science Publishing Co., Inc. All rights reserved. This book has been registered with the Copyright Clearance Center, Inc. For further information, please contact the Copyright Clearance Center, Salem, Massachusetts. Published by: Elsevier Science Publishing Co., Inc. 52 Vanderbilt Avenue, New York, New York 10017 Sole distributors outside the United States and Canada: Elsevier Science Publishers B.V. P.O. Box 211, 1000 AE Amsterdam, the Netherlands Library of Congress Cataloging in Publication Data Workshop in Vaccinia Viruses as Vectors for Vaccine Antigens (1984: Chevy Chase, Md.) Vaccinia viruses as vectors for vaccine antigens. Includes index. I. Vaccines--Congresses. 2. Vaccinia--Congresses. 3. Viralantigens-- Congresses. 4. Smallpox--Congresses. I. Quinnan, Gerald V. 1I. Title. [DNLM: 1. Antigens, Viral--immunology--Congresses. 2. VacciniaVirus-- genetics--congresses. 3. VacciniaVirus--immunology--congresses. 4. Viral Vaccines--immunology--congresses. QW 165.5.P6 W926v 1984] QR189.W674 1984 615'.372 85-12960 ISBN 0-444-00984-1 Manufactured in the United States of America CONTENTS Preface ..... ..... ° . ............... ix Participants .............................. xi Part I: BIOLOGY OF VACCINIA AND OTHER ORTHOPOX VIRUSES I Chairpersons: G. Schild and J. Nakano Vaccinia Virus ...................... 3 D. Baxby Aspects of the Biology of Orthopox Viruses Relevant to the Use of Recombinant Vaccines as Field Vaccines ..... -
Vaccinia Virus
APPENDIX 2 Vaccinia Virus • Accidental infection following transfer from the vac- cination site to another site (autoinoculation) or to Disease Agent: another person following intimate contact Likelihood of Secondary Transmission: • Vaccinia virus • Significant following direct contact Disease Agent Characteristics: At-Risk Populations: • Family: Poxviridae; Subfamily: Chordopoxvirinae; • Individuals receiving smallpox (vaccinia) vaccination Genus: Orthopoxvirus • Individuals who come in direct contact with vacci- • Virion morphology and size: Enveloped, biconcave nated persons core with two lateral bodies, brick-shaped to pleo- • Those at risk for more severe complications of infec- morphic virions, ~360 ¥ 270 ¥ 250 nm in size tion include the following: • Nucleic acid: Nonsegmented, linear, covalently ᭺ Immune-compromised persons including preg- closed, double-stranded DNA, 18.9-20.0 kb in length nant women • Physicochemical properties: Virus is inactivated at ᭺ Patients with atopy, especially those with eczema 60°C for 8 minutes, but antigen can withstand 100°C; ᭺ Patients with extensive exfoliative skin disease lyophilized virus maintains potency for 18 months at 4-6°C; virus may be stable when dried onto inanimate Vector and Reservoir Involved: surfaces; susceptible to 1% sodium hypochlorite, • No natural host 2% glutaraldehyde, and formaldehyde; disinfection of hands and environmental contamination with soap Blood Phase: and water are effective • Vaccinia DNA was detected by PCR in the blood in 6.5% of 77 military members from 1 to 3 weeks after Disease Name: smallpox (vaccinia) vaccination that resulted in a major skin reaction. • Progressive vaccinia (vaccinia necrosum or vaccinia • In the absence of complications after immunization, gangrenosum) recently published PCR and culture data suggest that • Generalized vaccinia viremia with current vaccines must be rare 3 weeks • Eczema vaccinatum after vaccination. -
Development of a Synthetic Poxvirus-Based SARS-Cov-2 Vaccine
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.183236; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Development of a Synthetic Poxvirus-Based SARS-CoV-2 Vaccine 2 Flavia Chiuppesi1, Marcela d’Alincourt Salazar1, Heidi Contreras1, Vu H Nguyen1, Joy Martinez1, 3 Soojin Park1, Jenny Nguyen1, Mindy Kha1, Angelina Iniguez1, Qiao Zhou1, Teodora Kaltcheva1, 4 Roman Levytskyy1, Nancy D Ebelt2, Tae Hyuk Kang3, Xiwei Wu3, Thomas Rogers4, Edwin R 5 Manuel2, Yuriy Shostak5, Don J Diamond1*, Felix Wussow1* 6 1Department of Hematology and Transplant Center, City of Hope National Medical Center, 7 Duarte CA 91010, USA; 2Department of Immuno-Oncology and 3Genomic core facility, 8 Beckman Research Institute of the City of Hope, Duarte CA 91010, USA; 4University of 9 California San Diego, School of Medicine, Division of Infectious Diseases and Global Public 10 Health, 9500 Gilman Dr, La Jolla, CA 92093; Scripps Research, Department of Immunology and 11 Microbiology, 10550 N Torrey Pines Rd, La Jolla, CA 92037; 5Research Business Development, 12 City of Hope, Duarte CA 91010, USA 13 *co-corresponding and co-senior authors 14 One sentence summary: Chiuppesi et al. demonstrate the use of a uniquely designed and fully 15 synthetic poxvirus-based vaccine platform to rapidly develop a SARS-CoV-2 vaccine candidate 16 enabling stimulation of potent humoral and cellular immune responses to multiple antigens. -
210129 Geovax GV-MVA-VLP™ White Paper
GEOVAX MVA-VLP AND MVA PLATFORMS EXECUTIVE SUMMARY GeoVax utilizes Modified Vaccinia Ankara (MVA) as a recombinant viral vector to express vaccine antigens of interest in a format suitable for global use. Our MVA-Virus-Like Particle (GV-MVA-VLP™) platform combines the outstanding safety of MVA with the enhanced immunogenicity of vaccine antigens displayed on the surface of VLPs. The VLPs are generated in vivo within the vaccinated patients. Research in animal models has demonstrated vaccines based on the MVA-VLP platform to be safe, immunogenic and to induce immunity capable of protecting animals against a variety of disease-causing agents. For Ebola, Lassa Fever and Zika virus, single inoculations of GeoVax MVA-VLP based vaccines fully protected animals against lethal viral challenges. The MVA-VLP vaccines induce both humoral (antibody) and cellular (T-cell) immune responses characterized by high magnitude and durability. Our GOVX-B11 vaccine for HIV has demonstrated outstanding safety and immunogenicity in multiple clinical trials and is currently being tested in clinical trials as a component in preventive vaccine and as a therapeutic, working toward a “functional cure.” INTRODUCTION MVA is a highly attenuated strain of the vaccinia virus (VV) that was developed specifically for use in humans as a vaccine against smallpox. This viral vaccine vector is unable to replicate in human cells which imparts exceptional vaccine safety, while readily replicating in cells of avian origin, such as duck and chicken cell lines, facilitating efficient, high volume manufacturing. MVA is approved and licensed as a smallpox vaccine in Europe and the USA and is the preferred product for individuals that may not readily tolerate the VV vaccine, such as the elderly, immune compromised and those with various co-morbidities. -
Human Papillomavirus and HPV Vaccines: a Review
Human papillomavirus and HPV vaccines: a review FT Cutts,a S Franceschi,b S Goldie,c X Castellsague,d S de Sanjose,d G Garnett,e WJ Edmunds,f P Claeys,g KL Goldenthal,h DM Harper i & L Markowitz j Abstract Cervical cancer, the most common cancer affecting women in developing countries, is caused by persistent infection with “high-risk” genotypes of human papillomaviruses (HPV). The most common oncogenic HPV genotypes are 16 and 18, causing approximately 70% of all cervical cancers. Types 6 and 11 do not contribute to the incidence of high-grade dysplasias (precancerous lesions) or cervical cancer, but do cause laryngeal papillomas and most genital warts. HPV is highly transmissible, with peak incidence soon after the onset of sexual activity. A quadrivalent (types 6, 11, 16 and 18) HPV vaccine has recently been licensed in several countries following the determination that it has an acceptable benefit/risk profile. In large phase III trials, the vaccine prevented 100% of moderate and severe precancerous cervical lesions associated with types 16 or 18 among women with no previous infection with these types. A bivalent (types 16 and 18) vaccine has also undergone extensive evaluation and been licensed in at least one country. Both vaccines are prepared from non-infectious, DNA-free virus-like particles produced by recombinant technology and combined with an adjuvant. With three doses administered, they induce high levels of serum antibodies in virtually all vaccinated individuals. In women who have no evidence of past or current infection with the HPV genotypes in the vaccine, both vaccines show > 90% protection against persistent HPV infection for up to 5 years after vaccination, which is the longest reported follow-up so far. -
Here, There, and Everywhere: the Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses
viruses Review Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses Natalia Ingrid Oliveira Silva, Jaqueline Silva de Oliveira, Erna Geessien Kroon , Giliane de Souza Trindade and Betânia Paiva Drumond * Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais: Belo Horizonte, Minas Gerais 31270-901, Brazil; [email protected] (N.I.O.S.); [email protected] (J.S.d.O.); [email protected] (E.G.K.); [email protected] (G.d.S.T.) * Correspondence: [email protected] Abstract: The global emergence of zoonotic viruses, including poxviruses, poses one of the greatest threats to human and animal health. Forty years after the eradication of smallpox, emerging zoonotic orthopoxviruses, such as monkeypox, cowpox, and vaccinia viruses continue to infect humans as well as wild and domestic animals. Currently, the geographical distribution of poxviruses in a broad range of hosts worldwide raises concerns regarding the possibility of outbreaks or viral dissemination to new geographical regions. Here, we review the global host ranges and current epidemiological understanding of zoonotic orthopoxviruses while focusing on orthopoxviruses with epidemic potential, including monkeypox, cowpox, and vaccinia viruses. Keywords: Orthopoxvirus; Poxviridae; zoonosis; Monkeypox virus; Cowpox virus; Vaccinia virus; host range; wild and domestic animals; emergent viruses; outbreak Citation: Silva, N.I.O.; de Oliveira, J.S.; Kroon, E.G.; Trindade, G.d.S.; Drumond, B.P. Here, There, and Everywhere: The Wide Host Range 1. Poxvirus and Emerging Diseases and Geographic Distribution of Zoonotic diseases, defined as diseases or infections that are naturally transmissible Zoonotic Orthopoxviruses. Viruses from vertebrate animals to humans, represent a significant threat to global health [1]. -
Vaccinia Virus and Viral Vectors
Vaccinia Virus and Viral Vectors Background Vaccinia virus is a member of the family Poxviridae, which are enveloped viruses with double stranded DNA genomes. These viruses replicate in the cytoplasm of mammalian cells because they do not require host replication machinery found in the nucleus. This trait allows poxviruses to replicate in enucleated cells. Vaccinia virus has a large genome, which allows for large inserts (up to 25 kb of foreign DNA) and a high level of DNA expression from prokaryotes or eukaryotes due to being regulated by a strong poxviral promoter. The foreign genes are stably inserted into the viral genome, allowing for efficient replication and expression including proper post translational modification in the infected cell. While transduction with the viral vector will be transient, there will be high levels of expression of the transgene. Vaccinia virus is a human pathogen, and while it is the strain of poxvirus used for the small pox vaccine, it can cause flu-like symptoms in healthy individuals and more serious complications in immunocompromised individuals. Vaccinia virus is transmittable to others if contact with the vaccination site or area of infection occurs. Recombinant vaccines that utilize highly attenuated strains such as Modified Vaccinia virus Ankara (MVA) and NYVAC have been created to treat diseases. These attenuated strains are replication deficient and are recommended for use as vectors to replace wild type vaccinia virus. The primary safety concern with vaccinia viral vectors is the transgene. Examples of high risk transgenes are those that encode a toxin or are immunomodulatory. Also, when replication deficient strains are used in the presence of other orthopox viruses, there is a possibility of recombination to create replication competent viral vectors with the genes of interest. -
Substantial Equivalence Determination Decision Summary
510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K181205 B. Purpose for Submission: Modification of device C. Measurand: Non-variola Orthopoxvirus DNA target sequence D. Type of Test: In vitro molecular diagnostic test E. Applicant: Centers for Disease Control and Prevention F. Proprietary and Established Names: Non-variola Orthopoxvirus Real-time PCR Primer and Probe Set G. Regulatory Information: 1. Regulation section: 21 CFR 866.3315: Nucleic acid based reagents for detection of non-variola orthopoxviruses 2. Classification: Class II (Special Controls) 3. Product code: PBK 4. Panel: Microbiology (83) 1 H. Intended Use: 1. Intended use(s): The Non-variola Orthopoxvirus Real-time PCR Primer and Probe Set is intended for the in vitro qualitative presumptive detection of non-variola Orthopoxvirus DNA extracted from human pustular or vesicular rash specimens and viral cell culture lysates submitted to a Laboratory Response Network (LRN) reference laboratory. The assay detects non- variola Orthopoxvirus DNA, including Vaccinia, Cowpox, Monkeypox and Ectromelia viruses at varying concentrations. This assay does not differentiate Vaccinia virus or Monkeypox virus from other Orthopoxviruses detected by this assay and does not detect Variola virus. Refer to the CDC algorithm, Acute, Generalized Vesicular or Pustular Rash Illness Testing Protocol in the United States for recommended testing and evaluation algorithms for patients presenting with acute, generalized pustular or vesicular rash illness. Results of this assay are for the presumptive identification of non-variola Orthopoxvirus DNA. These results must be used in conjunction with other diagnostic assays and clinical observations to diagnose Orthopoxvirus infection. The assay should only be used to test specimens with low/moderate risk of smallpox. -
Enhancing the Protective Immune Response to Administration of a LIVP-GFP Live Attenuated Vaccinia Virus to Mice
pathogens Article Enhancing the Protective Immune Response to Administration of a LIVP-GFP Live Attenuated Vaccinia Virus to Mice Sergei N. Shchelkunov *, Stanislav N. Yakubitskiy, Kseniya A. Titova, Stepan A. Pyankov and Alexander A. Sergeev State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia; [email protected] (S.N.Y.); [email protected] (K.A.T.); [email protected] (S.A.P.); [email protected] (A.A.S.) * Correspondence: [email protected] Abstract: Following the WHO announcement of smallpox eradication, discontinuation of smallpox vaccination with vaccinia virus (VACV) was recommended. However, interest in VACV was soon renewed due to the opportunity of genetic engineering of the viral genome by directed insertion of foreign genes or introduction of mutations or deletions into selected viral genes. This genomic technology enabled production of stable attenuated VACV strains producing antigens of various infectious agents. Due to an increasing threat of human orthopoxvirus re-emergence, the development of safe highly immunogenic live orthopoxvirus vaccines using genetic engineering methods has been the challenge in recent years. In this study, we investigated an attenuated VACV LIVP-GFP (TK-) strain having an insertion of the green fluorescent protein gene into the viral thymidine kinase gene, which was generated on the basis of the LIVP (Lister-Institute for Viral Preparations) strain used in Citation: Shchelkunov, S.N.; Russia as the first generation smallpox vaccine. We studied the effect of A34R gene modification Yakubitskiy, S.N.; Titova, K.A.; and A35R gene deletion on the immunogenic and protective properties of the LIVP-GFP strain. -
Efficacy and Safety of a Modified Vaccinia Ankara-NP+M1 Vaccine Combined with QIV in People Aged 65 and Older:A Randomised Contr
Article Efficacy and Safety of a Modified Vaccinia Ankara-NP+M1 Vaccine Combined with QIV in People Aged 65 and Older: A Randomised Controlled Clinical Trial (INVICTUS) Chris Butler 1 , Chris Ellis 2, Pedro M. Folegatti 3 , Hannah Swayze 1, Julie Allen 1, Louise Bussey 2, Duncan Bellamy 3 , Alison Lawrie 3, Elizabeth Eagling-Vose 2, Ly-Mee Yu 1, Milensu Shanyinde 1, Catherine Mair 3, Amy Flaxman 3 , Katie Ewer 3 , Sarah Gilbert 3, Thomas G. Evans 2,* and on behalf of the INVICTUS Investigators † 1 Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; [email protected] (C.B.); [email protected] (H.S.); [email protected] (J.A.); [email protected] (L.-M.Y.); [email protected] (M.S.) 2 Vaccitech Ltd., Oxford OX4 4GE, UK; [email protected] (C.E.); [email protected] (L.B.); [email protected] (E.E.-V.) 3 Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; [email protected] (P.M.F.); [email protected] (D.B.); [email protected] (A.L.); [email protected] (C.M.); amy.fl[email protected] (A.F.); [email protected] (K.E.); [email protected] (S.G.) * Correspondence: [email protected] Citation: Butler, C.; Ellis, C.; † Membership is provided in the acknowledgments. Folegatti, P.M.; Swayze, H.; Allen, J.; Bussey, L.; Bellamy, D.; Lawrie, A.; Abstract: Background: Pre-existing T cell responses to influenza have been correlated with improved Eagling-Vose, E.; Yu, L.-M.; et al.