The Dissolution of Copper from Bornite, Covellite, and Copper Concentrates at Elevated Temperatures and Pressures

Total Page:16

File Type:pdf, Size:1020Kb

The Dissolution of Copper from Bornite, Covellite, and Copper Concentrates at Elevated Temperatures and Pressures The dissolution of copper from bornite, covellite, and copper concentrates at elevated temperatures and pressures Item Type text; Thesis-Reproduction (electronic) Authors Moss, Thomas Austin, 1935- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 06:37:12 Link to Item http://hdl.handle.net/10150/319689 THE DISSOLUTION OF COPPER FROM BORNITE, COVE LUTE, AND COPPER CONCENTRATES AT ELEVATED TEMPERATURES AND PRESSURES by Thomas A . Moss A Thesis Submitted to the Faculty of the DEPARTMENT OF MINING AND METALLURGICAL ENGINEERING In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In the Graduate College UNIVERSITY OF ARIZONA 1 9 5 8 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for the advanced degree of Master of Science at the University of Arizona under a cooperative agreement between the University of Arizona and the United States Bureau of Mines. The cooperative agreement provides that the privilege of publishing all or part of the text has been granted to the United States Bureau of Mines. The thesis is deposited in the University of Arizona Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of the source is made. Requests for permission for extended quotations from or reproduction of this manuscript in part or in whole may be granted jointly by the Dean of the Graduate College and the United States Bureau of Mines when in their judgment the proposed use of the material is in the interests of scholarship. The author hereby accepts the conditions of publication as stated above. SIGNED: APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: T. G . CHAPMAN Director of Thesis ■AC KNOW LEDGEMEN T the author w i^es td; express his fhqntes to: Carl Rampacek of the UnilM Stettes Bumqu o f Mihesi and ^ f o Ts G 0 Chapman^ Director of lhssisr College of Mihes^ for their guidance and constructive criti- menfpl w o # « Appreciation is also expressed to all others who # TdblW pf $qh#nts Chapter :: "z-' : —■ / V " N g e Acknowledgement ■ _ I Jntrodjjctton ■- ■=* - = — ^ :.<,==-=■ =-■* i=''= — .=(='== «, .. ■=,; , - II /sAatenals, Equipment^ and Experrmenta| Procedures 9 /• uOlTI i't^© Be ^ :vst' 'f6* :■»>-«=»...e=»: «*:• •.«=•; .«•. < )*»': -«=» W '«=*"'’•»» '*=»' • - Govellite ^ c=i ^ ^ ■*s ^ ^ ^ « = « => « .c=i' ^ M «. c=». ™ m « »«t=t -»=»,=3 ^=3 _c=* » 10 Commercial Copper ^ncentFdfeS - = - - ^M s1 ~ ~ ^ ~ « j] -' :.:Cement Coppei'”' '-.I-a-ri-'-a:13 v jPyflfe '*•’ .•**' '•*«•■ -<=* . =q es*"-*/'«•• «s=» •«; :W «==i W 'ear'W mj t=jmm ,t=a :oo; ts> W J=a t=3 W «=a *t=i, W :ea « 13 .:AiGbes$?ory ^ 16> ; Ahdjyticdi^mc ,, ,«::W:CF,;«»„=; »«- »- ■ l^ ., Standard Test Procedure: ” « «««««-««-' »• .«• -• 17 , III Experimentdl Work osl Bornite dnd Coveliite » - - « « « ^ 20 , Bdri^i te ca. -Ba :oa ,.t=p;-yw me t=3 e=3 -=e ,e=l‘ -tso" :me' w mbj t= G3 esi; c=3' -e=l -a »■: e=» teSlf .ibi;-ca tel1 20” ;:: ■; ; ; ;;BerleS':I^s;tnf|ti#ee:of1 l!nev-^ « . 20. ;/) ; Series li^ Effect of Addlfion pf Sulfuric Acid = »='« «= 3- ==■ » 22 Series ilig 0% ct of A^dltlom^^ « ^ ^ _ 23 SeriestV^ Sffect of Time vyfth, Addition rdf Acid^^ 24 Series Vf Effscf of Time with: the Addition of Pyrite ■= = = 26 Chapter . ' :: ' '' v,.>,. 5eri@s V lf feffect of Temperdtum with ^dli-ion of Aclcl = = - . 27 defies VH^ Effect of Degree of Agiiai-ion with Acid - -■ ~ 28 Series VII I f Effecit of portiai A ssure of Oxygen wi th ; . Addition of Pyriie a =■ =• « - = ■ ' > = ' ' fa. =..* := =3; *= == ■=, *>=, « — - 29 Series IX# Effect of Particle Size with Addifion of Acid - ~ 30 Series Effeet of Flow of Ai r wi th the Addi Hon of Pyrife = 31 Se#es Density y/ifti Addition of Sulfate - 32 Series XII^ Effect of Elevated Temperatures dnd f’ressures ~ 35 Chemistry of Leaching Bornite at Eievated Temperatures and , 'PpBSSMlto. Bay**' »'*«-• «.;•«=* w>=*. WV ;w. ;f».••:«■■<** «=»:-=9 '3^, Aberation ^f Bomite During J^aohing ^ * - - - » == *. = 38 Corrosion of Equipment - - “ —■ - — ^ >=: « 42 IV Dissolution of Copper from Commercial Concentrates and Cement Copper at Elevated Temperatures and Pressures - - = - = - ==--•=-=> 44 Series XI11, Dissolution oiF Copper from Magma Concehfrdte = ^ ^ •'**. •*<* **• .w •*■•••*«■**«■< .*•" 5*e<" 44 ; , Series XIVy Dissolution of Copper from Old Dick .*«=»' eai.. 'ittrt:■ -jaar jM: ,W" =» b»'1=3 .c=3 ;,taa~ ■ .ca«\;^V taa l=a ea» ca -ca‘ - • Series XV/ Dissolutionof Copper from Bagdad Concentrate ■==>- = — — = — — ^ = a =. =, .=,= 46 Series XVI/ 0issd|ufion of Copper t e fhelps Dodge . ■ Concentrate ™ « ^ ^ ™ ^ ™ ^ ™ ™ ^ ^ ^ *«> = 47 Series XVI1/ Disspbtion x>f Copper from Various Goncenfrates Employtng Pyip Densities of 33 ^ \ ■ V"n:;.- vV',- ■ ^■ 'v Chapter Series XVIII,, Dissolution of Copper from Various Concentrates Employing a Continuous FlowofAir - - = - = - 49 Series XIX* 0issolytiqn of Copper from Ceme Coppdr - - - 50 Series XXj, bissoluHon ofCopper from Mixi'ure of Phelps bodge Concenirate and Cemeht Copper - = - - - = =* - 52 V Conclusions anc! Recommendations = - - - ="■=• = = = — = = = » — ■= 53 C6|1lC;I:tJS.rO^$. ^ ^ -|e». -»•>«.• tsT' i=* ea «=, es:, 53 ;•» •’ . I'I ^ «=« • a: c=> t=t: .t=l 'C=J !==» =3Tsq B=dr -c 1=1 t=3 .tsa tsa: -t=a ..a=J .ena -e=o- esf t=3 to)' !^!S OoniM^rcjol ;Cpncehfr<^^^' ^ *-»• •■=» ;>=••••.».•55 t. Cement Copper ^ «=«••• w -:w ^•:>vt=a.■ 57 - - Recdnniii^enclat^ ^ ^ ^ «. w^w.-.*- -ft:-— w w—». &« ^ « 1 57 Bll b l ( Q^rQjpMy^ ” t=a>t«i t eo t=a, :C^i' :z=a ea oo ca o c=% t=» i="t=j — ;t=l t=>" -G=s -ca t=) — taa , 53 Tables 10 influence of time on the dissolution of copper from bomite under oxidizing conditions =' = ^ =, j- . .21 , '2.o Assays of residues and leach soiutions ==. « ~ ■=< - *= ='=. — - —' — — = 2 1 3o Effect of the addition of sulfuric acid on the dissolution of copper from bomi te for a reaction period of one hour - = -■ = - - „ n., - = 22 4 0 Assays of residues and leach liquors - — - - » ----- 22 5 0 . Effect of the addition of pyrite on the dissolution of copper from l^mlfe for a^i^ctron pprlod df ^ne hpur=<;a ” ” ^ w ^ ^ ” =- » ■- 23 . 6.0 Assays of leach liquors and residues = = =• = = = = == ™ — — = =' = == ■=■= 24 Effect of time on dissolution of copper with the addition of 0o50 pound of sulfuric acid per pound of bornite - = « ^ 25 B0 Effect of time on dissplufion of copper with the add!tion of 0 o25 : 'pdundvdfpyrite; per'pound of;b 9mite'w,ia:^ «=.=.=-;w25 9 0 , Effect of temperature on dissolution of copper fora reaction P O ^ O ,o n e hour-™ .......................— " ^ lOo Effect of fhe degree o f agitation of the pulp on dissolution I I o Effect of the pdrtial pressure of oxygen on the ratc of dissolution of copper— “ « - - _ « » » « _ = *=■ =t == « ^ . 29 i2o Efffect of longer reaction periods at an oxygen partial pressure of 25 pounds per square inch gauge on the dissolution of copper - - 29 130 Effect of particle size on dissolution of copper - - - - “ = " 31 Effect of rate of flow of air on the dissolution of copper - = = '= Effedt of pulp density on the dissolutiori of copper Solubility of copper sulfate in wafer " ” - = = -= — ■=• = = - - •= - Effect of elevated temperafures and pressures on the dissolution Dissolution of copper from the Magma copper concentrate - - ~ Dissolution of eopper frpm the Phelps Dodge concentrate - » ™ Dissolution of copper from various copper concentrates ertiployirig puip densities of 35 per cept solids ^ “ - >■ “ « Disspfution of copper fom VOflous concentrates using an air flow of 500 liters per hour - .'=* =° =■ =■ =» = — = ■= •=. ™ »=' Dissolution of copper from cement copper when sulfdte ion was provided with pyrite on sulfuric.acid tiddition Assays of leach liquor and residue from the 7 minute test using 1,23 pounds of sulfuric acid per pound of cement copper =■ ~ - ■= Dissdlufipn of copper from a synthetic concentrate composed of a mixture of the Phelps Dodge concentrate and cement copper ~ lllusfrdHons _ ^Asserirtb.lsd dutocloyB " ™ ,*= « w t- ;■= Priginctl pdjllshed surfticfs d f ibetrficles showing inclusions of chalcocite— = = = - - — == - - = - Polished surfaces of residue parHeies Ieached for SO mlnufes with: acid and oxygen magnified at lOQX ^ - - =. The some polished isuffooeS as of Figure 3 mag showing Ihe WidmOn^tofteri sirueture of tha ohaico|yrife =‘ *=• - Polished su r g e s of residue parHd ie§ aAer being 200 degrees Ceni"igrade for 120 minutes in a niirogen atmosphere JMfi ©iSS^yJXlOK OF C#PER FROM ,BORN!IE, GOVE1LITE, AND COFFER CONCENTRATES AT.E1EVATED TEMPERATURES AND PRESSURES. CHAPTER | - INTRODUCTION Ledehing of Copper Ores Tte<^meiit of ftxyi^edi e<ip|»er 0res % 1915, when dcid I each i nig first wtis used ill large scale operations at Chuquicdmata, Chile, Smaller scale leaching operatioris that produced"cemeht copper were ose<tdt ewlNr distieSf but such operations we’re rioi of mqjor importance, ; Most Ieachmg operdtioris are carried out on oxidized or native copper ?riihera|s. For Ores of these. types? sulfuric dcid, ammonium carbonate, or cupric- #imoniu#cdrWhdte We u#d a& tbe so dnd type ^ The dissolution of copper from its sulfide miherdis eiSdlls the pridr dxh^ldn df the copper by tiir or by an oxidizing dgent, Ifi the - pdgtr at I east one ledchingoperdtion tredting theirtinerd I chdlcocite^ cuprolJS s&lflde^ used'adidified ferric s u l^ of dxid^i%ing dnd dissolving fhe copper with W 1 ■; y •’ .. .'1\; ■ , , , / • I, ,Rose, C, A,/M etallurgical Operations at the Chile Exploration.Company", Ehglheerlng and Minings February 12, 1916/ pp, 32iui2 a , v ^ ':;.y:'"- 2 ^ When employing ticid ledch'miethods the copper Is recovered irohi the jecich. liquor by medps of electrolysis or by the use of metallic iron. Ip the electrolytic method thecopper obtainedis in the; pure state and the equivdlenf acid from copper sulfate is regenerated0.
Recommended publications
  • Collection List 2021.Xlsx
    AccNoPrefix No Description 1982 1 Shovel used at T Bolton and Sons Ltd. 1982 2 Shovel used at T Bolton and Sons Ltd STENCILLED SIGNAGE 1982 3 Telegraph key used at T Bolton and Sons Ltd 1982 4 Voltmeter used at T Bolton and Sons Ltd 1982 5 Resistor used at T Bolton and Sons Ltd 1982 6 Photograph of Copper Sulphate plant at T Bolton and Sons Ltd 1982 7 Stoneware Jar 9" x 6"dia marked 'Imperial Chemical Industries Ltd General Chemicals Division' 1982 8 Stoneware Jar 11" x 5"dia marked 'Cowburns Botanical Beverages Heely Street Wigan 1939' 1982 9 Glass Carboy for storing hydrochloric acid 1982 10 Bar of 'Bodyguard' soap Gossage and Sons Ltd Leeds 1982 11 Pack of Gossages Tap Water Softener and Bleacher 1982 12 Wall Map Business Map of Widnes 1904 1982 13 Glass Photo Plate Girl seated at machine tool 1982 14 Glass Photo Plate W J Bush and Co Exhibition stand 1982 15 Glass Photo Plate H T Watson Ltd Exhibition stand 1982 16 Glass Photo Plate Southerns Ltd Exhibition stand 1982 17 Glass Photo Plate Fisons Ltd Exhibition stand 1982 18 Glass Photo Plate Albright and Wilson Exhibition stand 1982 19 Glass Photo Plate General view of Exhibition 1982 20 Glass Photo Plate J H Dennis and Co Exhibition stand 1982 21 Glass Photo Plate Albright and Wilson Chemicals display 1982 22 Glass Photo Plate Widnes Foundry Exhibition stand 1982 23 Glass Photo Plate Thomas Bolton and Sons Exhibition stand 1982 24 Glass Photo Plate Albright and Wilson Exhibition stand 1982 25 Glass Photo Plate Albright and Wilson Exhibition stand 1982 26 Glass Photo Plate 6 men posed
    [Show full text]
  • Performance and Emission Characteristics of a C.I Engine with Cerium Oxide Nanoparticles As Additive to Diesel
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Performance and Emission Characteristics of a C.I Engine with Cerium Oxide Nanoparticles as Additive to Diesel Nithin Samuel1, Muhammed Shefeek K2 1Department of Mechanical Engineering, Baselious Mathews second College of Engineering, Kollam, Kerala, India 2Department of Mechanical Engineering, IES College of engineering, Chittilapilly, Kerala, India Abstract: An experimental investigation is carried out to establish the performance and emission characteristics of a compression ignition engine while using cerium oxide nanoparticles as additive with neat diesel. The work has been divided into two phases. In the first phase, pure diesel is tested in a CI engine and preparation of nanoparticles. Then in the second phase, performance characteristics are studied using the fuel added with nanoparticle in a four cylinder four stroke engine. The cerium oxide acts as an oxygen donating catalyst and provides oxygen for the oxidation of CO or absorbs oxygen for the reduction of NOx. Keywords: diesel engine, cerium oxide, nanoparticles, engine emissions 1. Introduction reduction of NOx. The activation energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at The compression ignition engines are widely used due to its the wall temperature and prevents the deposition of non- reliable operation and economy. As the petroleum reserves polar compounds on the cylinder wall results reduction in are depleting at a faster rate due to the growth of population HC emissions. and the subsequent energy utilization, an urgent need for search for a renewable alternative fuel arise.
    [Show full text]
  • Relationship Between Wastewater Sludge Quality and Energy Production Potential
    RELATIONSHIP BETWEEN WASTEWATER SLUDGE QUALITY AND ENERGY PRODUCTION POTENTIAL YEE PONG, CHUA SUPERVISORS: PROF. ANAS GHADOUANI, DR ELKE REICHWALDT, PROF. RAJ KURUP SCHOOL OF ENVIRONMENTAL SYSTEMS ENGINEERING FACULTY OF ENGINEERING, COMPUTING AND MATHEMATICS THE UNIVERSITY OF WESTERN AUSTRALIA JUNE 2013 Cover photo: Subiaco wastewater treatment plant (UWA, 2013) This thesis is presented in partial fulfilment of the requirements of the Bachelor of Engineering (Environmental) at The University of Western Australia. ABSTRACT Wastewater Treatment Plant (WWTP) plays an irreplaceable role in the overall wellbeing and development of societies. Wastewater treatment is an ongoing process that requires high- energy consumption, and this demand contributes negatively to climate change. Nonetheless, there are options available for energy production and recovery in WWTPs during its treatment process, which can also reduce the negative environmental impacts. This study aims to investigate the potential of energy production and recovery at one WWTP, and the reduction of environmental impacts achieved. The study site is a WWTP situated at Subiaco of Western Australia, operated by Water Corporation. Currently, the WWTP uses an activated sludge treatment system and aerobic sludge stabilisation system. This process does not allow for energy production and recovery. On the other hand, an anaerobic sludge treatment system can produce energy during its treatment process in the form of biogas that can be captured and converted into energy for treatment use. The research evaluated sludge samples from the Subiaco WWTP at the UWA SESE laboratory for the characteristics of the sludge. Laboratory batch scale anaerobic digestion studies were also carried out to evaluate the efficiency of the system.
    [Show full text]
  • [별표 2]<개정 1974.11.28> 공학계실험·실습실 목록 계 열 학 과 별 실 헙
    [별표 2]<개정 1974.11.28> 공학계실험·실습실 목록 계 열 학 과 별 실 헙 실 습 실 명 면적(㎡) 비 고 기 계 0 각 학과 공통 0-1 설계 제도실 200 0-2 기계 공작 실험실 500 0-3 재료 실험실 165 0-4 기계 역학 실험실 200 1 기 계 공 학 과 1-1 열공학 실험실 300 (화학, 기계공학과와 공용) 1-2 유체 공학 실험실 300 2 정 밀 기 계 2-1 정밀 계측 실험실 200 공 학 과 2-2 정밀 기계 가공 실험실 150 3 생 산 기 계 (정밀기계공학과에 준함) 공 학 과 4 산 업 기 계 4-1 용접 실험실 150 공 학 과 4-2 자동 제어 실험실 150 5 기 계 설 계 5-1 계측 공학 실험실 200 학 과 5-2 계통 공학 실험실 165 5-3 기계 요소 실험실 200 6 화 학 기 계 6-1 유체 역학 실험실 300 공 학 과 6-2 열공학 실험실 300 (기계공학과와 공용) 6-3 물리 화학 실험실 240 7 섬 유 기 계 7-1 방적 기계 실험실 300 공 학 과 7-2 제포 기계 실험실 300 7-3 섬유 측정 기계 실험실 300 조 선 0 각 학과 공통 0-1 설계 제도실 200 항 공 1 조 선 공 학 과 1-1 선형 실험실 2,000 1-2 모형 제작실 120 1-3 선체 구조 실험실 420 1-4 선박 진동 실험실 120 2 항 공 공 학 과 2-1 공 기 역 학 실 험 실 330 2-2 항 공 기 구 조 역 학 실 험 실 200 2-3 비 행 역 학 실 험 실 120 2-4 모 형 실 험 실 120 0 각 학과 공통 0-1 물리 야금실험실 180 금 속 0-2 X-선 실험실 150 0-3 분석 실험실 110 1 금 속 공 학 과 1-1 선광 실험실 200 1-2 금속가공 및 분말야금 실험실 100 1-3 전기야금 및 표면처리 실험실 80 1-4 주조 공학 실험실 150 1-5 비철야금 실험실 80 1-6 철야금 실험실 100 2 분 말 야 금 2-1 야금 실험실 200 학 과 2-2 분말 야금 실험실 200 화 학 0 각 학과 공통 0-1 물리 화학 실험실 240 (화학기계공학과와 공용) 0-2 공업 분석실 200 0-3 공작실 100 1 화 학 공 학 과 1-1 이동 조작 실험실 350 1-2 공정 제어 실험실 200 1-3 반응 공학 실험실 200 1-4 공장 설계실 200 2 공 업 화 학 과 2-1 일반 화학 실험실 200 2-2 분석 화학 실험실 200 2-3 유기 공업 화학 실험실 200 2-4 무기 공업 화학 실험실 200 3 응 용 화 학 과 (공업화학과에 준함) 4 고분자 공학과 4-1 고분자 합성 실험실 120 4-2 고분자 가공 실험실 150 4-3 고분자 물성 실험실 150 섬 유 0 섬 유 공 학 과 0-1 제직 실험실 200 0-2 방적 실험실 200 0-3 편조 실험실 200 0-4 섬유 화학 실험실 200 0-5 염색 실험실 100 0-6 섬유 가공 실험실 150 0-7 섬유 물리 실험실 200 0 각 학과 공통 0-1 기초 실험실 200 전 기 1 전 기 공 학 과 1-1 전력 공학 실험실 200 (전자공학과와 공용) 1-2 회로 및 시tM템
    [Show full text]
  • ENERGY TECHNOLOGY Biomass
    LIPI AIT Lembaga Ilmu Pengetahuan Asian Institute of Technology Indonesia US-ASEAN Seminar on ENERGY TECHNOLOGY Biomass. Coal. Solar/Wind Energy Planning LIPI* Bandung, Indonesia •7-18 June 1982 Edited by Donald I. Hertzmark Energy Technology Division Asian Institute of Technology Bangkok Published by The Renewable Energy Resources Information Center Asian Institute of Technology November, 1932 Foreword A planned and orderly transition to new sources of energy is a goal common to many developing countries today. Even nations with substantial oil resources can see the longer term benefits of drawing from diverse energy sources. With a goal of drawing on new energy resources, many nations find the planning of technology development and deployment diffi­ cult at best. Aside from the obvious problems of the heavy demands placed on energy planners and managers in developing countries, the additional loads of new information on energy technologies and resources may often fail to cross national boundaries. The experiences, plans, and insights of other workers in some areas of new energy technology are valuable to others and deserve to be shared. Within ASEAN, for example, there are a major oil refining centpr, two major crude producers, three nations predominantly dependent on biomass energy, and substantial reserves of lignite and low joule coals. In addition, research and limited commercialization of solar energy collectors is common to the five ASEAN netions. Looking at the potential for cooperative efforts among the ASEAN nations, the U.S. Agency for International Development initiated a program with the Asian Institute of Technology in Thailand to foster information exchange and professional c.evelopment in the energy field.
    [Show full text]
  • AP42 Section 5.1 Related: 2 Title: AB 2588 Pooled Source Emission Test
    AP42 Section 5.1 Related: 2 Title: AB 2588 Pooled Source Emission Test Program Vol. 3 Compilation of Test Methods Series of tests conducted on 19 refinery sources July 1990 Almega Corporation TkE ALMEGACORPoRATiON AB2588 POOLED SOURCE EMISSION I TEST PROGRAM THE ALMEGA CORPORATION PROJECT I6551 THE ALMEGA CORPORATION REPORT 16551-4 VOLUME I11 Compilation of Test Methods PREPARED €OR Western States Petroleum Association 505 N. Brand Boulevard, Suite 1400 Glendale, California 91203 rThE A~ME~ACoRpORArioN PLEASE REPLY TO: WEST COAST July 26, 1990 Western States Petroleum Association 505 N. Brand Boulevard, Suite 1400 Glendale, CA 91203 Attention: Mr. Robert Stockdale, Chairman AB2580 Working Group Subject: AB 2588 Pooled Source Emission Test Program The Almega Corporation Project I6551 The Almega Corporation Report 16551-4 Volume 111- Compilation of Test Methods Gentlemen: ICI INTRODUCTION A series of tests were conducted on 19 refinery sources to develop preliminary emission factors to aid refiners in preparation of the 1989 emission estimate report mandated by AB2508, Air Toxics "Hot Spots" Information and Assessment Act of 1987. Testing was performed on a representative number of heaters, boilers and cogeration gas fired turbines, and one sulfur recovery unit, one gasoline loading rack and one asphalt recovery incinerator. This volume contains reference copies of the CARB test methods and the USEPA multiple metal train test method used throughout this program. Details of modifications of these methods for compounds for which test methods do not exist have been included in Volume I of this report. Respectfully submitted, THE ALMEGA CORPORATION Meryl R. Jackson Vice President EAST COAST MIDWEST WEST COAST RD2 Mount Pleasant Road 607C Country Club Drive 2301 East 28th Street, Suite 309 Pottstown, PA 19464 Bensenville, IL 60106 Signal Hill, CA 90806 Phone: (215) 469-9625 Phone: (708) 595-0175 Phone: (213) 4264221 Fax: (215) 469-6701 Fax: (708) 595-1203 Fax: (213) 426-1143 Tkr ALMEGACORPORAT~ON ,LIST OF APPENDICES i, APPENDIXI, DESCRIPTION b/ A.
    [Show full text]
  • (HND) in Explosives Ordnance Technology
    NATIONAL BOARD FOR TECHNICAL EDUCATION CURRICULUM AND COURSE SPECIFICATIONS FOR HIGHER NATIONAL DIPLOMA (HND) IN EXPLOSIVES ORDNANCE TECHNOLOGY Plot B Bida Road P M B 2239, Kaduna, Nigeria January 2018 1 FOREWORD The Higher National Diploma (HND) in Explosives Ordnance Technology (EOT) is designed to replace the various syllabuses used by training bodies which produce manpower in the different sub-sectors of military personnel of Nigerian Army (NA), Nigerian Navy (NN), Nigerian Air Force (NAF) and other authorized personnel. The acute shortage of professionally trained manpower in Explosives Ordnance Technology (EOT) in Nigeria as well as the need to produce Military Personnel with the ethics of the profession through the acquisition of desirable knowledge and skills informed the production of this national curriculum. It is my belief that this curriculum and course specifications which is the minimum requirement for producing professionals with sound knowledge and skills in Explosives Ordnance Technology (EOT), if properly implemented with the required resources (qualified teaching staff in adequate number, adequate consumables, training materials, teaching aids) and admission of qualified candidates into the programme, will lead to the production of the required competent and skilled manpower in the Military sector. I wish to express my deep appreciation to the Air Force Institute of Technology, Kaduna for collaborating with the Board by funding the entire exercise for the development of this curriculum. I wish to also express my appreciation to our stakeholders for their invaluable contributions to the development of this curriculum. I hope that this curriculum would be properly implemented so as to lead to the goal of producing the required Military Industry work force of our dreams.
    [Show full text]
  • Unit -1 - MANUFACTURE of FUELS and LUBRICANTS – SAUA1303
    SCHOOL OF MECHANICAL ENGINEERING DEPARTMENT OF AUTOMOBILE ENGINEERING SAUA1303 – FUELS AND LUBRICANTS 1 Unit -1 - MANUFACTURE OF FUELS AND LUBRICANTS – SAUA1303 2 UNIT 1 MANUFACTURE OF FUELS AND LUBRICANTS. Structure of petroleum, refining process, fuels, thermal cracking, catalytic cracking, polymerization, alkylation, isomerisation, blending, products of refining process, manufacture of lubricating oil base stocks, manufacture of finished automotive lubricants, distillation curve. FUELS INTRODUCTION The engine converts the heat energy which is obtained from the chemical combination of fuel with the oxygen, into mechanical energy. Since the heat energy is derived from the fuel, the fundamental knowledge in types of fuels and their characteristics is essential in order to understand the combustion phenomenon. Fuel is a combustible substance, containing carbon as main constituent, which on proper burninggives a large amount of heat, which can be used economically for domestic and industrial purposes. During the process of combustion of a fuel (like coal), the atoms of carbon, hydrogen, etc. combine with oxygen with the simultaneous liberation of heat at a rapid rate. FUEL + O2 PRODUCTS + HEAT The primary or main source of fuels are coals and petroleum oils. These are stored fuels available in earth's crust and are, generally, called 'fossil fuels'. CLASSIFICATION OF FUELS Chemical Fuels Primary or Natural Secondary or derived Solid Solid Solid Solid Solid Solid Wood Crude oil Natural gas Coke Tar Coal gas Peat Charcoal Keros e ne Water gas Lignite Petrol eum Diesel Oil gas Coal Coke Petrol Bio gas Dung Coal Fuel oil Blast furnace briquett e Synthet i c Gas Gasoli ne Coke oven gas L.P.g Fig.
    [Show full text]
  • Implementation of Signal Conditioning Circuitry for CO2 Sensor For
    James Madison University JMU Scholarly Commons Masters Theses The Graduate School Fall 2012 Implementation of signal conditioning circuitry for CO2 sensor for monitoring CO2 emissions from coal fired power plant in Neyveli Lignite Corporation (Tamil Nadu, India) Muruganand Prabhakaran James Madison University Follow this and additional works at: https://commons.lib.jmu.edu/master201019 Part of the Environmental Sciences Commons Recommended Citation Prabhakaran, Muruganand, "Implementation of signal conditioning circuitry for CO2 sensor for monitoring CO2 emissions from coal fired power plant in Neyveli Lignite Corporation (Tamil Nadu, India)" (2012). Masters Theses. 293. https://commons.lib.jmu.edu/master201019/293 This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact [email protected]. IMPLEMENTATION OF SIGNAL CONDITIONING CIRCUITRY FOR CO2 SENSOR FOR MONITORING CO2 EMISSIONS FROM COAL FIRED POWER PLANT IN NEYVELI LIGNITE CORPORATION (TAMIL NADU, INDIA) A dissertation presented in part fulfilment of the degree of Master of Science in Sustainable Environmental Resource Management/Master of Science in Integrated Science and Technology. Muruganand Prabhakaran November 2012 Supervisor: Prof. Simon G. Fabri University of Malta-James Madison University 1 ABSTRACT MURUGANAND PRABHAKARAN IMPLEMENTATION OF SIGNAL CIRCUITRY OF CO2 SENSOR FOR MONITORING CO2 EMISSIONS FROM COAL FIRED POWER PLANT IN NEYVELI LIGNITE CORPORATION (TAMIL NADU, INDIA) The most significant anthropogenic greenhouse gas causing global warming is carbon dioxide (CO2). Due to the increase of burning of fossil fuels by industries, the atmospheric CO2 concentration increased by more than 30% in 10 years and is expected to continue to increase.
    [Show full text]
  • ND Cement Engineering Technology
    NATIONAL BOARD FOR TECHNICAL EDUCATION CURRICULUM AND COURSE SPECIFICATIONS FOR NATIONAL DIPLOMA IN CEMENT ENGINEERING TECHNOLOGY APRIL, 2018 1 GENERAL INFORMATION 1.0 CERTIFICATION AND TITLE OF THE PROGRAMME: The certificate to be awarded and the programme title shall read: “NATIONAL DIPLOMA IN CEMENT ENGINEERING TECHNOLOGY” 2.0 GOALANDOBJECTIVES: The National DiplomaProgramme in Cement Engineering Technology is designed to produce diplomates with skills and knowledge to be able to function as technicians in the Cement industry. On completionof this programme, thediplomate should be able to: i.Identify the basic raw materials for cement manufacturing. ii.Assist in carrying out basic operations and processes in cement manufacturing. iii.Monitor basic processes in cement manufacturing production. iv.Assist in carrying out routine maintenance and repair of cement production lines. v. Apply general safety rules, health and environmental management in cement production. vi. Assist in carrying out basic quality control measures in cement production. vii. Work not only in cement, but also in ceramic, construction and related industries. viii. Set up and manage an entreprise 3.0 ENTRY REQUIREMENTS: The general entry requirement for the National DiplomaCement Engineering Technology programme is satisfactory performance in the UTME, five credit passes at not more than two sittings inSenior Secondary School Certificate (SSCE),NTC/NBC and General Certificate of Education (GCE) Ordinary level.. The relevant subjects are: English Language, Mathematics, Physics, Chemistry and one other subject from Metal Work, Wood Work, Technical Drawing, Basic Electronics/Basic Electricity, Economics/Commerce, Statistics,Further Mathematics, Computer Studies/ICT, Geography, Biology/Agricultural Science. 2 4.0 CURRICULUM 4.1 The curricula of all ND programmes consist of four main components.
    [Show full text]
  • Mandatory Disclosure
    MANDATORY DISCLOSURE Academic Year 2020-21 Pune Vidyarthi Griha’s College of Engineering & S.S.Dhamankar Institute of Management Mhasrul, Nashik - 422004 A Un-Aided Private Institute affiliated to Savitribai Phule Pune University Telephone: (+91) 253 -6480000 Website: pvgcoenashik.org Email Id: [email protected] MANDATORY DISCLOSURE ACADEMIC YEAR 2020 – 21 AICTE Permanent Id: 1-413208103 Date & Period for Last Approval: F.No. Western/1- 7014733085/2020/EOA/Corrig endum-1 1 Name of the Institution: Name of the Institute Pune Vidyarthi Griha's College of Engineering & S.S.Dhamankar Institute of Management 206, Dindori Road, Behind Reliance Petrol Pump, Near Address: MERI, Mhasrul, Nashik, Maharashtra, Pin Code: 422004 Longitude & Latitude 20.03630 N , 73.80020 E Telephone No: (+91) 253-6480000 Fax No.: (+91) 253-6480044 Mobile No.: 9422751542 Email Id: [email protected] Institute's Website: www.pvgcoenashik.org Nearest Railway Station (Distance in km): Nashik Road (14.0 km) Nearest Airport (Distance in km): Ozar (19.6 km) Type of Institution: Unaided – Private Category (I) of the Institution: Non-Minority Category (II) of the Institution: Co-Ed 2 Name and Address of the Trust/ Society/ Company and the Trustees: Name of the Trust Pune Vidyarthi Griha Address: 1786, Sadashiv Peth, Pune, Maharashtra. Pin Code: 411030 (020) 24470573, 24470927, Telephone No: 24479058 Trust Website: www.punevidyarthigriha.org Type of Trust: Public Trust Trustees Post Shri. S. M. Jirge Chairman Shri. S. N. Gunjal Vice Chairman Prof. R. S. Kamble Secretary Shri. R. V. Borhade Treasurer Shri. S. P. Redekar Registrar Prin. H. G. Bhosale Member Prin. K. N.
    [Show full text]
  • OCCASION This Publication Has Been Made Available to the Public on The
    OCCASION This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation. DISCLAIMER This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. FAIR USE POLICY Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO. CONTACT Please contact [email protected] for further information concerning UNIDO publications. For more information about UNIDO, please visit us at www.unido.org UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Tel: (+43-1) 26026-0 · www.unido.org · [email protected] Df/ID/UR.i/97 1 April 1977 RESTRICTED fnfHth OìW _, ASSISTANCE IN THE ESTABLISHMENT OF A TESTING AND QUALITY CONTROL LABORATORY AT THE HOMS REFINERY IS/SYR/75/003 SYRIAN ARAB REPUBLIC.
    [Show full text]