The Importance of Flashover Recognition Training Wesley

Total Page:16

File Type:pdf, Size:1020Kb

The Importance of Flashover Recognition Training Wesley Running head: THE IMPORTANCE OF FLASHOVER RECOGNITION TRAINING 1 The Importance of Flashover Recognition Training Wesley Thornton University of Florida THE IMPORTANCE OF FLASHOVER RECOGNITION TRAINING 2 Abstract Firefighting is considered to be one of the most dangerous professions in the world and routinely exposes those involved in its line of work to both extremely high risk and high stressful situations. Unfortunately, several individuals associated with this profession have been seriously injured or killed while carrying out the duties that are involved with the job they love. While modern research and statistics have helped to correlate the relationship of cardiovascular emergencies in regards to both the high number of firefighter injuries and line of duty deaths (LODD) while participating in structural firefighting activities, they have also helped to unfortunately hide the importance of focusing on another major killer in the fire service which is the phenomenon known as flashover. The purpose of this paper is to help stress the importance of having a proper flashover recognition and prevention training program in place for today’s fire service in order to help reduce both the number of firefighter injuries and LODD’s, along with providing a detailed plan on how to create and implement such a plan. This paper will also discuss the events leading up to a flashover along with providing an in-depth analysis of today’s fire dynamics. THE IMPORTANCE OF FLASHOVER RECOGNITION TRAINING 3 The Importance of Flashover Recognition Training The dangers associated with structural firefighting activities have been well documented throughout the history of the fire service as hundreds of firefighters have been either seriously injured or killed while performing their duties on the fireground. A large majority of these injuries and deaths have either been directly or indirectly affected by the phenomenon known in the fire service as flashover. In order for fire administrators to truly appreciate the importance of incorporating flashover recognition training within their organization, they must first develop an understanding of not only what a flashover is along with the dangers associated with it, but must take the necessary time to research past incidents in which firefighters have been seriously injured or killed during one well. What is a Flashover? While there are several definitions in the fire service that can be used to describe flashover, the simplest way to describe this extremely dangerous phenomenon is the sudden full room involvement of flame. Flashover is not considered a stage of fire development, but is simply classified as a rapid transition between the growth and fully developed stage of a fire (Hartin, 2008). Flashover is a heat driven event that is caused by the heat transfer methods of convection and radiation as they work in conjunction to heat all substances in a room until they reach their ignition temperature and almost simultaneously combust at the same time. Flashover can be accelerated by thermal radiation feedback which occurs as the heat that is absorbed onto the walls and ceilings from the initial fire itself, begins to re-radiate downwards towards the contents in the room along with the suspended combustible gases that are present, causing them to simultaneously ignite. There are some researchers who consider flashover to be a transitional THE IMPORTANCE OF FLASHOVER RECOGNITION TRAINING 4 phase in the development of a compartment fire in which surfaces exposed to thermal radiation reach ignition temperature more or less simultaneously and fire spreads rapidly throughout the space resulting in full room involvement or total involvement of the compartment or enclosed area (Gorbett, 2007). Temperatures in a fire compartment can soar to well over 1200° F during a flashover which can cause a firefighters personal protective equipment (PPE) to burn within seconds. It is important for firefighters to realize that flashover is not time-dependent and may occur within seconds of an incipient stage fire or may never occur at all. Flashover times are dependent on multiple factors including the size of the fire compartment itself, the construction of that compartment, along with the fuel load that is available inside the same compartment as well. Regardless of which definition fire administrators choose to utilize in describing a flashover to their organization, the most important part of their presentation should focus on that flashover is a heat driven event and that the potential of a flashover occurring is always a possibility when participating in structural firefighting activities. Understanding Today’s Fire Dynamics and the Effect they have on a Flashover Fire dynamics is defined as the study of how chemistry, fire science, material science and the mechanical engineering disciplines of fluid mechanics and heat transfer interact to influence fire behavior (NIST, 2010). Today’s fire dynamics in residential structure fires are heavily influenced by both the buildings contents which usually consist of petroleum based products along with how today’s homes are being designed as well. The combination of these two factors alone have shortened the time of a flashover occurring in modern homes (mostly synthetic based contents) to under 5 minutes, where as it may have taken over 30 minutes to occur in a legacy style home (mostly natural product based contents). THE IMPORTANCE OF FLASHOVER RECOGNITION TRAINING 5 Heat release rates (HRR) are a measurement at which a fire releases energy or as some firefighters describe it, the power of the fire. The HRR's of those products involved directly and indirectly during a fire can a play a major role in several areas including the rate at which a fire develops, smoke production and speed, temperature ranges associated with the fire itself, along with the effects it will have on those involved in the fire as well. As we have leaned throughout our careers in the fire service, most objects have to be heated up in order to produce the gases that are needed to support combustion (pyrolysis). As a high HRR product continues to burn, it can cause other objects in the room to "off gas" at a much faster rate than a lower HRR product would, which can lead to exponential fire growth in that compartment. It is because of this exponential fire growth that the fire service has seen a direct correlation in the reduction of time in which a flashover may occur in today’s modern homes. In 2012, Underwriter Laboratories (UL) conducted multiple experiments that helped to show the effects synthetic based materials had on the fire dynamics found in today’s residential structures. The overall finding of UL’s fire testing is that the changes in the modern home create fires that reach flashover more than eight times faster than homes built 50 years ago (UL, 2012). While it is true that the overall physics of fire development have not changed over time, the structures however that there fires are occurring in today, especially the single family private dwelling have indeed changed tremendously. Today’s residential homes feature a multitude of changes in regards to how they were constructed 40 to 50 years ago. Some of these changes include the almost doubling in size of all single family dwellings being constructed today, along with a vast majority of these new homes being two story versus one story. The interior design of these larger homes have also changed from structures in the past as they now feature a more open floor plan look rather than the traditional compartmentation style that was popular prior to THE IMPORTANCE OF FLASHOVER RECOGNITION TRAINING 6 the 1990’s. Similar to the effects that petroleum based products have on today’s fire dynamics, this change in home size along with its trending open floor play layout can also play a major role on if and when a flashover may occur inside of these structures. It is important to understand that the larger the home being constructed, the more air that is not only going to be available to help accelerate fire growth, but that is going to help generate and even larger fire at the same time. The increase in homes with a second story allows a taller area in which a larger volume of smoke can accumulate above the fire itself, allowing that fire to continue to grow, whereas lower ceilings tends to keep the same level of smoke lower to the fire which can hinder its overall growth. All of these features remove compartmentation, add volume and can contribute to rapid smoke and fire spread (Kerber, 2012). Another key factor that has a tremendous impact on the fire dynamics that are found in today’s residential structure fires deals with the type of construction materials that are being used such as wall linings, different structural components, along with windows and interior doors to name a few. With the overall goal of construction contractors to build as many houses as fast and as cheap as possible combined with the increased use of environmentally sustainable building materials, have led to modern residential structures that do not hold up as long during a fire as did the legacy structures of 40 to 50 years ago did. As with the previous experiments, it was discovered that the use of new construction materials also leads to faster fire propagation, rapid changes in fire dynamics and shorter escape times for occupants and firefighters (UL, 2012) What are the Dangers Associated with a Flashover? In order for fire administrators to fully understand the dangers associated with a flashover, they must first understand how other firefighters have been either seriously injured or THE IMPORTANCE OF FLASHOVER RECOGNITION TRAINING 7 killed as a result of one occurring. During a 10-year period ranging from 2000-2009, 78 firefighter LODD’s were either directly or indirectly caused by a flashover with just over half of these deaths occurring in a one or two story private dwelling.
Recommended publications
  • The Art of Reading Smoke for Rapid Decision Making
    The Art of Reading Smoke for Rapid Decision Making Dave Dodson teaches the art of reading smoke. This is an important skill since fighting fires in the year 2006 and beyond will be unlike the fires we fought in the 1900’s. Composites, lightweight construction, engineered structures, and unusual fuels will cause hostile fires to burn hotter, faster, and less predictable. Concept #1: “Smoke” is FUEL! Firefighters use the term “smoke” when addressing the solids, aerosols, and gases being produced by the hostile fire. Soot, dust, and fibers make up the solids. Aerosols are suspended liquids such as water, trace acids, and hydrocarbons (oil). Gases are numerous in smoke – mass quantities of Carbon Monoxide lead the list. Concept #2: The Fuels have changed: The contents and structural elements being burned are of LOWER MASS than previous decades. These materials are also more synthetic than ever. Concept #3: The Fuels have triggers There are “Triggers” for Hostile Fire Events. Flash point triggers a smoke explosion. Fire Point triggers rapid fire spread, ignition temperature triggers auto ignition, Backdraft, and Flashover. Hostile fire events (know the warning signs): Flashover: The classic American Version of a Flashover is the simultaneous ignition of fuels within a compartment due to reflective radiant heat – the “box” is heat saturated and can’t absorb any more. The British use the term Flashover to describe any ignition of the smoke cloud within a structure. Signs: Turbulent smoke, rollover, and auto-ignition outside the box. Backdraft: A “true” backdraft occurs when oxygen is introduced into an O2 deficient environment that is charged with gases (pressurized) at or above their ignition temperature.
    [Show full text]
  • Problems with Flashover
    FIRE INVESTIGATION (65758) PROBLEMS WITH FLASHOVER Written by: Anna Katarzyna Kraszewski University Of Technology, Sydney April, 1998 Student Number: 950 63234 Lecturer: A/Prof Wal Stern CONTENTS PAGE SECTION NAME PAGE NUMBER Abstract. i Introduction. , . i Describing The Phenomenon Of Flashover. 1 1 l Incipient/Beginning Stage ............... 1 l Progressive/Free-Burning Stage. ..... l Smouldering Stage ..................... 2 Types Of Flashovers . 3 3 l Radiation Induced Flashovers ......... 3 l Ventilation Induced Flashovers ...... Discussion.. 3 Problems With Flashover . ..I 3 l High Temperatures Involved With Flashovers . 4 l Speed Of The Spread Of Flashover.. l Flashover And Arson.. 5 l Further Training And Education.. 7 l The Question Of Whether To Ventilate Or Not.. 8 Conclusion. , . 9 References. 10 Appendix A.. 11 PROBLEMS WITH FLASHOVER APRIL, 1998 FIRE INVESTIGATION, 65758 ABSTRACT Flashover is defined as “a transition phase in the development of a contained fire in which surfaces exposed to thermal radiation reach ignition temperature more or less simultaneously and fire spreads rapidly throughout the space”. The occurrence of flashover is an extreme form of fire behaviour. The various studies which have been made on the subject of flashover to learn what exactly causes flashover and how to fight them, have only recently commenced to be understood. For fire investigators, flashover is a ‘new reality’ which they have to consider in their work. The following diagram shows the various stages in a typical room fire sequence. 1) When a fire is started on a chair, heat is given off by the fire decomposes the foam / fabric of the chair faster than the chair will burn.
    [Show full text]
  • Development of a Portable Flashover Predictor (Fire-Ground Environment Sensor System) FEMA AFG 2008 Scientific Report
    WORCESTER POLYTECHNIC INSTITUTE Development of a Portable Flashover Predictor (Fire-Ground Environment Sensor System) FEMA AFG 2008 Scientific Report David Cyganski, WPI Electrical and Computer Engineering Dept. R. James Duckworth, Electrical and Computer Engineering Dept. Kathy Notarianni, WPI Fire Protection Engineering Dept. 12/17/2010 Note: This report is part of the Performance Report Narrative - it will be made into at least two journal articles to be submitted for publication An AFG 2008 award supported a science and engineering effort towards development of an integrated Firefighter Locator and Environmental Monitor to provide real-time flashover warning and advanced situational awareness. The goal of the one year effort was evaluation of the feasibility and impact of a new flashover warning technology. The program was designed to balance the tradeoffs between the underlying physics of ideal flashover prediction and the requirements of practical field implementation to ultimately offer firefighters a tool to save lives and enable more efficient firefighting tactics. The project included an integration effort in which the flashover prediction information was fused with a data stream from a system previously developed by WPI under AFG 2006 which provided simultaneous firefighter location and physiological information. This report focuses upon the basic scientific effort to understand the relationship between certain observables on the fireground and the event of flashover, followed by the engineering of a portable device that provides significant warning of the impending event of flashover. PART 1: Time of Flashover Estimation from Ceiling Temperature Measurements 1. Flashover Flashover is the term used to describe a phenomenon where a fire burning locally transitions rapidly to a situation where the whole room is burning, causing a rapid increase in the size and intensity of the fire.
    [Show full text]
  • Fireterminology.Pdf
    Abandonment: Abandonment occurs when an emergency responder begins treatment of a patient and the leaves the patient or discontinues treatment prior to arrival of an equally or higher trained responder. Abrasion: A scrape or brush of the skin usually making it reddish in color and resulting in minor capillary bleeding. Absolute Pressure: The measurement of pressure, including atmospheric pressure. Measured in pound per square inch absolute. Absorption: A defensive method of controlling a spill by applying a material that absorbs the spilled material. Accelerant: Flammable fuel (often liquid) used by some arsonists to increase size or intensity of fire. Accelerator: A device to speed the operation of the dry sprinkler valve by detecting the decrease in air pressure resulting in acceleration of water flow to sprinkler heads. Accountability: The process of emergency responders (fire, police, emergency medical, etc...) checking in as being on-scene during an incident to an incident commander or accountability officer. Through the accountability system, each person is tracked throughout the incident until released from the scene by the incident commander or accountability officer. This is becoming a standard in the emergency services arena primarily for the safety of emergency personnel. Adapter: A device that adapts or changes one type of hose thread, type or size to another. It allows for connection of hoses and pipes of incompatible diameter, thread, or gender. May contain combinations, such as a double-female reducer. Adapters between multiple hoses are called wye, Siamese, or distributor. Administrative Warrant: An order issued by a magistrate that grants authority for fire personnel to enter private property for the purpose of conducting a fire prevention inspection or similar purpose.
    [Show full text]
  • Research Roadmap for Smart Fire Fighting Summary Report
    NIST Special Publication 1191 | NIST Special Publication 1191 Research Roadmap for Smart Fire Fighting Research Roadmap for Smart Fire Fighting Summary Report Summary Report SFF15 Cover.indd 1 6/2/15 2:18 PM NIST Special Publication 1191 i Research Roadmap for Smart Fire Fighting Summary Report Casey Grant Fire Protection Research Foundation Anthony Hamins Nelson Bryner Albert Jones Galen Koepke National Institute of Standards and Technology http://dx.doi.org/10.6028/NIST.SP.1191 MAY 2015 This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.1191 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Willie May, Under Secretary of Commerce for Standards and Technology and Director SFF15_CH00_FM_i_xxii.indd 1 6/1/15 8:59 AM Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. The content of this report represents the contributions of the chapter authors, and does not necessarily represent the opinion of NIST or the Fire Protection Research Foundation. National Institute of Standards and Technology Special Publication 1191 Natl. Inst. Stand. Technol. Spec. Publ. 1191, 246 pages (MAY 2015) This publication is available
    [Show full text]
  • FIRE -- RESCUE -- EMS TERMS and DEFINITIONS] a Brief List of Most-Often-Used Terminology for Members of the U.S
    2013 Klickitat County Fire District #5 [FIRE -- RESCUE -- EMS TERMS AND DEFINITIONS] A brief list of most-often-used terminology for members of the U.S. Fire Service A A-side: Front of the fire building, usually front door facing street, but may be facing parking area where first apparatus arrives; other sides labeled B (left), C (rear), D (right), as necessary when speaking of or staffing structure fire Sectors. Above-ground storage tank: Storage tank that is not buried. Compare Underground storage tank. Unburied tanks are more prone to physical damage, and leaks are released to the air or ground, rather than the soil surrounding a buried tank. Accelerant: flammable fuel (often liquid) used by some arsonists to increase size or intensity of fire. May also be accidentally introduced when HAZMAT becomes involved in fire. Accountability: The process of emergency responders (fire, police, SAR, emergency medical, etc...) checking into and making themselves announced as being on-scene during an incident to an incident commander or accountability officer. Through the accountability system, each person is tracked throughout the incident until released from the scene by the incident commander or accountability officer. This is becoming a standard in the emergency services arena primarily for the safety of emergency personnel. This system may implement a name tag system or personal locator device (tracking device used by each individual that is linked to a computer). AFA: Automatic Fire Alarm/Actuating Fire Alarm Aircraft rescue and firefighting (ARFF): a special category of firefighting that involves the response, hazard mitigation, evacuation and possible rescue of passengers and crew of an aircraft involved in an airport ground emergency.
    [Show full text]
  • Smoke Burns Ed Hartin, MS, EFO, Mifiree, CFO
    Smoke Burns Ed Hartin, MS, EFO, MIFireE, CFO Firefighters tend to focus on visible fire (like a moth to a candle). Smoke is toxic and makes it hard to see, but does not present much of a threat to a firefighter wearing protective clothing and self-contained breathing apparatus, or does it? Figure 1. CFBT in an Acquired Structure Photos by Ed Hartin Smoke Smoke is a visible product of incomplete combustion. But what exactly is it? Smoke is a complex aerosol. An aerosol is a mixture of a gas and/or vapor and liquid or solid particulates. Key constituents of smoke include gases such as carbon monoxide and hydrogen cyanide, formaldehyde and benzene vapor, carbon particulate, and unburned pyrolysis products. Most of these components of smoke are toxic and flammable. How can flammable gases and vapors exist inside a fire compartment? Why doesn’t the fire consume them? The answer to these questions goes back to the fire triangle. Combustion requires fuel, oxygen, and heat in the correct proportion. Fuel and oxygen must be within the explosive or flammable range in order for combustion to occur (see Figure 2) © CFBT-US, LLC 1 SMOKE BURNS Figure 2. Explosive/Flammable Range The Lower Explosive or Flammable Limit (LEL/LFL) is the minimum concentration of fuel vapor in air that will support combustion. Below this level, there is insufficient fuel for combustion to occur. The Upper Explosive or Flammable Limit (UEL/UFL) is the highest concentration of fuel gas or vapor in air that will support combustion. Above this level there is insufficient oxygen to support combustion.
    [Show full text]
  • Fire Development and Fire Behavior Indicators Battalion Chief Ed Hartin, MS, EFO, Mifiree, CFO
    Fire Development and Fire Behavior Indicators Battalion Chief Ed Hartin, MS, EFO, MIFireE, CFO Introduction Building Factors, Smoke, Air Track, Heat, and Flame (B-SAHF) are critical fire behavior indicators. Understanding the indicators is important, but more important is the ability to integrate these factors in the process of reading the fire as part of size-up and dynamic risk assessment. Compartment Fire Development Part of the process of reading the fire involves recognizing the stages of fire development that are involved. Remember that fire conditions can vary considerably throughout the building with one compartment containing a fully developed fire, an adjacent compartment in the growth stage, and still other compartments yet uninvolved. Recognizing the stages of fire development and likely progression through this process allows firefighters to predict what will happen next (if action is not taken), potential changes due to unplanned ventilation (such as failure of a window), and the likely effect of tactical action. Compartment fire development can be described as being comprised of four stages: incipient, growth, fully developed and decay (see Figure 1). Flashover is not a stage of development, but simply a rapid transition between the growth and fully developed stages. Figure 1. Fire Development in a Compartment © CFBT-US, LLC Page 1 Fire Development and Fire Behavior Indicators Compartment fires do not always follow the simple, idealized fire development curve illustrated in Figure 2. The speed with which the fire develops, peak heat release rate, and duration of burning are dependent on both the characteristics of the fuel involved and ventilation profile (available oxygen) as illustrated in Figure 3.
    [Show full text]
  • Steve Spak December Newsletter by Vincent Dunn Backdraft And
    Photo By: Steve Spak December Newsletter by Vincent Dunn Backdraft and flashover, what is the difference? What is a backdraft explosion and how does differ from a flashover? Explosions kill and injure firefighters in several ways. The blast can blow a firefighter across a street; flying glass and shrapnel can decapitate a firefighter; flame accompanying the explosion can cause serious burns and an explosion can collapse walls, partitions and iron shutters, crushing firefighters beneath them. A backdraft is one type of explosion that occurs at fires. A backdraft is a smoke explosion. Smoke is the fuel in the fire triangle of a backdraft. The explosive smoke is carbon monoxide (CO). CO has an explosive range of 12 to 74 percent when mixed with air. Fire protection engineers classify explosions into two broad categories: physical explosions such as a BLEVE (Boiling Liquid Expanding Vapor Explosion) and chemical explosions such as a combustion explosion. A backdraft would be classified as a chemical explosion. The same chemical reaction and explosive ingredients are present in a backdraft, as are in any ordinary combustion explosion: fuel, oxygen and heat. The fuel in a combustion engine explosion driving an automobile is gasoline; the fuel in a backdraft explosion is smoke. Fire protection engineers define the term explosion as an "effect" produced by a sudden violent expansion of gases. Some "effects" of an explosion are shock waves, which can shatter windows, blow down firefighters and collapse walls. Differences Firefighters sometimes confuse the terms backdraft and flashover. These two dangerous violent events are different and knowing these differences helps us understand each one better.
    [Show full text]
  • The Current Knowledge & Training Regarding Backdraft, Flashover, and Other Rapid Fire Progression Phenomena
    The Current Knowledge & Training Regarding Backdraft, Flashover, and Other Rapid Fire Progression Phenomena Gregory E. Gorbett, CFPS, MIFireE Professor Ronald Hopkins, MS, CFPS Presentation at the National Fire Protection Association World Safety Conference Boston, Massachusetts June 4, 2007 Abstract Rapid fire progression phenomena, such as backdraft and flashover, can result in danger to firefighters. This paper examines current research and divides these phenomena into categories based on fundamental physical and chemical processes. Implications include improved communication and technology transfer between fire scientists and fire service training personnel, training and education of firefighters, and firefighter safety during fire suppression activities. ii Contents ABSTRACT …………………………………………………………………………………ii INTRODUCTION ….................................................................................................................1 Background ………………………………………………………………………..1 Purpose ………………………………………………………………………….…1 LITERATURE REVIEW…………………………………………………………………..1 A. Flashover……………………………………………………………………….2 B. Backdraft …………………………………………………………………...…11 C. Flameover (Rollover) …………………...…………………………………….17 D. Standards and Textbooks..…………………………………………………….19 CONCLUSIONS ….…………………………………………………………………………..20 Summary and Interpretation of Findings ………………………………………….20 Recommendations …………………………………………………………………22 WORKS CITED ……………………………………………………………………………...23 GLOSSARY ………………………………………………………………………………… 25 APPENDIX A: LITERATURE REVIEW REFERENCES …………………………………………A-1
    [Show full text]
  • Open PDF File, 1.83 MB, for 291 Flashover Recognition
    ___________________________________ ___________________________________ FLASHOVER ___________________________________ RECOGNITION ___________________________________ ___________________________________ 1 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 3 ___________________________________ ___________________________________ ___________________________________ Goals ___________________________________ • To provide the fire service with a safe and secure system of flashover recognition training. ___________________________________ • To teach firefighters to recognize the signs of flashover. • To provide firefighters with techniques to possibly ___________________________________ give them time to escape an impending flashover. • To save firefighters from injury and death from ___________________________________ flashover. 4 ___________________________________ ___________________________________ ___________________________________ ___________________________________ Dangers ___________________________________ ___________________________________ ___________________________________ 5 ___________________________________
    [Show full text]
  • Fire & Science #1
    . more than fighting fires Fire Behavior & Extinguishment Theory Ch.5 . more than fighting fires Video Fire & Science #1 Ch.5 . more than fighting fires Objectives (1 of 3) Discuss the type of heat measurement. Discuss the fire tetrahedron. Identify the physical states of matter in which fuels are found. Describe the methods of heat transfer. Define flash point, flame point, and ignition temperature as they relate to liquid fuel fires. Ch.5 1 . more than fighting fires Objectives (2 of 3) Define the relationship of vapor density and flammability limits to gas fuel fires. Define Class A, B, C, D, and K fires. Describe the phases of fire. Describe the characteristics of an interior structure fire. Ch.5 . more than fighting fires Objectives (3 of 3) Describe rollover and flashover. Describe backdrafts. Describe the principles of thermal layering within a structure. Ch.5 . more than fighting fires Introduction Understanding of fire behavior is the basis for all firefighting principles and actions. Understanding fire behavior requires knowledge of physical and chemical processes of fire. Ch.5 2 . more than fighting fires Types of Heat Measurement Specific heat is the amount of heat a substance absorbs as its temperature increases Latent heat is absorbed as a substance is converted from a solid to a liquid or from a liquid to a gas CSFM Ch.5 . more than fighting fires 4 Types of Heat Measurement Celsius Kelvin Fahrenheit Rankine CSFM Ch.5 . more than fighting fires Types A Celsius (centigrade) A Kelvin degree (°K) is degree (°C) is 1/100th the same measurement the difference between as the Celsius degree the temperature of ice Zero on the Kelvin melting & water boiling scale is –459.67°F at 1 atmosphere Absolute lowest pressure achievable 0°C=melting point temperature 100°C=boiling point CSFM Used by scientist Ch.5 3 .
    [Show full text]