Chapter 1: Chemistry and Physics of Fire
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Module III – Fire Analysis Fire Fundamentals: Definitions
Module III – Fire Analysis Fire Fundamentals: Definitions Joint EPRI/NRC-RES Fire PRA Workshop August 21-25, 2017 A Collaboration of the Electric Power Research Institute (EPRI) & U.S. NRC Office of Nuclear Regulatory Research (RES) What is a Fire? .Fire: – destructive burning as manifested by any or all of the following: light, flame, heat, smoke (ASTM E176) – the rapid oxidation of a material in the chemical process of combustion, releasing heat, light, and various reaction products. (National Wildfire Coordinating Group) – the phenomenon of combustion manifested in light, flame, and heat (Merriam-Webster) – Combustion is an exothermic, self-sustaining reaction involving a solid, liquid, and/or gas-phase fuel (NFPA FP Handbook) 2 What is a Fire? . Fire Triangle – hasn’t change much… . Fire requires presence of: – Material that can burn (fuel) – Oxygen (generally from air) – Energy (initial ignition source and sustaining thermal feedback) . Ignition source can be a spark, short in an electrical device, welder’s torch, cutting slag, hot pipe, hot manifold, cigarette, … 3 Materials that May Burn .Materials that can burn are generally categorized by: – Ease of ignition (ignition temperature or flash point) . Flammable materials are relatively easy to ignite, lower flash point (e.g., gasoline) . Combustible materials burn but are more difficult to ignite, higher flash point, more energy needed(e.g., wood, diesel fuel) . Non-Combustible materials will not burn under normal conditions (e.g., granite, silica…) – State of the fuel . Solid (wood, electrical cable insulation) . Liquid (diesel fuel) . Gaseous (hydrogen) 4 Combustion Process .Combustion process involves . – An ignition source comes into contact and heats up the material – Material vaporizes and mixes up with the oxygen in the air and ignites – Exothermic reaction generates additional energy that heats the material, that vaporizes more, that reacts with the air, etc. -
Safety Data Sheet
Coghlan’s Magnesium Fire Starter #7870 SAFETY DATA SHEET This Safety Data Sheet complies with the Canadian Hazardous Product Regulations, the United States Occupational Safety and Health Administration (OSHA) Hazard Communication Standard, 29 CFR 1910 (OSHA HCS), and the European Union Directives. 1. Product and Supplier Identification 1.1 Product: Magnesium Fire Starter 1.2 Other Means of Identification: Coghlan’s #7870 1.3 Product Use: Fire starter 1.4 Restrictions on Use: None known 1.5 Producer: Coghlan’s Ltd., 121 Irene Street, Winnipeg, Manitoba Canada, R3T 4C7 Telephone: +1(204) 284-9550 Facsimile: +1(204) 475-4127 Email: [email protected] Supplier: As above 1.6 Emergencies: +1(877) 264-4526 2. Hazards Identification 2.1 Classification of product or mixture This product is an untested preparation. GHS classification for this preparation is based upon its use as a fire starter by making shavings and small particulate from the metal block. As shipped in mass form, this preparation is not considered to be a hazardous product and is not classifiable under the requirements of GHS. GHS Classification: Flammable Solids, Category 1 2.2 GHS Label Elements, including precautionary statements Pictogram: Signal Word: Danger Page 1 of 11 October 18, 2016 Coghlan’s Magnesium Fire Starter #7870 GHS Hazard Statements: H228: Flammable Solid GHS Precautionary Statements: Prevention: P210: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P280: Wear protective gloves, eye and face protection Response: P370+P378: In case of fire use water as first choice. Sand, earth, dry chemical, foam or CO2 may be used to extinguish. -
Operating and Maintaining a Wood Heater
OPERATING AND MAINTAINING A WOODHEATER FIREWOOD ASSOCIATION THE FIREWOODOF AUSTRALIA ASSOCIATION INC. OF AUSTRALIA INC. Building a wood fire Maintaining a wood heater For any fire to start and keep going three things are needed, Even in correctly operated wood heaters and fireplaces, some fuel, oxygen and heat. In wood fires the fuel is provided by the of the combustion gases will condense on the inside of the wood, the oxygen comes from the air, and the initial heat comes flue or chimney as a black tar-like substance called creosote. from burning paper or a fire lighter. In a going fire the heat is If this substance is allowed to build up it will restrict the air flow provided by the already burning wood. Without fuel, heat and in the heater or fireplace, reducing its efficiency. Eventually oxygen the fire will go out. When the important role of oxygen a build up of creosote can completely block the flue, making is understood, it is easy to see why you need plenty of air space around each piece of kindling when setting up the fire. the fire impossible to operate. One sign of a blocked flue is smoke coming into the room when you open the heater door. Kindling catches fire easily because it has a large surface Creosote appearing on the glass door is another indication area and small mass, which allows it to reach combustion that your heater is not working properly. Because creosote temperature quickly. The surface of a large piece of wood is flammable, if the chimney or flue gets hot enough the will not catch fire until it has been brought up to combustion creosote can catch alight, causing a dangerous chimney fire. -
The Art of Reading Smoke for Rapid Decision Making
The Art of Reading Smoke for Rapid Decision Making Dave Dodson teaches the art of reading smoke. This is an important skill since fighting fires in the year 2006 and beyond will be unlike the fires we fought in the 1900’s. Composites, lightweight construction, engineered structures, and unusual fuels will cause hostile fires to burn hotter, faster, and less predictable. Concept #1: “Smoke” is FUEL! Firefighters use the term “smoke” when addressing the solids, aerosols, and gases being produced by the hostile fire. Soot, dust, and fibers make up the solids. Aerosols are suspended liquids such as water, trace acids, and hydrocarbons (oil). Gases are numerous in smoke – mass quantities of Carbon Monoxide lead the list. Concept #2: The Fuels have changed: The contents and structural elements being burned are of LOWER MASS than previous decades. These materials are also more synthetic than ever. Concept #3: The Fuels have triggers There are “Triggers” for Hostile Fire Events. Flash point triggers a smoke explosion. Fire Point triggers rapid fire spread, ignition temperature triggers auto ignition, Backdraft, and Flashover. Hostile fire events (know the warning signs): Flashover: The classic American Version of a Flashover is the simultaneous ignition of fuels within a compartment due to reflective radiant heat – the “box” is heat saturated and can’t absorb any more. The British use the term Flashover to describe any ignition of the smoke cloud within a structure. Signs: Turbulent smoke, rollover, and auto-ignition outside the box. Backdraft: A “true” backdraft occurs when oxygen is introduced into an O2 deficient environment that is charged with gases (pressurized) at or above their ignition temperature. -
Learn the Facts: Fuel Consumption and CO2
Auto$mart Learn the facts: Fuel consumption and CO2 What is the issue? For an internal combustion engine to move a vehicle down the road, it must convert the energy stored in the fuel into mechanical energy to drive the wheels. This process produces carbon dioxide (CO2). What do I need to know? Burning 1 L of gasoline produces approximately 2.3 kg of CO2. This means that the average Canadian vehicle, which burns 2 000 L of gasoline every year, releases about 4 600 kg of CO2 into the atmosphere. But how can 1 L of gasoline, which weighs only 0.75 kg, produce 2.3 kg of CO2? The answer lies in the chemistry! Î The short answer: Gasoline contains carbon and hydrogen atoms. During combustion, the carbon (C) from the fuel combines with oxygen (O2) from the air to produce carbon dioxide (CO2). The additional weight comes from the oxygen. The longer answer: Î So it’s the oxygen from the air that makes the exhaust Gasoline is composed of hydrocarbons, which are hydrogen products heavier. (H) and carbon (C) atoms that are bonded to form hydrocarbon molecules (C H ). Air is primarily composed of X Y Now let’s look specifically at the CO2 reaction. This reaction nitrogen (N) and oxygen (O2). may be expressed as follows: A simplified equation for the combustion of a hydrocarbon C + O2 g CO2 fuel may be expressed as follows: Carbon has an atomic weight of 12, oxygen has an atomic Fuel (C H ) + oxygen (O ) + spark g water (H O) + X Y 2 2 weight of 16 and CO2 has a molecular weight of 44 carbon dioxide (CO2) + heat (1 carbon atom [12] + 2 oxygen atoms [2 x 16 = 32]). -
Fire Extinguisher Booklet
NY Fire Consultants, Inc. NY Fire Safety Institute 481 Eighth Avenue, Suite 618 New York, NY 10001 (212) 239 9051 (212) 239 9052 fax Fire Extinguisher Training The Fire Triangle In order to understand how fire extinguishers work, you need to understand some characteristics of fire. Four things must be present at the same time in order to produce fire: 1. Enough oxygen to sustain combustion, 2. Enough heat to raise the material to its ignition temperature, 3. Some sort of fuel or combustible material, and 4. The chemical, exothermic reaction that is fire. Oxygen, heat, and fuel are frequently referred to as the "fire triangle." Add in the fourth element, the chemical reaction, and you actually have a fire "tetrahedron." The important thing to remember is: take any of these four things away, and you will not have a fire or the fire will be extinguished. Essentially, fire extinguishers put out fire by taking away one or more elements of the fire triangle/tetrahedron. Fire safety, at its most basic, is based upon the principle of keeping fuel sources and ignition sources separate Not all fires are the same, and they are classified according to the type of fuel that is burning. If you use the wrong type of fire extinguisher on the wrong class of fire, you can, in fact, make matters worse. It is therefore very important to understand the four different fire classifications. Class A - Wood, paper, cloth, trash, plastics Solid combustible materials that are not metals. (Class A fires generally leave an Ash.) Class B - Flammable liquids: gasoline, oil, grease, acetone Any non-metal in a liquid state, on fire. -
Combustion Chemistry William H
Combustion Chemistry William H. Green MIT Dept. of Chemical Engineering 2014 Princeton-CEFRC Summer School on Combustion Course Length: 15 hrs June 2014 Copyright ©2014 by William H. Green This material is not to be sold, reproduced or distributed without prior written permission of the owner, William H. Green. 1 Combustion Chemistry William H. Green Combustion Summer School June 2014 2 Acknowledgements • Thanks to the following people for allowing me to show some of their figures or slides: • Mike Pilling, Leeds University • Hai Wang, Stanford University • Tim Wallington, Ford Motor Company • Charlie Westbrook (formerly of LLNL) • Stephen J. Klippenstein (Argonne) …and many of my hard-working students and postdocs from MIT 3 Overview Part 1: Big picture & Motivation Part 2: Intro to Kinetics, Combustion Chem Part 3: Thermochemistry Part 4: Kinetics & Mechanism Part 5: Computational Kinetics Be Prepared: There will be some Quizzes and Homework 4 Part 1: The Big Picture on Fuels and Combustion Chemistry 5 What is a Fuel? • Fuel is a material that carries energy in chemical form. • When the fuel is reacted (e.g. through combustion), most of the energy is released as heat • Though sometimes e.g. in fuel cells or flow batteries it can be released as electric power • Fuels have much higher energy densities than other ways of carrying energy. Very convenient for transportation. • The energy is released via chemical reactions. Each fuel undergoes different reactions, with different rates. Chemical details matter. 6 Transportation Fuel: Big Issues •People want, economy depends on transportation • Cars (growing rapidly in Asia) • Trucks (critical for economy everywhere) • Airplanes (growing rapidly everywhere) • Demand for Fuel is “Inelastic”: once they have invested in a vehicle, people will pay to fuel it even if price is high •Liquid Fuels are Best • Liquids Flow (solids are hard to handle!) • High volumetric and mass energy density • Easy to store, distribute. -
Respirator Usage by Wildland Firefighters
United States Department of Agriculture Fire Forest Service Management National Technology & Development Program March 2007 Tech Tips 5200 0751 1301—SDTDC Respirator Usage by Wildland Firefighters David V. Haston, P.E., Mechanical Engineer Tech Tip Highlights ß Based on a 7-year comprehensive study by the National Wildfire Coordinating Group (NWCG), a 1997 consensus conference concluded that routine use of air purifying respirators (APRs) should not be required. ß APRs provide protection against some, but not all harmful components of wood smoke, and may expose firefighters to higher levels of unfiltered contaminants, such as carbon monoxide. In addition, APRs do not protect firefighters against superheated gases and do not supply oxygen. ß Firefighters may use APRs on a voluntary basis if certain conditions are met. Introduction All firefighters, fire management officers, and safety personnel should understand the issues related to using air purifying respirators (APRs) in the wildland firefighting environment. This Tech Tip is intended to provide information regarding the regulatory requirements for using APRs, how APRs function, and the benefits and risks associated with their use. Respirator Types and Approvals Respirators are tested and approved by the National Institute for Occupational Safety and Health (NIOSH) in accordance with 42 CFR Part 84 (Approval of Respiratory Protection Devices). Respirators fall into two broad classifications: APRs that filter ambient air, and atmosphere-supplying respirators that supply clean air from another source, such as self-contained breathing apparatus (SCBA). APRs include dust masks, mouthpiece respirators (used for escape only), half- and full-facepiece respirators, gas masks, and powered APRs. They use filters or cartridges that remove harmful contaminants when air is passed through the air-purifying element. -
Flood After Fire Fact Sheet: Risks and Protection
FACT SHEET Flood After Fire Fact Sheet Risks and Protection Floods are the most common and costly natural hazard in the nation. Whether caused by heavy rain, BE FLOODSMART – REDUCE YOUR RISK thunderstorms, or the tropical storms, the results of A flood does not have to be a catastrophic event to flooding can be devastating. While some floods develop bring high out-of-pocket costs, and you do not have over time, flash floods—particularly common after to live in a high-risk flood area to suffer flood wildfires—can occur within minutes after the onset of a damage. Around twenty percent of flood insurance rainstorm. Even areas that are not traditionally flood- claims occur in moderate-to-low risk areas. Property prone are at risk, due to changes to the landscape owners should remember: caused by fire. The Time to Prepare is Now. Gather supplies in Residents need to protect their homes and assets with case of a storm, strengthen your home against flood insurance now—before a weather event occurs damage, and review your insurance coverages. and it’s too late. No flood insurance? Remember: it typically takes 30 days for a new flood insurance policy to go WILDFIRES INCREASE THE RISK into effect, so get your policy now. You may be at an even greater risk of flooding due to . Only Flood Insurance Covers Flood Damage. recent wildfires that have burned across the region. Most standard homeowner’s policies do not cover Large-scale wildfires dramatically alter the terrain and flood damage. Flood insurance is affordable. An ground conditions. -
Problems with Flashover
FIRE INVESTIGATION (65758) PROBLEMS WITH FLASHOVER Written by: Anna Katarzyna Kraszewski University Of Technology, Sydney April, 1998 Student Number: 950 63234 Lecturer: A/Prof Wal Stern CONTENTS PAGE SECTION NAME PAGE NUMBER Abstract. i Introduction. , . i Describing The Phenomenon Of Flashover. 1 1 l Incipient/Beginning Stage ............... 1 l Progressive/Free-Burning Stage. ..... l Smouldering Stage ..................... 2 Types Of Flashovers . 3 3 l Radiation Induced Flashovers ......... 3 l Ventilation Induced Flashovers ...... Discussion.. 3 Problems With Flashover . ..I 3 l High Temperatures Involved With Flashovers . 4 l Speed Of The Spread Of Flashover.. l Flashover And Arson.. 5 l Further Training And Education.. 7 l The Question Of Whether To Ventilate Or Not.. 8 Conclusion. , . 9 References. 10 Appendix A.. 11 PROBLEMS WITH FLASHOVER APRIL, 1998 FIRE INVESTIGATION, 65758 ABSTRACT Flashover is defined as “a transition phase in the development of a contained fire in which surfaces exposed to thermal radiation reach ignition temperature more or less simultaneously and fire spreads rapidly throughout the space”. The occurrence of flashover is an extreme form of fire behaviour. The various studies which have been made on the subject of flashover to learn what exactly causes flashover and how to fight them, have only recently commenced to be understood. For fire investigators, flashover is a ‘new reality’ which they have to consider in their work. The following diagram shows the various stages in a typical room fire sequence. 1) When a fire is started on a chair, heat is given off by the fire decomposes the foam / fabric of the chair faster than the chair will burn. -
Fire Service Features of Buildings and Fire Protection Systems
Fire Service Features of Buildings and Fire Protection Systems OSHA 3256-09R 2015 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards- related topic. This publication does not alter or determine compliance responsibilities which are set forth in OSHA standards and the Occupational Safety and Health Act. Moreover, because interpretations and enforcement policy may change over time, for additional guidance on OSHA compliance requirements the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory-impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877-889-5627. This guidance document is not a standard or regulation, and it creates no new legal obligations. It contains recommendations as well as descriptions of mandatory safety and health standards. The recommendations are advisory in nature, informational in content, and are intended to assist employers in providing a safe and healthful workplace. The Occupational Safety and Health Act requires employers to comply with safety and health standards and regulations promulgated by OSHA or by a state with an OSHA-approved state plan. -
Wildland Fire Incident Management Field Guide
A publication of the National Wildfire Coordinating Group Wildland Fire Incident Management Field Guide PMS 210 April 2013 Wildland Fire Incident Management Field Guide April 2013 PMS 210 Sponsored for NWCG publication by the NWCG Operations and Workforce Development Committee. Comments regarding the content of this product should be directed to the Operations and Workforce Development Committee, contact and other information about this committee is located on the NWCG Web site at http://www.nwcg.gov. Questions and comments may also be emailed to [email protected]. This product is available electronically from the NWCG Web site at http://www.nwcg.gov. Previous editions: this product replaces PMS 410-1, Fireline Handbook, NWCG Handbook 3, March 2004. The National Wildfire Coordinating Group (NWCG) has approved the contents of this product for the guidance of its member agencies and is not responsible for the interpretation or use of this information by anyone else. NWCG’s intent is to specifically identify all copyrighted content used in NWCG products. All other NWCG information is in the public domain. Use of public domain information, including copying, is permitted. Use of NWCG information within another document is permitted, if NWCG information is accurately credited to the NWCG. The NWCG logo may not be used except on NWCG-authorized information. “National Wildfire Coordinating Group,” “NWCG,” and the NWCG logo are trademarks of the National Wildfire Coordinating Group. The use of trade, firm, or corporation names or trademarks in this product is for the information and convenience of the reader and does not constitute an endorsement by the National Wildfire Coordinating Group or its member agencies of any product or service to the exclusion of others that may be suitable.