Backdraft: Fire Science and Firefighting, a Literature Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Art of Reading Smoke for Rapid Decision Making
The Art of Reading Smoke for Rapid Decision Making Dave Dodson teaches the art of reading smoke. This is an important skill since fighting fires in the year 2006 and beyond will be unlike the fires we fought in the 1900’s. Composites, lightweight construction, engineered structures, and unusual fuels will cause hostile fires to burn hotter, faster, and less predictable. Concept #1: “Smoke” is FUEL! Firefighters use the term “smoke” when addressing the solids, aerosols, and gases being produced by the hostile fire. Soot, dust, and fibers make up the solids. Aerosols are suspended liquids such as water, trace acids, and hydrocarbons (oil). Gases are numerous in smoke – mass quantities of Carbon Monoxide lead the list. Concept #2: The Fuels have changed: The contents and structural elements being burned are of LOWER MASS than previous decades. These materials are also more synthetic than ever. Concept #3: The Fuels have triggers There are “Triggers” for Hostile Fire Events. Flash point triggers a smoke explosion. Fire Point triggers rapid fire spread, ignition temperature triggers auto ignition, Backdraft, and Flashover. Hostile fire events (know the warning signs): Flashover: The classic American Version of a Flashover is the simultaneous ignition of fuels within a compartment due to reflective radiant heat – the “box” is heat saturated and can’t absorb any more. The British use the term Flashover to describe any ignition of the smoke cloud within a structure. Signs: Turbulent smoke, rollover, and auto-ignition outside the box. Backdraft: A “true” backdraft occurs when oxygen is introduced into an O2 deficient environment that is charged with gases (pressurized) at or above their ignition temperature. -
Smoke Alarms in US Home Fires Marty Ahrens February 2021
Smoke Alarms in US Home Fires Marty Ahrens February 2021 Copyright © 2021 National Fire Protection Association® (NFPA®) Key Findings Smoke alarms were present in three-quarters (74 percent) of the injuries from fires in homes with smoke alarms occurred in properties reported homei fires in 2014–2018. Almost three out of five home with battery-powered alarms. When present, hardwired smoke alarms fire deathsii were caused by fires in properties with no smoke alarms operated in 94 percent of the fires considered large enough to trigger a (41 percent) or smoke alarms that failed to operate (16 percent). smoke alarm. Battery-powered alarms operated 82 percent of the time. Missing or non-functional power sources, including missing or The death rate per 1,000 home structure fires is 55 percent lower in disconnected batteries, dead batteries, and disconnected hardwired homes with working smoke alarms than in homes with no alarms or alarms or other AC power issues, were the most common factors alarms that fail to operate. when smoke alarms failed to operate. Of the fire fatalities that occurred in homes with working smoke Compared to reported home fires with no smoke alarms or automatic alarms, 22 percent of those killed were alerted by the device but extinguishing systems (AES) present, the death rate per 1,000 reported failed to respond, while 11 percent were not alerted by the operating fires was as follows: alarm. • 35 percent lower when battery-powered smoke alarms were People who were fatally injured in home fires with working smoke present, but AES was not, alarms were more likely to have been in the area of origin and • 51 percent lower when smoke alarms with any power source involved in the ignition, to have a disability, to be at least 65 years were present but AES was not, old, to have acted irrationally, or to have tried to fight the fire themselves. -
Problems with Flashover
FIRE INVESTIGATION (65758) PROBLEMS WITH FLASHOVER Written by: Anna Katarzyna Kraszewski University Of Technology, Sydney April, 1998 Student Number: 950 63234 Lecturer: A/Prof Wal Stern CONTENTS PAGE SECTION NAME PAGE NUMBER Abstract. i Introduction. , . i Describing The Phenomenon Of Flashover. 1 1 l Incipient/Beginning Stage ............... 1 l Progressive/Free-Burning Stage. ..... l Smouldering Stage ..................... 2 Types Of Flashovers . 3 3 l Radiation Induced Flashovers ......... 3 l Ventilation Induced Flashovers ...... Discussion.. 3 Problems With Flashover . ..I 3 l High Temperatures Involved With Flashovers . 4 l Speed Of The Spread Of Flashover.. l Flashover And Arson.. 5 l Further Training And Education.. 7 l The Question Of Whether To Ventilate Or Not.. 8 Conclusion. , . 9 References. 10 Appendix A.. 11 PROBLEMS WITH FLASHOVER APRIL, 1998 FIRE INVESTIGATION, 65758 ABSTRACT Flashover is defined as “a transition phase in the development of a contained fire in which surfaces exposed to thermal radiation reach ignition temperature more or less simultaneously and fire spreads rapidly throughout the space”. The occurrence of flashover is an extreme form of fire behaviour. The various studies which have been made on the subject of flashover to learn what exactly causes flashover and how to fight them, have only recently commenced to be understood. For fire investigators, flashover is a ‘new reality’ which they have to consider in their work. The following diagram shows the various stages in a typical room fire sequence. 1) When a fire is started on a chair, heat is given off by the fire decomposes the foam / fabric of the chair faster than the chair will burn. -
Wildland Firefighter Smoke Exposure
❑ United States Department of Agriculture Wildland Firefighter Smoke Exposure EST SERVIC FOR E Forest National Technology & 1351 1803 October 2013 D E E P R A U RTMENT OF AGRICULT Service Development Program 5100—Fire Management Wildland Firefighter Smoke Exposure By George Broyles Fire Project Leader Information contained in this document has been developed for the guidance of employees of the U.S. Department of Agriculture (USDA) Forest Service, its contractors, and cooperating Federal and State agencies. The USDA Forest Service assumes no responsibility for the interpretation or use of this information by other than its own employees. The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official evaluation, conclusion, recommendation, endorsement, or approval of any product or service to the exclusion of others that may be suitable. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. -
Fire Service Features of Buildings and Fire Protection Systems
Fire Service Features of Buildings and Fire Protection Systems OSHA 3256-09R 2015 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards- related topic. This publication does not alter or determine compliance responsibilities which are set forth in OSHA standards and the Occupational Safety and Health Act. Moreover, because interpretations and enforcement policy may change over time, for additional guidance on OSHA compliance requirements the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory-impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877-889-5627. This guidance document is not a standard or regulation, and it creates no new legal obligations. It contains recommendations as well as descriptions of mandatory safety and health standards. The recommendations are advisory in nature, informational in content, and are intended to assist employers in providing a safe and healthful workplace. The Occupational Safety and Health Act requires employers to comply with safety and health standards and regulations promulgated by OSHA or by a state with an OSHA-approved state plan. -
The Rising Cost of Wildfire Protection
A Research Paper by The Rising Cost of Wildfire Protection Ross Gorte, Ph.D. Retired Senior Policy Analyst, Congressional Research Service Affiliate Research Professor, Earth Systems Research Center of the Earth, Oceans, and Space Institute, University of New Hampshire June 2013 The Rising Cost of Wildfire Protection June 2013 PUBLISHED ONLINE: http://headwaterseconomics.org/wildfire/fire-costs-background/ ABOUT THIS REPORT Headwaters Economics produced this report to better understand and address why wildfires are becoming more severe and expensive. The report also describes how the protection of homes in the Wildland-Urban Interface has added to these costs and concludes with a brief discussion of solutions that may help control escalating costs. Headwaters Economics is making a long-term commitment to better understanding these issues. For additional resources, see: http://headwaterseconomics.org/wildfire. ABOUT HEADWATERS ECONOMICS Headwaters Economics is an independent, nonprofit research group whose mission is to improve community development and land management decisions in the West. CONTACT INFORMATION Ray Rasker, Ph.D. Executive Director, Headwaters Economics [email protected] 406 570-7044 Ross Gorte, Ph.D.: http://www.eos.unh.edu/Faculty/rosswgorte P.O. Box 7059 Bozeman, MT 59771 http://headwaterseconomics.org Cover image “Firewise” by Monte Dolack used by permission, Monty Dolack Gallery, Missoula Montana. TABLE OF CONTENTS SUMMARY ................................................................................................................................................. -
Wildland Fire Incident Management Field Guide
A publication of the National Wildfire Coordinating Group Wildland Fire Incident Management Field Guide PMS 210 April 2013 Wildland Fire Incident Management Field Guide April 2013 PMS 210 Sponsored for NWCG publication by the NWCG Operations and Workforce Development Committee. Comments regarding the content of this product should be directed to the Operations and Workforce Development Committee, contact and other information about this committee is located on the NWCG Web site at http://www.nwcg.gov. Questions and comments may also be emailed to [email protected]. This product is available electronically from the NWCG Web site at http://www.nwcg.gov. Previous editions: this product replaces PMS 410-1, Fireline Handbook, NWCG Handbook 3, March 2004. The National Wildfire Coordinating Group (NWCG) has approved the contents of this product for the guidance of its member agencies and is not responsible for the interpretation or use of this information by anyone else. NWCG’s intent is to specifically identify all copyrighted content used in NWCG products. All other NWCG information is in the public domain. Use of public domain information, including copying, is permitted. Use of NWCG information within another document is permitted, if NWCG information is accurately credited to the NWCG. The NWCG logo may not be used except on NWCG-authorized information. “National Wildfire Coordinating Group,” “NWCG,” and the NWCG logo are trademarks of the National Wildfire Coordinating Group. The use of trade, firm, or corporation names or trademarks in this product is for the information and convenience of the reader and does not constitute an endorsement by the National Wildfire Coordinating Group or its member agencies of any product or service to the exclusion of others that may be suitable. -
Federal Funding for Wildfire Control and Management
Federal Funding for Wildfire Control and Management Ross W. Gorte Specialist in Natural Resources Policy July 5, 2011 Congressional Research Service 7-5700 www.crs.gov RL33990 CRS Report for Congress Prepared for Members and Committees of Congress Federal Funding for Wildfire Control and Management Summary The Forest Service (FS) and the Department of the Interior (DOI) are responsible for protecting most federal lands from wildfires. Wildfire appropriations nearly doubled in FY2001, following a severe fire season in the summer of 2000, and have remained at relatively high levels. The acres burned annually have also increased over the past 50 years, with the six highest annual totals occurring since 2000. Many in Congress are concerned that wildfire costs are spiraling upward without a reduction in damages. With emergency supplemental funding, FY2008 wildfire funding was $4.46 billion, more than in any previous year. The vast majority (about 95%) of federal wildfire funds are spent to protect federal lands—for fire preparedness (equipment, baseline personnel, and training); fire suppression operations (including emergency funding); post-fire rehabilitation (to help sites recover after the wildfire); and fuel reduction (to reduce wildfire damages by reducing fuel levels). Since FY2001, FS fire appropriations have included funds for state fire assistance, volunteer fire assistance, and forest health management (to supplement other funds for these three programs), economic action and community assistance, fire research, and fire facilities. Four issues have dominated wildfire funding debates. One is the high cost of fire management and its effects on other agency programs. Several studies have recommended actions to try to control wildfire costs, and the agencies have taken various steps, but it is unclear whether these actions will be sufficient. -
Ash Pit Burn Injuries
Event Type: Ash Pit Burn Injuries Date: Mid-Late August 2019 Fire Season Location: Southcentral Alaska “The normal season-ending rains that have arrived over Alaska’s Interior have yet to materialize over Southcentral Alaska and the Kenai Peninsula. The weather forecast for the next several days shows that, aside from some isolated rain showers, no widespread steady rains are expected.” Eric Stevens, Fire Meteorologist Alaska Interagency Coordination Center Drought Code indices for Southcentral Alaska on August 23, 2019. Introduction The 2019 fire season in Southcentral Alaska has been unusually dry and the area is experiencing extreme to severe drought. Drought indices are at or above historic highs which has allowed fuels to dry to a substantial depth. Fires in the area are burning deep into organic layers in the ground, creating hazardous ash pits that have caused burn injuries to several firefighters. Historically, Southcentral Alaska has experienced similar ash pit issues in 1996 (Millers Reach Fire) and 2015 (Sockeye Fire). The combination of deep duff and organic soils with drought conditions creates an environment for fires to burn deep into the ground and create ash pits that may be more hazardous than those encountered in other areas of the state. Other contributing factors include ground material being disturbed from home site improvement, agriculture and wind rows. The depth and heat trapped within some ash pits has taken firefighters by surprise. Firefighters may not recognize the hazard associated with these areas. The Swan Lake and McKinley fires have reported multiple ash pit-related burn injuries. 1 Swan Lake Fire Located on the Kenai Peninsula Northeast of Sterling, Alaska A two-person saw team from an IHC crew was performing hazard tree mitigation on this fire when the swamper stepped into an 18-inch-deep ash pit while trying to move a bucked log. -
Development of a Portable Flashover Predictor (Fire-Ground Environment Sensor System) FEMA AFG 2008 Scientific Report
WORCESTER POLYTECHNIC INSTITUTE Development of a Portable Flashover Predictor (Fire-Ground Environment Sensor System) FEMA AFG 2008 Scientific Report David Cyganski, WPI Electrical and Computer Engineering Dept. R. James Duckworth, Electrical and Computer Engineering Dept. Kathy Notarianni, WPI Fire Protection Engineering Dept. 12/17/2010 Note: This report is part of the Performance Report Narrative - it will be made into at least two journal articles to be submitted for publication An AFG 2008 award supported a science and engineering effort towards development of an integrated Firefighter Locator and Environmental Monitor to provide real-time flashover warning and advanced situational awareness. The goal of the one year effort was evaluation of the feasibility and impact of a new flashover warning technology. The program was designed to balance the tradeoffs between the underlying physics of ideal flashover prediction and the requirements of practical field implementation to ultimately offer firefighters a tool to save lives and enable more efficient firefighting tactics. The project included an integration effort in which the flashover prediction information was fused with a data stream from a system previously developed by WPI under AFG 2006 which provided simultaneous firefighter location and physiological information. This report focuses upon the basic scientific effort to understand the relationship between certain observables on the fireground and the event of flashover, followed by the engineering of a portable device that provides significant warning of the impending event of flashover. PART 1: Time of Flashover Estimation from Ceiling Temperature Measurements 1. Flashover Flashover is the term used to describe a phenomenon where a fire burning locally transitions rapidly to a situation where the whole room is burning, causing a rapid increase in the size and intensity of the fire. -
Session 611 Fire Behavior Ppt Instructor Notes
The Connecticut Fire Academy Unit 6.1 Recruit Firefighter Program Chapter 6 Presentation Instructor Notes Fire Behavior Slide 1 Recruit Firefighter Connecticut Fire Academy – Recruit Program 1 Slide 2 © Darin Echelberger/ShutterStock, Inc. CHAPTER 6 Fire Behavior Connecticut Fire Academy – Recruit Program Slide 3 Some have said that fires in modern furnished Fires Are Not Unpredictable! homes are unpredictable • A thorough knowledge of fire behavior will help you predict fireground events Nothing is unpredictable, firefighters just need to know what clues to look for Connecticut Fire Academy – Recruit Program Slide 4 Connecticut Fire Academy Recruit Program CHEMISTRY OF COMBUSTION Connecticut Fire Academy – Recruit Program 1 of 26 Revision: 011414 The Connecticut Fire Academy Unit 6.1 Recruit Firefighter Program Chapter 6 Presentation Instructor Notes Fire Behavior Slide 5 A basic understanding of how fire burns will give a Chemistry firefighter the ability to choose the best means of • Understanding the • Fire behavior is one of chemistry of fire will the largest extinguishment make you more considerations when effective choosing tactics Fire behavior and building construction are the basis for all of our actions on the fire ground Connecticut Fire Academy – Recruit Program Slide 6 What is Fire? • A rapid chemical reaction that produces heat and light Connecticut Fire Academy – Recruit Program Slide 7 Types of Reactions Exothermic Endothermic • Gives off heat • Absorbs heat Connecticut Fire Academy – Recruit Program Slide 8 Non-flaming -
Occupational Risks and Hazards Associated with Firefighting Laura Walker Montana Tech of the University of Montana
Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Summer 2016 Occupational Risks and Hazards Associated with Firefighting Laura Walker Montana Tech of the University of Montana Follow this and additional works at: http://digitalcommons.mtech.edu/grad_rsch Part of the Occupational Health and Industrial Hygiene Commons Recommended Citation Walker, Laura, "Occupational Risks and Hazards Associated with Firefighting" (2016). Graduate Theses & Non-Theses. 90. http://digitalcommons.mtech.edu/grad_rsch/90 This Non-Thesis Project is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in Graduate Theses & Non-Theses by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact [email protected]. Occupational Risks and Hazards Associated with Firefighting by Laura Walker A report submitted in partial fulfillment of the requirements for the degree of Master of Science Industrial Hygiene Distance Learning / Professional Track Montana Tech of the University of Montana 2016 This page intentionally left blank. 1 Abstract Annually about 100 firefighters die in the line duty, in the United States. Firefighters know it is a hazardous occupation. Firefighters know the only way to reduce the number of deaths is to change the way the firefighter (FF) operates. Changing the way a firefighter operates starts by utilizing traditional industrial hygiene tactics, anticipating, recognizing, evaluating and controlling the hazard. Basic information and history of the fire service is necessary to evaluate FF hazards. An electronic survey was distributed to FFs. The first question was, “What are the health and safety risks of a firefighter?” Hypothetically heart attacks and new style construction would rise to the top of the survey data.