MODIFICATION of TUNG OIL for BIO-BASED COATING a Thesis
Total Page:16
File Type:pdf, Size:1020Kb
MODIFICATION OF TUNG OIL FOR BIO-BASED COATING A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Narin Thanamongkollit August, 2008 MODIFICATION OF TUNG OIL FOR BIO-BASED COATING Narin Thanamongkollit Thesis Approved: Accepted: _________________________________ _________________________________ Advisor Dean of the College Dr. Mark D. Soucek Dr. Ronald F. Levant _________________________________ _________________________________ Faculty Reader Dean of the Graduate School Dr. Wiley J. Youngs Dr. George R. Newkome _________________________________ _________________________________ Department Chair Date Dr. Kim C. Calvo ii ABSTRACT Tung oil was used as a diene for modification with acrylate dienophiles via a Diels-Alder reaction. In this thesis, the research was divided into two related parts. In the first part, UV-curable resins were prepared from tung oil and tung oil alkyd for a high solids coating application. In the second part, tung oil alkyd was modified with three different acrylate monomers, possessing either alkoxysilane, triallyl ether, or fluorinated groups. The structures of the modified tung oil and alkyds were characterized by 1H NMR, 13C NMR, MALDI-TOF mass spectroscopy, and gel permeation chromatography (GPC). Two UV-curable tung oil-based resins in the first part were synthesized via the Diels-Alder cycloaddition. A UV-curable Tung Oil (UVTO) was prepared from bodied tung oil and trimethylolpropane trimethacrylate (TMPTMA) by a two-step reaction. Bodied tung oil was primarily prepared by treatment at high temperature, and then reacted with TMPTMA on the α-eleosterate of tung oil triglyceride via the Diels-Alder reaction. An inhibitor, phenothiazine, was added to avoid homopolymerziaton of TMPTMA. UV-curable Tung Oil Alkyd (UVTA) was prepared by the monoglyceride process, and then reacted with TMPTMA via the Diels-Alder reaction. The UVTO and UVTA were formulated with a free radical reactive diluent, tripropylene glycol diacrylate (TPGDA) and photoinitiator Irgacure 2100. Photo Differential Scanning Calorimeter iii (Photo-DSC) was used to investigate the curing kinetics of the UVTO and the UVTA. The data showed that the UVTA formula was cured faster than to the UVTO formula. In the second part, the α-eleosterate pendent fatty acid of tung oil alkyd was functionalized via a Diels-Alder reaction with three different acrylate groups, 2,2,2- trifluoroethyl methacrylate, 3-methacryloxypropyl trimethoxysilane, and triallyl ether acrylate. Drying time and viscoelastic properties of the alkyd-modified film were investigated. Dynamic Mechanical Thermal Analysis (DMTA) was employed to evaluate the viscoelastic properties of the alkyd-modified films. The viscoelastic and drying time result shows that the alkyd modified with siloxane and triallyl ether group shows a faster drying time, higher crosslink density, and higher glass transition temperature compared to the unmodified alkyd, whereas the fluorinated alkyd showed surface active properties, but lacks in drying and crosslink density. iv TABLE OF CONTENTS Page LIST OF TABLES ........................................................................................................... viii LIST OF FIGURES ........................................................................................................... ix CHAPTER I. INTRODUCTION ......................................................................................................... 1 II. LITERATURE REVIEW .............................................................................................. 4 2.1 Drying Oils[1] ................................................................................................ 4 2.2 Tung Oil[19] .................................................................................................. 7 2.3 Heat Treatment of Drying Oil[1] ................................................................... 9 2.4 Oxidative Curing and Drying Mechanisms[1] ............................................. 10 2.5 Alkyd Resin ................................................................................................. 12 2.6 Diels-Alder reaction ..................................................................................... 15 2.7 Reactive Diluents ......................................................................................... 17 2.8 UV Cure Coating[31] ................................................................................... 18 2.9 Sol-gel Chemistry ........................................................................................ 20 2.10 Fluorinated Polymers ................................................................................. 22 III. EXPERIMENT ........................................................................................................... 24 v 3.1 Materials ...................................................................................................... 24 3.2 Synthesis of UV-Curable Tung Oil (UVTO) ............................................... 25 3.3 Synthesis of UV-Curable Tung Oil Alkyd (UVTA) .................................... 26 3.4 Synthesis of fluorine functionalized tung-alkyd (FTO-Alkyd) resin .............................................................................................................. 28 3.5 Synthesis of Siloxane functionalized tung-Alkyd (SFTO-Alkyd) resin .............................................................................................................. 30 3.6 Synthesis of triallyl ether functionalized tung-alkyd (TAETO-Alkyd) resin .............................................................................................................. 31 3.7 Formulation and Curing Kinetic of UV-Curable materials (Chapter IV) ................................................................................................. 33 3.8 Formulation and Film Preparation of modified alkyd (Chapter V) ............. 34 3.9 Instrument and Characterization .................................................................. 34 IV. SYNTHESIS OF UV-CURABLE TUNG OIL BASED RESIN .............................. 36 4.1 Introduction .................................................................................................. 36 4.2 Characterization of UV-Curable Resins ...................................................... 38 4.3 Evaluation of Curing Kinetic ....................................................................... 51 4.4 Discussion .................................................................................................... 52 4.5 Conclusion ................................................................................................... 54 V. SYNTHESIS AND PROPERTIES OF ACRYLATE FUNCTIONALIZED ALKYD....................................................................................................................... 55 5.1 Introduction .................................................................................................. 55 5.2 Characterization result of modified alkyd .................................................... 56 5.3 Drying time study ........................................................................................ 67 vi 5.4 Viscoelastic Properties ................................................................................. 68 5.5 Contact Angle .............................................................................................. 70 5.6 Discussion .................................................................................................... 72 5.7 Conclusion ................................................................................................... 74 VI. CONCLUSIONS ...................................................................................................... 75 REFERENCES ................................................................................................................. 76 vii LIST OF TABLES Table Page 1 Typical Fatty acid compositions of vegetable oils .................................................. 6 2 The assigned mass spectra of bodied tung oil ....................................................... 25 3 The assigned mass spectra of acrylated tung oil ................................................... 25 4 1H-NMR Chemical Shift of acrylated tung oil ................................................... 26 5 13C-NMR Chemical Shift of acrylated tung oil .................................................. 26 6 1H-NMR Chemical Shift of acrylated tung oil alkyd .......................................... 28 7 13C-NMR Chemical Shift of acrylated tung oil alkyd ........................................ 28 8 1H-NMR Chemical Shift of fluorinated tung oil alkyd ....................................... 29 9 13C-NMR Chemical Shift of fluorinated tung oil alkyd ...................................... 29 10 1H-NMR Chemical Shift of siloxane tung oil alkyd ............................................. 31 11 13C-NMR Chemical Shift of siloxane tung oil alkyd .......................................... 31 12 1H-NMR Chemical Shift of triallyl ether tung oil alkyd ....................................... 33 13 13C-NMR Chemical Shift of triallyl ether tung oil alkyd ................................... 33 14 Drying time at 25 oC ............................................................................................. 68 15 Viscoelastic properties of the alkyd-modified cure films ..................................... 70 16 Contact