Modification of Alkyd Resins and Seed Oil Based Reactive

Total Page:16

File Type:pdf, Size:1020Kb

Modification of Alkyd Resins and Seed Oil Based Reactive MODIFICATION OF ALKYD RESINS AND SEED OIL BASED REACTIVE DILUENTS FOR HIGH PERFORMANCE COATINGS A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Brittany A. Pellegrene August, 2019 MODIFICATION OF ALKYD RESINS AND SEED OIL BASED REACTIVE DILUENTS FOR HIGH PERFORMANCE COATINGS Brittany A. Pellegrene Dissertation Approved: Accepted: Advisor Department Chair Dr. Mark Soucek Dr. Sadhan Jana Committee Member Interim Dean of the College Dr. Thein Kyu Dr. Ali Dhinojwala Committee Member Dean of Graduate the School Dr. Younjin Min Dr. Chand Midha Committee Member Date Dr. Tianbo Liu Committee Member Dr. Chelsea Monty-Bromer ii ABSTRACT Alkyds, one of the most commonly used binders for coating systems, are modified polyesters derived from seed oils. They find utility in several coating applications, including architectural, industrial and wood coatings. Formulation involves the use of reactive diluents to decrease the viscosity and trigger the autoxidative curing mechanism of the alkyds to avoid the use of volatile organic compounds (VOCs). This work studies the modification of alkyds and reactive diluents and the differences between the coating performance of these additives. Two differently functionalized alkyds and reactive diluents were synthesized and formulated into high solids alkyds coatings. Alkoxysilane and fluorine functionalities were chosen to improve adhesion, hardness, and chemical and corrosion resistance of the coating system. The resulting coatings were analyzed for performance, tensile properties, corrosion resistance and weatherability. ESEM-EDX was used to observe the distribution of the fluorine and alkoxysilane in the cross-section of the coating. Stratification was observed for the modified reactive diluents at high concentrations, and these coatings showed improved adhesion and corrosion resistance. The modified alkyds performed better in terms of mechanical properties, but stratification was not observed. iii Next, the moisture sensitivity of alkoxysilanes was studied by looking into the effect of various relative humidity conditions on the curing and performance of alkoxysilane-functionalized alkyd coatings. These coatings were evaluated for drying time, adhesion, hardness and mechanical properties. At high humidity, the alkoxysilane- functional reactive diluents dried more quickly and formed harder coatings than the unmodified control. The functionalized alkyds showed enhanced adhesion and tensile strength at high humidity. Thirdly, fluorinated alkyds and reactive diluents were compared to understand the effects of molecular weight and viscosity on the stratification and performance of these coatings. The additives were found to create more hydrophobic and chemically resistant coatings without detrimental effects on other properties. The reactive diluents showed more stratification, with decreased mechanical properties. The fluorinated alkyd system improved corrosion resistance without sacrificing other coating properties. In this case, the added mobility of the reactive diluent did not improve the final properties of the coatings. In the final part of this work, novel soybean oil-based reactive diluents were developed, based on an ene reaction between soybean oil and maleic anhydride, which was characterized using FT-IR, 1H-, 13C- and 2D NMR spectroscopy and MALDI-ToF mass spectrometry. The resulting maleated soybean oil was further modified with various nucleophiles, containing allyl ether or methacrylate functionalities. The efficacy of these reactive diluents in decreasing viscosity was evaluated, as well as the crosslink density, tensile properties and coating performance. These novel reactive diluents efficiently reduced viscosity without a significant decrease in performance of the resulting coatings. iv ACKNOWLEDGMENTS I would like to thank the wonderful people without whom this would not have been possible. Firstly, I would like to acknowledge my advisor, Dr. Mark Soucek, and thank him for his counsel, encouragement and support throughout my time here. I’d also like to thank my committee members, Dr. Thein Kyu, Dr. Tianbo Liu, Dr. Younjin Min and Dr. Chelsea Monty-Bromer for their comments and advice. I would like to especially thank Dr. Monty- Bromer for her help with modeling corrosion data. I would like to extend gratitude to Dr. Kevin Cavicchi for the financial support in these last few semesters and for always offering guidance and ideas. Additionally, to the staff and technicians in the department, your help was always greatly appreciated, especially Dr. Paula Watt, Christopher Paige, and Thomas Quick. I also want to thank Diana Woolf for her willingness to go above and beyond for students, and for her support and encouragement to me throughout this process. I would like to express sincere gratitude to my colleagues in the Department of Polymer Engineering. Thank you to Dr. Ryan Salata for your mentorship and for teaching me the ways of alkyds. To Dr. Nick Teo and Marisa Tukpah, thank you for your friendship and for many lunches and study sessions. To my lab mates in Dr. Soucek’s group, especially Anisa Cobaj, thank you so much for your support, advice and understanding. I v would also like to especially thank Ted Hammer for his experimental support and for always being willing to help. I want to express sincere gratitude to my parents and family for their constant love and encouragement, as well as for instilling in me the work ethic and follow-through necessary to achieve my goals. I definitely could not have made it this far without you. And last, but definitely not least, to my very best friends, Emily Brahler, Audrey Fletcher, Anna Holdren, J.D., and Becky VanVoorhis, thank you for everything, for letting me complain and being there for me throughout these last 15 plus years of friendship. I owe a lot to each one of you. Finally, and above all, I want to express my sincere gratitude and appreciation to Dillon Lloyd for his unwavering support, encouragement and the unending sacrifices he has made throughout this journey and over the last 9 years. Your love, advice and encouragement have been instrumental in helping me reach this achievement. vi TABLE OF CONTENTS Page LIST OF FIGURES ............................................................................................................ X LIST OF TABLES .......................................................................................................... Xvii CHAPTER ........................................................................................................... 1 ............................................................................................................ 4 2.1 Environmentally Friendly Coatings ........................................................ 4 2.2 Seed Oils ................................................................................................. 5 2.3 Linseed oil ............................................................................................... 8 2.4 Autoxidation and driers ........................................................................... 8 2.5 Alkyd Resins ......................................................................................... 11 2.6 High Solids Formulations ..................................................................... 17 2.7 Reactive Diluents .................................................................................. 18 2.8 Ene Reactions ........................................................................................ 20 2.9 Inorganic/Organic Hybrid Coatings ...................................................... 21 2.10 Fluorinated Polymers ............................................................................ 25 2.11 Self-Stratifying Coatings ...................................................................... 26 2.12 Corrosion............................................................................................... 28 2.13 Exterior Durability ................................................................................ 31 vii ........... 36 3.1 Abstract ................................................................................................. 36 3.2 Introduction ........................................................................................... 37 3.3 Experimental ......................................................................................... 39 3.4 Results ................................................................................................... 47 3.5 Discussion ............................................................................................. 72 3.6 Conclusions ........................................................................................... 77 .......................................................................................................... 80 4.1 Abstract ................................................................................................. 80 4.2 Introduction ........................................................................................... 80 4.3 Experimental ......................................................................................... 83 4.4 Results ................................................................................................... 87 4.5 Discussion ............................................................................................. 98 4.6 Conclusions ........................................................................................
Recommended publications
  • Utrecht Art Supplies What Not to Use As Varnish
    Utrecht Art Supplies What Not to Use as Varnish • Removable with light solvents and gentle manipulation (should not require strong solvents or hard scrubbing) • Should not fuse with, soften or dissolve completely dry paint • Resin content should be documented to aid in later cleaning and care Alkyd Alkyd-based painting mediums are great for improving paint flow, imparting gloss, increasing transparency, and promoting a tough, flexible Ask the Expert: "Lately I've been finishing my paint film, but as a top-coat, they aren't oil paintings with a coat of alkyd medium to give reversible with even very harsh solvents. A coat a shiny finish. My friend says this might not be a of alkyd is permanent, for better or worse. Also, good idea. If I can coat an acrylic painting with some alkyd mediums impart harsh glare, making gloss medium, what's the problem with using it difficult to install and light the finished work. alkyd medium on oils?" Wax A: Artists sometimes make the mistake of top- coating a painting with a medium or other Wax is sometimes used as a top-coat over material which gives a good appearance in the paintings, but it has some significant short term, but which causes problems later. shortcomings for this application. Wax remains Alkyd-based painting mediums are great for their soft indefinitely, so it doesn't impart protection intended purpose, but alkyds don't meet the against mechanical damage from handling and requirements of a picture varnish. casual contact. Wax also tends to attract and hold dust. Cold wax medium has an attractive A picture varnish should satisfy these appearance when first applied, especially when functions: buffed to a shine, but can later become • Permanently neutral in color and lackluster.
    [Show full text]
  • Vinyl Toluene Modified Alkyd Resins
    VINYL TOLUENE MODIFIED ALKYD RESINS VT can be used to prepare a wide variety of alkyd coating resins. In general, the base alkyd is formulated to use low cost VT to reduce the oil length of the vehicle. For example using VT with a very long-oil soya alkyd produces improved drying time and hardness. These improvements are realized without reducing the good naphtha solubility of the vehicle. OIL AND BASE ALKYD SELECTION The type of oil used in the copolymer reaction is an important variable. Variations in the chemical structure such as degree of unsaturation, type of unsaturation and degree of polymerization have an effect on the product. Copolymers prepared from heavy-bodied oils have higher viscosities, faster drying rates and greater utility for protective coatings than those based on lower viscosity oils. Conjugated oils react readily with VT to form compatible products without use of a catalyst. VT reactivity with unconjugated oils is less active and appears to be a function of the Iodine value of the oil. Use of a small amount of suitable catalyst allows production of products with good homogeneity from any of the convential drying and semi-drying oils. Copolymers of maximum hardness, toughness and flexibility can be prepared by using one of the highly reactive oils such as dehydrated castor oil. VT modified alkyd properties depend upon the base alkyd resin used. Close attention must be given to the choice of polyhydric alcohols and the average functionality of the acids in addition to the type and amount of drying oil used. Viscosity buildup, dry time and film integrity are influenced by the functionality of both the polyhydric alcohol and acid constituents.
    [Show full text]
  • Kinetics of Castor Oil Alkyd Resin Polycondensation Reaction
    ineering ng & E P l r a o c i c e m s e s Journal of h T C e f c h o Uzoh and Onukwuli, J Chem Eng Process Technol 2015, 6:4 l ISSN: 2157-7048 n a o n l o r g u y o J Chemical Engineering & Process Technology DOI: 10.4172/2157-7048.1000240 Research Article Article OpenOpen Access Access Kinetics of Castor Oil Alkyd Resin Polycondensation Reaction Uzoh CF* and Onukwuli OD and Madiebo Emeka Chemical Engineering Department, Faculty of Engineering Nnamdi Azikiwe University, Awka, Nigeria Abstract An appropriate kinetic law that governs some important conditions of the reaction process for dehydrated castor monoglyceride modified alkyd resin has been developed. A kinetic experiment was conducted following a standard procedure. The classical third order conversion rate model was utilized in determining the rate parameters while the viscosity-conversion model suggested by the free-volume theory was applied for the viscosity kinetics studies. The kinetic model considered for this study adequately predicts the reaction progress even beyond the actual gelation point. The effects of the system parameters on both the predicted yields and the corresponding conversion rates were documented in a well-designed sampling space implemented by statistical screening optimization paradigm. The effects of system parameters on the reaction rates further investigated based on Arrhenius equation detect a heavy mass transfer resistance during the esterification process. A detailed analysis of the response reveals a deviation from linear first order kinetics and possible transition to second and higher order kinetics in the later stages of the esterification reaction.
    [Show full text]
  • Modified Alkyd Resins As the Versatile Coating Materials Derived from Vegetable Oils
    Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2017, 9 (1):7-12 (http://scholarsresearchlibrary.com/archive.html) ISSN 097-0X CODEN (USA) AASRC9 Modified Alkyd Resins as the Versatile Coating Materials derived from Vegetable Oils A Hasnat* Natural Product and Polymer Research Laboratory, Department of Chemistry, G. F. College (Affili- ated to M J P Rohilkhand University) Shahjahanpur, U.P. India ABSTRACT Over the years efforts have been made to design eco-friendly specialty chemicals from natural renewable resources. Among different renewable resources vegetable oils obtained from various seeds spotted largely due to their unique properties, functionalities and worldwide abundant availability. In the present review article efforts have been made to highlight the inside of the alkyd resins; oldest polymeric resin derived from vegetable oils, with respect to time to time technological modifications to improve the practical utilities. In view to reduce the use of organic solvents, synthesis and application of different types of water-born alkyds were enlightened in detailed. Furthermore, utilization of nontraditional and nonconventional seed oils in the development of versatile resin also accounted which ultimately provides profitable utilization to them as well as reduces the cost of final products. Keywords: Vegetable oil, Renewable resource, Alkyd resin, Coating materials INTRODUCTION The consumer and industrial both interests in the progress of eco-friendly materials have catapulted the environmentally benign agricultural resources as feedstock for the production of valuable polymers. Over the years efforts have been made to design eco-friendly specialty chemicals from the spectrum of natural renewable resources [1-3].
    [Show full text]
  • Components and Types of Varnishes
    Components and types of Varnishes Varnish is traditionally a combination of a drying oil, a resin, and a thinner or solvent. However, different types of varnish have different components. After being applied, the film-forming substances in varnishes either harden directly, as soon as the solvent has fully evaporated, or harden after evaporation of the solvent through curing processes, primarily chemical reaction between oils and oxygen from the air (autoxidation) and chemical reactions between components of the varnish. Resin varnishes "dry" by evaporation of the solvent and harden almost immediately upon drying. Acrylic and waterborne varnishes "dry" upon evaporation of the water but will experience an extended curing period. Oil, polyurethane, and epoxy varnishes remain liquid even after evaporation of the solvent but quickly begin to cure, undergoing successive stages from liquid or syrupy, to tacky or sticky, to dry gummy, to "dry to the touch", to hard. Environmental factors such as heat and humidity play a very large role in the drying and curing times of varnishes. In classic varnish the cure rate depends on the type of oil used and, to some extent, on the ratio of oil to resin. The drying and curing time of all varnishes may be sped up by exposure to an energy source such as sunlight, ultraviolet light, or heat. Drying oil There are many different types of drying oils, including linseed oil, tung oil, and walnut oil. These contain high levels of polyunsaturated fatty acids. Drying oils cure through an exothermic reaction between the polyunsaturated portion of the oil and oxygen from the air.
    [Show full text]
  • Multianalytical Assessment of Armour Paints—The Ageing Characteristics of Historic Drying Oil Varnish Paints for Protection of Steel and Iron Surfaces in Sweden
    heritage Article Multianalytical Assessment of Armour Paints—The Ageing Characteristics of Historic Drying Oil Varnish Paints for Protection of Steel and Iron Surfaces in Sweden Arja Källbom 1,*, Austin Nevin 2 and Francesca C. Izzo 3 1 Department of Conservation, University of Gothenburg, 40530 Gothenburg, Sweden 2 Courtauld Institute of Art, Somerset House, London WC2R ORN, UK; [email protected] 3 Sciences and Technologies for the Conservation of Cultural Heritage, Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155/b, 30173 Venice, Italy; [email protected] * Correspondence: [email protected] Abstract: The characteristics of armour paints, historically used to protect ferrous industrial heritage, are explored. Amour paints contain lamellar and highly reflexive pigments of micaceous iron oxide (MIO) and metallic, leafing aluminium, bound in linseed oil and linseed oil–tung oil mixtures, on an inhibitive and soap-forming linseed oil primer (red lead). It is the first study of the binding media used for historical armour paints and investigates the chemical and physical ageing of armour paints using a multianalytical approach. Naturally aged examples are compared to accelerated aged replica armour paint, and to historical paints. The ageing and degradation reactions are assessed by complementary GC–MS and FTIR, together with measurements of wettability, hardness and surface colour. The historical paint formulations include linseed oils and alkyd binders. The results confirm Citation: Källbom, A.; Nevin, A.; Izzo, F.C. Multianalytical Assessment that the leafing effect of aluminium pigments results in only a small concentration of binder at the of Armour Paints—The Ageing surface: the paints studied reflect light and form a strong chemical and physical barrier.
    [Show full text]
  • COATINGS for ARCHITECTURAL METALS Durability + Design a Collection Coatings for Architectural Metals
    COATINGS FOR ARCHITECTURAL METALS Durability + Design A Collection Coatings for Architectural Metals A Durability + Design Collection Copyright 2012 Technology Publishing Company 2100 Wharton Street, Suite 310 Pittsburgh, PA 15203 All Rights Reserved This eBook may not be copied or redistributed without the written permission of the publisher. SPONSORED BY Contents ii ® FEVE RESIN Contents iv Introduction COATINGS FOR BUILDING ENVELOPE METALS 1 The Finish Line: Picking a Winning Chemistry for Architectural Aluminum by Tony Pupp, Linetec 6 Curtain Walls—Exterior Metals: A Premium on Performance by Allen Zielnik, Atlas Material Testing Technology LLC 10 Warning: Powder Coatings Zone by Walter R. Scarborough, Hall Building Information Group, LLC 15 Anodization Analyzed by Tammy Schroeder, Linetec 21 Getting More Mileage from the Metal Roof by Bob Brenk, Aldo Products Company, Inc. Ready for Prime Time: Low-VOC Fluoropolymer Coating Counted On to 25 Generate Buzz in California and Other Venues Where ‘Green’ Takes Top Billing by Joe Maty, D+D 28 Mega Makeover Delivers... More Than a Pretty Facade by Joe Maty, D+D Contents iii Contents COATINGS FOR STRUCTURAL STEEL 31 Proving Their Mettle by Jayson L. Helsel, KTA-Tator, Inc. New Possibilities for Polyurethanes: Waterbornes on Metal 34 by Margaret Kendi, Pete Schmitt, and Raymond Stewart, Bayer MaterialScience, LLC High Performance, Low VOCs: Formulating Advances Deliver Water- 39 borne Epoxies That Meet the Demands of the Day for Metal Coatings by Daniel J. Weinmann, Ph.D., Hexion Specialty Chemicals FIRE-RESISTIVE COATINGS FOR METAL Fire-Resistive Coatings for Metal—Fire Drill: The Basics on Coatings 43 that Protect by Jayson Helsel, KTA-Tator, Inc.
    [Show full text]
  • Alkyd Polyesters Creating Performance Through Chemistry
    ALKYD POLYESTERS CREATING PERFORMANCE THROUGH CHEMISTRY Measurable Building upon decades spent advancing materials Performance Benefit chemistry innovation, NatureWorks offers solutions based on lactides and lactide intermediates that help innovators within the coatings, adhesives, sealants, and elastomers (C.A.S.E.), toner and surfactant industries realize: Lactides Significant, measurable product performance benefits Optimized Faster R&D Supply Chain Polyols and Scale-Up Move through the R&D process more efficiently and with minimal risk Resins Decrease systems costs via an optimized supply chain We achieve this by coupling tunable Vercet™ lactide- based chemistries with the knowledge of scientists and engineers who understand how to dial in the full capabilities of this versatile product line. NatureWorks Performance Chemicals ALKYD POLYESTERS Using Vercet lactides as a component in your resins enables unique properties including a new way of creating low VOC Custom Solutions for Coatings solvent-borne coatings for substrates such as wood and metal. Coatings for Multiple Markets Performance Benefits Substrates • Wood • Furniture • Low viscosity alkyds for lower VOC’s • Metal • Flooring • Improved flexibility resistance - Anti-corrosion layers • Architecture • Excellent substrate adhesion - Primers • Decorative • Grain enhancement alkyd-based wood varnish • Pigmentable • Renewably-sourced building block 2 NATUREWORKS PERFORMANCE CHEMICALS 16,000 14,000 ) 12,000 .s a P m ( 10,000 C ° 3 2 8,000 @ y t i s 6,000 o sc i v 4,000 P A C 2,000 MEASURABLE0 PERFORMANCE Reference 7.5% Vercet 15% Vercet 25% Vercet Low VOC's from ReducedLactide CoatingLactide ViscosityLactide 16,000 14,000 ) 12,000 .s a P m ( 10,000 C ° 3 2 8,000 @ y t i 60% s 6,000 o Vercet Coating Incumbent Coating sc i 0% v 4,000 P A C ENHANCED GLOSS & GRAIN 2,000 0% 25% Vercet lactide (M700) coating shows 0 excellent gloss, enhanced wood grain, Reference1 7.5% Vercet 15% Vercet 25% Vercet Lactide Lactide Lactide and improved flexibility while having lower VOC's than incumbents.
    [Show full text]
  • Miscellaneous Paint Drying Oils and Paint Dryers
    . (• TECHNICAL INFORMATION ON BUILDING MATERIALS TIBM - 4p FOR USE IN THE DESIGN OF LOW-COST HOUSING ****** THE NATIONAL BUREAU OF STANDARDS UNITED STATES DEPARTMENT OF COMMERCE WASHINGTON, D. C. April 6 , 1037 MISCELLANEOUS PAINT DRYING OILS AND PAINT DRIERS This is chiefly a digest of sections of the following publications of the Bonean of Standards dealing with Lung oil, Perilla oil, Menhaden oil, Soy-bean oil, paint driers, and applicable Federal Specifications.^ Circular No. 69 , "Paint and Varnish", (November 1/, 1917)*^ Technologic Paper No. 66 , "Detection of Resin in Drier", (January lp, 1916),^ by E. N. Boughton. Technologic Paper No. 274, "Use of United States Government Specifi- cation Paints and Paint Materials", (December 15, 1924), by P. H« Walker and E. F. Hickson, Tung Oil or Chinese Wood Oil Source : Tung oil is imported from the Orient, where it is produced from nuts of certain trees of the genus Aleurites. Properties : This oil differs from linseed and other drying oils in that it dries to a white opaque, wax-like film. It has a very characteristic odor, Specifications adopted bj^ the Federal Specifications Executive Com- mittee and approved by the Director of Procurement, Treasury Department, for use of all departments and establishments of the Government. Copies of all Federal Specifications mentioned in -this digest may be obtained from Superintendent of Documents, Washington, D. C. (price 5 cents) 2 Out of print and no longer available by purchase, but may be consulted in Government depository libraries. 3 'Available from Superintendent of Documents, Washington, D. C (Price 5 cents) 4 Available from Superintendent of Documents, Washington, 3.
    [Show full text]
  • Pavement Marking Technical Manual
    Pavement Marking Technical Manual This publication was produced by the Direction de l’encadrement et de l’expertise en exploitation and the Direction des matériaux d’infrastructures and edited by the Direction des normes et des documents d’ingénierie of the Ministère des Transports du Québec. The content of this publication is available on the Ministère’s website at the following address: www.transports.gouv.qc.ca. Cette publication est également disponible en français sous le titre “Manuel technique sur le marquage routier”. For more information, you can: • call 511 (in Québec) or 1 888 355-0511 (throughout North America) • consult the website of the Ministère des Transports: www.transports.gouv.qc.ca • write to the following address: Direction des communications Ministère des Transports 500, boulevard René-Lévesque Ouest, bureau 4.010 Montréal (Québec) H2Z 1W7 © Gouvernement du Québec, November 2019 ISBN 978-2-550-87234-4 (PDF) (Original edition: ISBN 978-2-550-85437-1 [PDF]) Legal deposit – 2020 Bibliothèque et Archives nationales du Québec All rights reserved for all countries. Reproduction by any means, and the translation, even in part, of this document are prohibited without the authorization of Publications du Québec. Acknowledgments The preparation of this publication was coordinated by Mélanie Beaulieu, eng., and Frédéric Boily, M. Sc., chemist. We wish to sincerely thank the following persons for their contribution: Johanne Chamberland, infographic designer, Direction des normes et des documents d’ingénierie Michaël Côté, graphic designer , Direction des normes et des documents d’ingénierie Gaétan Leclerc, M. Sc., chemist, Direction des matériaux d’infrastructures Audrée Perreault, eng., Direction de l’encadrement et de l’expertise en exploitation We also wish to thank everyone who took part, directly or indirectly, in preparing this document.
    [Show full text]
  • Alkyd Synthesis & Applications
    Alkyd Synthesis & Applications Topics Introduction to Alkyds & Polymers Engineering Design Process Fluorinated Alkyd Coatings Encapsulation of Alkyds for Coatings Principles of Self Healing Polymers Self Healing Gelatin Laboratory What is an Alkyd & Why Should You Care About Them? ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ Wait! What is a Polymer? “You act like we should know what these are.” ❖ ❖ So… What Gives These Polymers Their Specific Characteristics ❖ ❖ Ok….. So, Now I Know What A Polymer Is How Do We Make Them? ❖ ❖ ❖ ❖ Types of Alkyd Synthesis Used Monoglyceride Process ➢ Two Stage Process: 1) Transesterification 2) Direct Esterification ➢ Temperatures between 230oC and 250oC heat Catalyst Glycerol Phthalic (excess) Monoglyceride Linseed Oil Anhydride Alkyd Resin R1 -Linoleic acid R2-Oleic Acid R3- Stearic Acid Fatty Acid Process ➢ One Step process that offers better control, but at a higher cost than the Monoglyceride process. ➢ In this Process the esterification of both aliphatic and aromatic groups occurs at the same time. heat Catalyst Glycerol Phthalic Alkyd Resin Anhydride Modifying Alkyds ➢ ➢ ➢ ➢ ➢ ➢ ➢ heat Fluorinated Alkyd Resin Fluorinated Alkyd Polyol Testing Properties Measures minimum tensile stress Tests impact resistance SEM shows stratification & where atoms are Graphite Pencil Test Tests a coatings hardness Test the adhesion strength ➢ ➢ ➢ Scanning Electron Microscope- Capsule ➢ Alkyd was encapsulated in silica shell. ➢ Not all silica formed capsules ➢ Each Capsule consists of about 53%/TEOS (tetraethyl orthosilicate) and 28% Silica Shell
    [Show full text]
  • The Prospering of Macromolecular Materials Based on Plant Oils Within the Blooming Field of Polymers from Renewable Resources †
    polymers Review The Prospering of Macromolecular Materials Based on Plant Oils within the Blooming Field of Polymers from Renewable Resources † Julio Antonio Conti Silva 1 , Luan Moreira Grilo 1 , Alessandro Gandini 2 and Talita Martins Lacerda 1,* 1 Biotechnology Department, Lorena School of Engineering, University of São Paulo, CEP 12602-810 Lorena, SP, Brazil; [email protected] (J.A.C.S.); [email protected] (L.M.G.) 2 Graduate School of Engineering in Paper, Print Media and Biomaterials (Grenoble INP-Pagora), University Grenoble Alpes, LGP2, CEDEX 9, 38402 Saint Martin d’Hères, France; [email protected] * Correspondence: [email protected]; Tel.: +55-1231595043 † This paper is an extended version of paper published in The First International Conference on “Green” Polymer Materials 2020, 5–25 November 2020. Abstract: This paper provides an overview of the recent progress in research and development dealing with polymers derived from plant oils. It highlights the widening interest in novel approaches to the synthesis, characterization, and properties of these materials from renewable resources and emphasizes their growing impact on sustainable macromolecular science and technology. The monomers used include unmodified triglycerides, their fatty acids or the corresponding esters, and chemically modified triglycerides and fatty acid esters. Comonomers include styrene, divinylbenzene, acrylics, furan derivatives, epoxides, etc. The synthetic pathways adopted for the preparation of these materials are very varied, going from traditional free radical and cationic polymerizations to Citation: Silva, J.A.C.; Grilo, L.M.; polycondensation reactions, as well as metatheses and Diels–Alder syntheses. In addition to this Gandini, A.; Lacerda, T.M. The general appraisal, the specific topic of the use of tung oil as a source of original polymers, copolymers, Prospering of Macromolecular and (nano)composites is discussed in greater detail in terms of mechanisms, structures, properties, Materials Based on Plant Oils within and possible applications.
    [Show full text]