Energy Flow and the Nutrient Cycling in an Ecosystem an Ecosystem Comprises Biotic and Abiotic Components Which Interact Extensively with Each Other

Total Page:16

File Type:pdf, Size:1020Kb

Energy Flow and the Nutrient Cycling in an Ecosystem an Ecosystem Comprises Biotic and Abiotic Components Which Interact Extensively with Each Other Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Variety of Life and Relation of Organisms with their Environment ...... Page 54 Energy flow and the nutrient cycling in an ecosystem An ecosystem comprises biotic and abiotic components which interact extensively with each other. Based on their ecological roles, the biotic components of an ecosystem can be classified as : Producer : they are the green plants which absorb solar energy to synthesize complex organic compounds from simple inorganic substances by photosynthesis, they act as the ultimate food source to all the heterotrophs : other producers are green algae and blue green algae, they are mainly found in aquatic habitat, such as freshwater and marine water, they are the most important producers in earth (as 70% of the earth surface is covered with water). Consumer : they are heterotrophs which ingest other organisms or organic particles, they are mainly animals a) primary consumer : they are the herbivores which feed on plants e.g. pond snail, insect larva and zooplanktons b) secondary consumer : they are the carnivores which feed on primary consumers e.g. water beetles, tigers, etc. c) tertiary consumer : they are large carnivores which feed on the secondary and primary consumers as well as producers, e.g. man d) detritus consumer : they are detritivores (detritus feeder / scavengers) which feed on detritus that refer to the particulate organic matter involved in the decomposition of dead organisms, e.g. earthworm and crab etc. Decomposer : they are mainly bacteria, fungi and some flagellates : by means of their saprophytic activities, they decompose the eliminated products of animals and the dead bodies of the organisms into simple compounds : these compounds are absorbed as nutrients by the green plants again : they enable the nutrients to be used continuously in a cyclic form in the ecosystem : they are most abundant in the soil or water bottom where the dead bodies of plant and animals accumulate : when the temperature conditions are favourable, decomposition occurs rapidly Energy and essential materials are therefore transferred from producers to consumers through the feeding processes. Eventually, decomposers break down the organic matter and release inorganic materials back to the environment. These inorganic materiasl are used by the producers as nutrients again. Food chain : the transfer of food energy from producers through a series of organisms with repeated eating and being eaten Primary secondary Tertiary Ecosystem Producer consumer consumer consumer freshwater pond green algae → protozoa → mosquito larva → fish rocky pond sea weeds → molluscs → starfish → sea birds Grassland grass → grasshopper → lizard → snake Woodland green plants → caterpillars → sparrow → hawk Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Variety of Life and Relation of Organisms with their Environment ...... Page 55 Food web : in general, the food chains in an ecosystem are not isolated, but are interconnected with one another, i.e. an herbivore may feed on several species of plants, and/ or be consumed by many consumers and so on, such a number of interconnected food chains is known as food web Trophic level : organisms in a food chain occupy different trophic levels, which indicate their place in the energy flow through the community : organisms whose food is obtained from plants by the same number of steps in the food chain belong to the same trophic level producers - first trophic level primary consumers - second trophic level secondary consumers - third trophic level tertiary consumers - fourth trophic level BS I 3rd ed. p300 fig 10.2 Fig. 35 A simple schematic comparison of terrestrial and aquatic ecosystems Energy flow in the ecosystem I. Productivity : Refers to the amount of energy or living materials fixed in a population, or a trophic level, or an entire ecosystem in a given time a) gross primary productivity : rate of dry matter production by photosynthesis in an ecosystem, it does not represent the actual amount of food potentially available to heterotrophs because some of the organic matters are used to meet plant respiration and metabolism Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Variety of Life and Relation of Organisms with their Environment ...... Page 56 b) net primary productivity : it is the biomass which is incorporated into a plant community during a specific time intervals, minus the part respired c) secondary productivity : it is the rate of incorporation of biomass at the consumer levels during a specific time interval [Note] Production is the difference in biomass within a certain time interval. II. Energy flow : • as solar radiation passes through the biosphere, large parts are used to perform other functions, only small parts can be used in photosynthesis Energy Dissipation Percent / % Reflected 30 Direct conversion to heat 46 Evaporation, precipitation (drives hydrological 23 cycle) Wind, waves and currents 0.2 Photosynthesis 0.8 Total 100 BSI 3rd ed. p302 fig10.4 Fig. 36 Flow of energy and cycling of materials through a typical food chain. • the energy supplies for the grass, only a small part is used in the synthesis of organic materials, much are lost • part of the primary productivity is used in the respiration of the producers, of the net primary productivity, a portion is eaten by the primary consumers, the rest remains unused and is passed as dead plant materials • of the food eaten by the primary consumers, some is assimilated and incorporated into the body tissue while others are unabsorbed and are discarded in the form of faeces and other wastes • the same loss of energy occurs when the energy is transferred from the primary consumers to the secondary consumers III. Ecological pyramids : The feeding relationships between organisms at different trophic level within a community can be represented by ecological pyramids. The producers (green plants) form the base of the pyramids can be structured according to numbers of organisms, total biomass, or total energy flow at each trophic level. Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Variety of Life and Relation of Organisms with their Environment ...... Page 57 a) Pyramid of numbers : the progressive loss of energy at each trophic level of a food chain puts a natural decrease on the total weight and total number of living organisms that exist at each successive level in the chain : the number of organisms in each trophic level is usually smaller than that of the one they are feeding on thus can be expressed in the form of a pyramid, called the pyramid of numbers : for diagrammatic purposes the number of organisms in a given trophic level can be represented as a rectangle whose length is proportional to the number of organisms in a given area 4 th trophic level 3 rd trophic level 2 nd trophic level 1 st trophic level Examples : Normal A tree is the A tree which is Grasses are pyramid producer, on infested with eaten by a cow which worms parasites and which is are the lived, the latter are infested with that are eaten parasitized by parasites. by birds. further parasites. b) Pyramid of biomass : the graphical representation of the trophic structure for a community of organisms in terms of the biomass [Note] Biomass is defined as the total dry weight of the total amount of living materials presented at a trophic level Fig. 37 Changes in standing crop biomass of producers and primary consumers and in certain environmental variables in a lake during one year. BSI 3rd ed. p307 fig 10.8 Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Variety of Life and Relation of Organisms with their Environment ...... Page 58 : two forms of pyramids of biomass can be constructed, the upright pyramid and inverted pyramid : if the producers support herbivores, and herbivores support carnivores then upright pyramid of biomass is the one we might expect : however an inverted pyramids of biomass is found in open water and deep water ecosystem where the producers are small and short-lived, the phytoplanktons (producers) with smaller biomass can support the zooplanktons (primary consumers) with larger biomass because of their much rapid rate reproduction (high turnover rate) [Note] The data are collected only over a limited duration, thus the pyramids of biomass only indicates the amount of material presents over a very short period of time, and gives no indication of the total amount of material produced or the rate at which that material is being produced c) Pyramid of energy : at each transfer of energy from one trophic level to the next higher, there is always a loss of energy from the system : energy transformation is never 100% efficient and the living organisms in each trophic level required certain amount of energy for maintaining basal metabolic rate, for growth and reproduction and movement : it overcomes the difficulty encountered in pyramids of number and biomass, i.e. inverted pyramid never occurred here : it shows the total amount of energy utilized by the organisms in different trophic level in a square metre, over a given period of time, i.e. it shows the amount of new tissues of organisms produced in a unit time (productivity) : it permits comparison of trophic structure of different ecosystem e.g. a desert and a tree forest Exercise : (90 I 7b) Distinguish between production and biomass. [2 marks] (98 I 11) Why is the pyramid of energy always upright whereas the pyramid of biomass can sometimes be inverted ? [4 marks] IV Biogeochemical cycles : The fundamental difference between the flow of energy and the flow of materials in an ecosystem is that the latter can flow through the ecosystem and be recycled again to be available to producers, e.g.
Recommended publications
  • Effects of Interactions Between the Green and Brown Food Webs on Ecosystem Functioning Kejun Zou
    Effects of interactions between the green and brown food webs on ecosystem functioning Kejun Zou To cite this version: Kejun Zou. Effects of interactions between the green and brown food webs on ecosystem functioning. Ecosystems. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066266. tel-01445570 HAL Id: tel-01445570 https://tel.archives-ouvertes.fr/tel-01445570 Submitted on 1 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Ecole doctorale : 227 Science de la Nature et de l’Homme Laboratoire : Institut d’Ecologie et des Sciences de l’Environnement de Paris Effects of interactions between the green and brown food webs on ecosystem functioning Effets des interactions entre les réseaux vert et brun sur le fonctionnement des ecosystèmes Par Kejun ZOU Thèse de doctorat d’Ecologie Dirigée par Dr. Sébastien BAROT et Dr. Elisa THEBAULT Présentée et soutenue publiquement le 26 septembre 2016 Devant un jury composé de : M. Sebastian Diehl Rapporteur M. José Montoya Rapporteur Mme. Emmanuelle Porcher Examinatrice M. Eric Edeline Examinateur M. Simon Bousocq Examinateur M. Sébastien Barot Directeur de thèse Mme. Elisa Thébault Directrice de thèse 2 Acknowledgements At the end of my thesis I would like to thank all those people who made this thesis possible and an unforgettable experience for me.
    [Show full text]
  • Terrestrial Decomposition
    Terrestrial Decomposition • Objectives – Controls over decomposition • Litter breakdown • Soil organic matter formation and dynamics – Carbon balance of ecosystems • Soil carbon storage 1 Overview • In terrestrial ecosystems, soils (organic horizon + mineral soil) > C than in vegetation and atmosphere combined 2 Overview • Decomposition is: 1. Major pathway for C loss from ecosystems 2. Central to ecosystem C loss and storage 3 Overview 4 Incorporation 1 year later Overview • Predominant controls on litter decomposition are fairly well constrained 1. Temperature and moisture 2. Litter quality • N availability • Lignin concentration • Lignin:N • Mechanisms for soil organic matter stabilization: 1. Recalcitrance (refers to chemistry) 2. Physical protection • Within soil aggregates • Organo-mineral associations 3. Substrate supply regulation (energetic limitation) 5 Overview • Disturbance can override millenia in a matter of days or years: 1. Land use change 2. Invasive species 3. Climate change • Understanding the mechanistic drivers of decomposition, soil organic matter formation, and carbon stabilization help us make management decisions, take mitigation steps, and protect resources. 6 Overview Native Ōhiʻa - Koa forest Conversion to Reforestation in grass-dominated pasture (80 yr) Eucalyptus plantation (10 yr) Conventional sugar cane harvest. 20° C 18° C 16° C 14° C 7 Sustainable ratoon harvest. Decomposition • Decomposition is the biological, physical and chemical breakdown of organic material – Provides energy for microbial growth
    [Show full text]
  • Trophic Levels
    Trophic Levels Douglas Wilkin, Ph.D. Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHORS Douglas Wilkin, Ph.D. To access a customizable version of this book, as well as other Jean Brainard, Ph.D. interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®. Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • Food Chains in Woodland Habitats. All Animals Need to Eat Food to Survive
    Science Lesson Living Things and their Habitats- Food chains in woodland habitats. Key Learning • A food chain shows the links between different living things and where they get their energy from. • Living things can be classified as producers or consumers according to their place in the food chain. • A predator is an animal that feeds on other animals (its prey). • Animals can be described as carnivores, herbivores or omnivores. All animals need to eat food to survive. • Talk about what you already know about the kind of food different animals eat. • What is the name of an animal that only eats plants? • What is the name of an animal that only eats other animals? • What is the name of an animal that eats both plants and other animals? Watch this clip about birds. What kind of food do they eat? https://www.bbc.co.uk/bitesize/clips/z9nhfg8 Animals can be described as herbivores, carnivores or omnivores. Birds like robins, blue tits and house sparrows have a very varied diet! worms spiders slugs flies mealworms berries Robins, blue tits and house sparrows are omnivores because they eat plants and other animals. Describing a food chain. Watch this clip describing a food chain. https://www.bbc.co.uk/bitesize/clips/zjshfg8 Caterpillar cat magpie Think about these questions as you watch • Where does a food chain start? • Which animals are herbivores? • Which animals are carnivores? A food chain starts with energy from the Sun because plants need the Sun’s light energy to make their own food in their leaves. Plants are eaten by animals.
    [Show full text]
  • Ecology (Pyramids, Biomagnification, & Succession
    ENERGY PYRAMIDS & Freshmen Biology FOOD CHAINS/FOOD WEBS May 4 – May 8 Lecture ENERGY FLOW •Energy → powers life’s processes •Energy = ATP! •Flow of energy determines the system’s ability to sustain life FEEDING RELATIONSHIPS • Energy flows through an ecosystem in one direction • Sun → autotrophs (producers) → heterotrophs (consumers) FOOD CHAIN VS. FOOD WEB FOOD CHAINS • Energy stored by producers → passed through an ecosystem by a food chain • Food chain = series of steps in which organisms transfer energy by eating and being eaten FOOD WEBS •Feeding relationships are more complex than can be shown in a food chain •Food Web = network of complex interactions •Food webs link all the food chains in an ecosystem together ECOLOGICAL PYRAMIDS • Used to show the relationships in Ecosystems • There are different types: • Energy Pyramid • Biomass Pyramid • Pyramid of numbers ENERGY PYRAMID • Only part of the energy that is stored in one trophic level can be passed on to the next level • Much of the energy that is consumed is used for the basic functions of life (breathing, moving, reproducing) • Only 10% is used to produce more biomass (10 % moves on) • This is what can be obtained from the next trophic level • All of the other energy is lost 10% RULE • Only 10% of energy (from organisms) at one trophic level → the next level • EX: only 10% of energy/calories from grasses is available to cows • WHY? • Energy used for bodily processes (growth/development and repair) • Energy given off as heat • Energy used for daily functioning/movement • Only 10% of energy you take in should be going to your actual biomass/weight which another organism could eat BIOMASS PYRAMID • Total amount of living tissue within a given trophic level = biomass • Represents the amount of potential food available for each trophic level in an ecosystem PYRAMID OF NUMBERS •Based on the number of individuals at each trophic level.
    [Show full text]
  • Plant Species Effects on Nutrient Cycling: Revisiting Litter Feedbacks
    Review Plant species effects on nutrient cycling: revisiting litter feedbacks Sarah E. Hobbie Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA In a review published over two decades ago I asserted reinforce those gradients and patterns of NPP, focusing that, along soil fertility gradients, plant traits change in on feedbacks operating through plant litter decomposition. ways that reinforce patterns of soil fertility and net Specifically, I evaluate two key assumptions underlying primary productivity (NPP). I reevaluate this assertion the plant litter feedback idea: (i) plant litter traits vary in light of recent research, focusing on feedbacks to NPP predictably along fertility gradients, and (ii) such variation operating through litter decomposition. I conclude that reinforces soil fertility gradients through effects on decom- mechanisms emerging since my previous review might position and litter N release. Given the number of synthetic weaken these positive feedbacks, such as negative cross-site analyses of plant traits and their consequences effects of nitrogen on decomposition, while others for nutrient cycling over the past two decades, the time is might strengthen them, such as slower decomposition ripe for revisiting my original assertions. Indeed, I show of roots compared to leaf litter. I further conclude that that my original assertion is more nuanced and complex predictive understanding of plant species effects on than originally claimed. In particular, I discuss the need to nutrient cycling will require developing new frameworks consider leaf litter decomposition more carefully and move that are broadened beyond litter decomposition to con- beyond consideration of leaf litter feedbacks to a more sider the full litter–soil organic matter (SOM) continuum.
    [Show full text]
  • Plants Are Producers! Draw the Different Producers Below
    Name: ______________________________ The Unique Producer Every food chain begins with a producer. Plants are producers. They make their own food, which creates energy for them to grow, reproduce and survive. Being able to make their own food makes them unique; they are the only living things on Earth that can make their own source of food energy. Of course, they require sun, water and air to thrive. Given these three essential ingredients, you will have a healthy plant to begin the food chain. All plants are producers! Draw the different producers below. Apple Tree Rose Bushes Watermelon Grasses Plant Blueberry Flower Fern Daisy Bush List the three essential needs that every producer must have in order to live. © 2009 by Heather Motley Name: ______________________________ Producers can make their own food and energy, but consumers are different. Living things that have to hunt, gather and eat their food are called consumers. Consumers have to eat to gain energy or they will die. There are four types of consumers: omnivores, carnivores, herbivores and decomposers. Herbivores are living things that only eat plants to get the food and energy they need. Animals like whales, elephants, cows, pigs, rabbits, and horses are herbivores. Carnivores are living things that only eat meat. Animals like owls, tigers, sharks and cougars are carnivores. You would not catch a plant in these animals’ mouths. Then, we have the omnivores. Omnivores will eat both plants and animals to get energy. Whichever food source is abundant or available is what they will eat. Animals like the brown bear, dogs, turtles, raccoons and even some people are omnivores.
    [Show full text]
  • Organic Matter Decomposition in Simulated Aquaculture Ponds Group Fish Culture and Fisheries Daily Supervisor(S) Dr
    O rganic matter decomposition in simulated aquaculture ponds Beatriz Torres Beristain Promotor: Prof. Dr. J.A .J. V erreth H oogleraar in de V isteelt en V isserij W ageningen U niversiteit C o-promotor: Dr. M .C .J. V erdegem U niversitair docent bij the Leerstoelgroep V isteelt en V isserij W ageningen U niversiteit Samenstelling promotiecommissie: Prof. Dr. Y . A vnimelech Technion, Israel Institute of Technology Prof. Dr. Ir. H .J. Gijzen U N ESC O -IH E, Delf, N etherlands Prof. Dr. Ir. M . W .A . V erstegen W ageningen U niversiteit Prof. Dr. Ir. A .A . K oelmans W ageningen U niversiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool W IA S O rganic matter decomposition in simulated aquaculture ponds Beatriz Torres Beristain Proefschrift Ter verkrijging van de graad van doctor O p gezag van de rector magnificus van W ageningen U niversiteit, Prof. Dr. Ir. L. Speelman, In het openbaar te verdedigen O p dinsdag 15 A pril 2005 des namiddags te half tw ee in de A ula Torres Beristain, B. O rganic matter decomposition in simulated aquaculture ponds PhD thesis, Fish C ulture and Fisheries Group, W ageningen Institute of A nimal Sciences. W ageningen U niversity, P.O . Box 338, 6700 A H W ageningen, The N etherlands. - W ith R ef. œW ith summary in Spanish, Dutch and English ISBN : 90-8504-170-8 A Domingo, Y olanda y A lejandro Table of contents C hapter 1 General introduction. 1 C hapter 2 R eview microbial ecology and role in aquaculture ponds.
    [Show full text]
  • Detrital Food Chain As a Possible Mechanism to Support the Trophic Structure of the Planktonic Community in the Photic Zone of a Tropical Reservoir
    Limnetica, 39(1): 511-524 (2020). DOI: 10.23818/limn.39.33 © Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Detrital food chain as a possible mechanism to support the trophic structure of the planktonic community in the photic zone of a tropical reservoir Edison Andrés Parra-García1,*, Nicole Rivera-Parra2, Antonio Picazo3 and Antonio Camacho3 1 Grupo de Investigación en Limnología Básica y Experimental y Biología y Taxonomía Marina, Instituto de Biología, Universidad de Antioquia. 050010 Medellín, Colombia. 2 Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Física, Universidad de Antioquia. 050010 Medellín, Colombia. 3 Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. E–46980 Paterna, Valencia. España. * Corresponding author: [email protected] Received: 31/10/18 Accepted: 10/10/19 ABSTRACT Detrital food chain as a possible mechanism to support the trophic structure of the planktonic community in the photic zone of a tropical reservoir In the photic zone of aquatic ecosystems, where different communities coexist showing different strategies to access one or different resources, the biomass spectra can describe the food transfers and their efficiencies. The purpose of this work is to describe the biomass spectrum and the transfer efficiency, from the primary producers to the top predators of the trophic network, in the photic zone of the Riogrande II reservoir. Data used in the model of the biomass spectrum were taken from several studies carried out between 2010 and 2013 in the reservoir. The analysis of the slope of a biomass spectrum, of the transfer efficiencies, and the omnivory indexes, suggest that most primary production in the photic zone of the Riogrande II reservoir is not directly used by primary consumers, and it appears that detritic mass flows are an indirect way of channeling this production towards zooplankton.
    [Show full text]
  • Fermentation and Anaerobic Decomposition in a Hot Spring
    Fermentation and anaerobic decomposition in a hot spring microbial mat by Karen Leigh Anderson A thesis submitted in partial fulfillment of requirements for the degree of Master of Science in Microbiology Montana State University © Copyright by Karen Leigh Anderson (1984) Abstract: Fermentation was investigated in a low sulfate hot spring microbial mat (Octopus Spring) according to current models on anaerobic decomposition. The mat was studied to determine what fermentation products accumulated, where in the mat they accumulated, and what factors affected their accumulation. Mat samples were incubated under dark anaerobic conditions to measure accumulation of fermentation products. Acetate and propionate (ca. 3:1) were the major products to accumulate in a 55&deg,C mat. Other products accumulated to a much lesser extent. Incubation of mat samples of varying thickness showed that fermentation occurred in the top 4mm of the mat. This has interesting implications for fermentative organisms in the mat due to the diurnal changes in mat oxygen concentrations. Fermentation measured in mat samples collected at various temperatures (50&deg,-70°C) showed acetate and propionate to be the major accumulation products. According to the interspecies hydrogen transfer model, the hydrogen concentration in a system affects the types of fermentation products produced. At a 65° C site, with natural high hydrogen levels, and at a 55°C site, with active methanogenesis, fermentation product accumulation was compared. There was a greater ratio of reduced fermentation products to acetate, with the exception of propionate, at 65°C. Ethanol accumulated at the 65°C site, as did lactate, though to a lesser extent.
    [Show full text]
  • Decomposition Responses to Climate Depend on Microbial Community Composition
    Decomposition responses to climate depend on microbial community composition Sydney I. Glassmana,b,1, Claudia Weihea, Junhui Lic, Michaeline B. N. Albrighta,d, Caitlin I. Loobya,e, Adam C. Martinya,c, Kathleen K. Tresedera, Steven D. Allisona, and Jennifer B. H. Martinya aDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697; bDepartment of Microbiology and Plant Pathology, University of California, Riverside, CA 92521; cDepartment of Earth System Science, University of California, Irvine, CA 92697; dBioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and eDepartment of Biological Sciences, University of Denver, CO 80210 Edited by Mary K. Firestone, University of California, Berkeley, CA, and approved October 10, 2018 (received for review June 29, 2018) Bacteria and fungi drive decomposition, a fundamental process in soil moisture and extracellular enzyme production across a natural the carbon cycle, yet the importance of microbial community climate gradient (16). composition for decomposition remains elusive. Here, we used an Given that the factors regulating decomposition are often 18-month reciprocal transplant experiment along a climate gradient context dependent and can vary in their influence across a range in Southern California to disentangle the effects of the microbial of spatial and temporal scales (17, 18), we hypothesized that community versus the environment on decomposition. Specifically, decomposition responses to changing climatic conditions would we tested whether the decomposition response to climate change depend on microbial community composition. To test this hy- depends on the microbial community. We inoculated microbial pothesis, we conducted the largest microbial community trans- decomposers from each site onto a common, irradiated leaf litter plant experiment to date.
    [Show full text]
  • Organic Matter Decomposition and Ecosystem Metabolism As Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review
    water Review Organic Matter Decomposition and Ecosystem Metabolism as Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review Verónica Ferreira 1,* , Arturo Elosegi 2 , Scott D. Tiegs 3 , Daniel von Schiller 4 and Roger Young 5 1 Marine and Environmental Sciences Centre–MARE, Department of Life Sciences, University of Coimbra, 3000–456 Coimbra, Portugal 2 Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; [email protected] 3 Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; [email protected] 4 Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de l’Aigua (IdRA), University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; [email protected] 5 Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; [email protected] * Correspondence: [email protected] Received: 4 November 2020; Accepted: 8 December 2020; Published: 15 December 2020 Abstract: Streams and rivers provide important services to humans, and therefore, their ecological integrity should be a societal goal. Although ecological integrity encompasses structural and functional integrity, stream bioassessment rarely considers ecosystem functioning. Organic matter decomposition and ecosystem metabolism are prime candidate indicators of stream functional integrity, and here we review each of these functions, the methods used for their determination, and their strengths and limitations for bioassessment. We also provide a systematic review of studies that have addressed organic matter decomposition (88 studies) and ecosystem metabolism (50 studies) for stream bioassessment since the year 2000. Most studies were conducted in temperate regions. Bioassessment based on organic matter decomposition mostly used leaf litter in coarse-mesh bags, but fine-mesh bags were also common, and cotton strips and wood were frequent in New Zealand.
    [Show full text]