Kern-Chromalveolata

Total Page:16

File Type:pdf, Size:1020Kb

Kern-Chromalveolata Kern-Chromalveolata Alveolata Ciliophora Apicomplexa Chromerida Dinophyta Stramenopiles Bigyra Klade I & II Ochrophyta Klade III Pseudofungi © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Alveolata Ciliophora Apicomplexa Chromerida Dinophyta Stramenopiles Bigyra Klade I & II Ochrophyta Klade III Pseudofungi © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Alveolata Ciliophora Apicomplexa Chromerida Dinophyta Stramenopiles Bigyra Klade I & II Ochrophyta Klade III Pseudofungi © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Alveolata Ciliophora Apicomplexa Chromerida Dinophyta Stramenopiles Bigyra Klade I & II Ochrophyta Klade III Pseudofungi © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Alveolata Ciliophora Apicomplexa Chromerida Dinophyta Stramenopiles Bigyra Klade I & II Ochrophyta Klade III Pseudofungi © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Alveolata © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Alveolata Ciliophora © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © Gerd Günther; Kern-Chromalveolata Alveolata Ciliophora Dinophyta © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © Gerd Günther; © Wolfgang Bettighofer Kern-Chromalveolata Alveolata Ciliophora Apicomplexa Dinophyta © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © Gerd Günther; © Jenkayaks, Wikimedia Commons, GFDL&CC-BY-SA-3.0; © Wolfgang Bettighofer Kern-Chromalveolata Alveolata Ciliophora Apicomplexa Chromerida Dinophyta © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © Gerd Günther; © Jenkayaks, Wikimedia Commons, GFDL&CC-BY-SA-3.0; 2 Bilder: abgedruckt aus: International Review of Cell and Molecular Biology, Volume 306, Oborník M and Lukeš J, Chapter Eight- Cell biology of chromerids, the autotrophic relatives to apicomplexan parasites, International Review of Cell and Molecular Biology, Pages 333–369, 2013, Nachgedruckt mit freundlicher Genehmigung von Elsevier.; © Wolfgang Bettighofer Kern-Chromalveolata Alveolata: Ciliophora © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: Kern-Chromalveolata Alveolata: Ciliophora Mikronukleus Makronukleus © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos: © Bettina Sonntag; Kern-Chromalveolata Alveolata: Ciliophora Mikronukleus Makronukleus Cilien Alveoli Trichocysten © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos: © Bettina Sonntag; Kern-Chromalveolata Alveolata: Ciliophora kontraktile Vakuole Mikronukleus Makronukleus Cilien Alveoli Trichocysten © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos: © Bettina Sonntag; Kern-Chromalveolata Alveolata: Ciliophora kontraktile Vakuole Mikronukleus Makronukleus Cilien Alveoli Trichocysten © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos: © Bettina Sonntag; Kern-Chromalveolata Celluloseplatten Alveolata: Dinophyta Plastid Thylakoide Epitheka Mitochondrium } Cingulum Pyrenoid Golgi-Apparat Hypotheka Dinokaryon } Alveoli mit Celluloseplatten Sulcus © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © Wolfgang Bettighofer; 3 Bilder: © Mona Hoppenrath; © Kenneth Mertens; Biolumineszenz © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © William W. Ward, Rutgers University; © Ylem, Wikimedia Commons, public domain; © Gerd Günther; © Heiko Wagner; © William W. Ward, Rutgers University; © Shane Anderson, NOAA, public domain Kern-Chromalveolata apikale polare Ringe Alveolata: Apicomplexa Conoid Mikronemen Rhoptrien Mikrotubuli Apicoplast Mitochondrium © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © Dolores Hill and J.P. Dubey; © Jenkayaks, Wikimedia Commons, GFDL&CC-BY-SA-3.0 Kompartimentierung schafft verschiedene Reaktionsräume © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kompartimentierung schafft verschiedene Reaktionsräume Cytosol: pH ~ 7,2 © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kompartimentierung schafft verschiedene Reaktionsräume Cytosol: pH ~ 7,2 Mitochondrieller Inter- membranraum: pH ~ 7,0 © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kompartimentierung schafft verschiedene Reaktionsräume Cytosol: pH ~ 7,2 Mitochondrieller Inter- membranraum: pH ~ 7,0 Mitochondrielle Matrix: pH ~ 8,0 © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Stramenopiles Bigyra H E Opalinata T Labyrinthulomycetes E R Bicosoecida O T Pseudofungi R O Hyphochytridiomycetes P Peronosporomycetes H © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Stramenopiles Bigyra H E Opalinata T Labyrinthulomycetes E R Bicosoecida O T Pseudofungi R O Hyphochytridiomycetes P Peronosporomycetes H Ochrophyta Raphidophyceae Phaeothamniophycea Phaeophyceae Xanthophyceae P H O Pinguiophyceae T O Chrysophyceae T Synchromophyceae R O Eustigmatales P H Dictyochophyceae Pelagophyceae Bacillariophyceae © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Osmose © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Stramenopiles: Peronosporomycetes © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © Jody Fetzer, New York Botanical Garden, Wikimedia Commons, CC-BY-SA-3.0; © USDA ARS, public domain; © Gerald Bassleer Kern-Chromalveolata Stramenopiles: Peronosporomycetes © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Stramenopiles: Peronosporomycetes Sexuelle Fortpflanzung: Gametangiogamie © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Stramenopiles: Peronosporomycetes Asexuelle Fortpflanzung: Sporangium kann als Konidium verbreitet werden Bildung von Flagellaten nach multipler Kernteilung Sexuelle Fortpflanzung: Gametangiogamie © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Kern-Chromalveolata Stramenopiles: Peronosporomycetes Asexuelle Fortpflanzung: Sporangium kann als Konidium verbreitet werden Bildung von Flagellaten nach Schwärmer -> Cysten multipler Kernteilung Sexuelle Fortpflanzung: Gametangiogamie © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg Kern-Chromalveolata Stramenopiles: Phaeophyceae Gewebeausschnitt (Fucus vesiculosus) Aerocysten eines Blasentanges Rhizoide © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © M. Neugebauer; © M.Neugebauer; © M. Jensen; © Barolloco, Wikimedia Commons, CC-BY-SA 3.0; © J. Weiß, Mikroskopisches Kollegium Bonn, www.mikroskopie-bonn.de; © Manfred Jensen; © H. Fahrenbruch; © R. Tan, www.wildsingapore.com; © Barolloco, Wikimedia Commons, CC-BY- SA-3.0; © H. Hillewaert, Wikimedia Commons, CC-BY-SA-3.0; © M. Jo, Wikimedia ommons, CC-BY-3.0; © J. Baecker, Wikimedia Commons, public domain; © W. Barthlott, www.lotus-salvinia.de Kern-Chromalveolata Stramenopiles: Chrysophyceae Golgi-Apparat Mitochondrium Flagellaten (TEM) Plastid Thylakoide Chloroplasten- endoplasmatisches Retikulum Schuppen Cyste (CER) © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © Lars Großmann; © Lars Großmann; © Jens Boenigk; © Jens Boenigk; Kern-Chromalveolata Stramenopiles: Bacillariophyceae Diatomeenschalen im pennate Diatomee centrale Diatomee Putzkörpers von Zahnpasta (Pinnularia viridis) (Thalassiosira punctigera) Epitheka Raphe Diatomeenschalen: reflektier- ende Straßenmarkierungen Hypotheka Verkleinerung der Schalen bei der asexuellen Fortpflanzung © Jens Boenigk, aus Boenigk J, Wodniok S (2014) Biodiversität und Erdgeschichte. Springer, Berlin Heidelberg. Fotos von r. n. l. und o. n. u.: © Alexandra H./pixelio.de; 3 Bilder: © Wolfgang Bettighofer; © Lars Kunze/pixelio.de; © Thomas Graser, Wikimedia Commons, public domain; .
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Identification of a Novel Fused Gene Family Implicates Convergent
    Chen et al. BMC Genomics (2018) 19:306 https://doi.org/10.1186/s12864-018-4685-y RESEARCH ARTICLE Open Access Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling Fei Chen1,2,3, Liangsheng Zhang1, Zhenguo Lin4 and Zong-Ming Max Cheng2,3* Abstract Background: Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results: Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK,comprisesSnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions: This report identified a novel gene fusion and dated its precise fusion time
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Essential Function of the Alveolin Network in the Subpellicular
    RESEARCH ARTICLE Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii Nicolo` Tosetti1, Nicolas Dos Santos Pacheco1, Eloı¨se Bertiaux2, Bohumil Maco1, Lore` ne Bournonville2, Virginie Hamel2, Paul Guichard2, Dominique Soldati-Favre1* 1Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; 2Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland Abstract The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule- organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid. Introduction *For correspondence: Toxoplasma gondii belongs to the phylum of Apicomplexa that groups numerous parasitic protozo- Dominique.Soldati-Favre@unige. ans causing severe diseases in humans and animals. As part of the superphylum of Alveolata, the ch Apicomplexa are characterized by the presence of the alveoli, which consist in small flattened single- membrane sacs, underlying the plasma membrane (PM) to form the inner membrane complex (IMC) Competing interest: See of the parasite.
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • (1 → 4)-Β-D-Glucan Is a Component of Cell Walls in Brown Algae
    Insoluble (13), (14)--D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues Asunción Salmeán, Armando; Duffieux, Delphine; Harholt, Jesper; Qin, Fen; Michel, Gurvan; Czjzek, Mirjam; Willats, William George Tycho; Hervé, Cécile Published in: Scientific Reports DOI: 10.1038/s41598-017-03081-5 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Asunción Salmeán, A., Duffieux, D., Harholt, J., Qin, F., Michel, G., Czjzek, M., Willats, W. G. T., & Hervé, C. (2017). Insoluble (13), (14)--D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues. Scientific Reports, 7, [2880]. https://doi.org/10.1038/s41598-017-03081-5 Download date: 23. Sep. 2021 www.nature.com/scientificreports OPEN Insoluble (1 → 3), (1 → 4)-β-D- glucan is a component of cell walls in brown algae (Phaeophyceae) and Received: 28 October 2016 Accepted: 24 April 2017 is masked by alginates in tissues Published: xx xx xxxx Armando A. Salmeán 1, Delphine Duffieux2,3, Jesper Harholt4, Fen Qin4, Gurvan Michel2,3, Mirjam Czjzek2,3, William G. T. Willats1,5 & Cécile Hervé2,3 Brown algae are photosynthetic multicellular marine organisms. They belong to the phylum of Stramenopiles, which are not closely related to land plants and green algae. Brown algae share common evolutionary features with other photosynthetic and multicellular organisms, including a carbohydrate-rich cell-wall. Brown algal cell walls are composed predominantly of the polyanionic polysaccharides alginates and fucose-containing sulfated polysaccharides. These polymers are prevalent over neutral and crystalline components, which are believed to be mostly, if not exclusively, cellulose.
    [Show full text]
  • Why the –Omic Future of Apicomplexa Should Include Gregarines Julie Boisard, Isabelle Florent
    Why the –omic future of Apicomplexa should include Gregarines Julie Boisard, Isabelle Florent To cite this version: Julie Boisard, Isabelle Florent. Why the –omic future of Apicomplexa should include Gregarines. Biology of the Cell, Wiley, 2020, 10.1111/boc.202000006. hal-02553206 HAL Id: hal-02553206 https://hal.archives-ouvertes.fr/hal-02553206 Submitted on 24 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article title: Why the –omic future of Apicomplexa should include Gregarines. Names of authors: Julie BOISARD1,2 and Isabelle FLORENT1 Authors affiliations: 1. Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Département Adaptations du Vivant (AVIV), Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier 75231 Paris Cedex 05, France. 2. Structure et instabilité des génomes (STRING UMR 7196 CNRS / INSERM U1154), Département Adaptations du vivant (AVIV), Muséum National d'Histoire Naturelle, CP 26, 57 rue Cuvier 75231 Paris Cedex 05, France. Short Title: Gregarines –omics for Apicomplexa studies
    [Show full text]
  • High-Throughput Sequencing for Algal Systematics
    High-throughput sequencing for algal systematics Mariana C. Oliveiraa, Sonja I. Repettib, Cintia Ihaab, Christopher J. Jacksonb, Pilar Díaz-Tapiabc, Karoline Magalhães Ferreira Lubianaa, Valéria Cassanoa, Joana F. Costab, Ma. Chiela M. Cremenb, Vanessa R. Marcelinobde, Heroen Verbruggenb a Department of Botany, Biosciences Institute, University of São Paulo, São Paulo 05508-090, Brazil b School of BioSciences, University of Melbourne, Victoria 3010, Australia c Coastal Biology Research Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15071, A Coruña, Spain d Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, University of Sydney, New South Wales 2006, Australia e Westmead Institute for Medical Research, Westmead, New South Wales 2145, Australia Abstract In recent years, the use of molecular data in algal systematics has increased as high-throughput sequencing (HTS) has become more accessible, generating very large data sets at a reasonable cost. In this perspectives paper, our goal is to describe how HTS technologies can advance algal systematics. Following an introduction to some common HTS technologies, we discuss how metabarcoding can accelerate algal species discovery. We show how various HTS methods can be applied to generate datasets for accurate species delimitation, and how HTS can be applied to historical type specimens to assist the nomenclature process. Finally, we discuss how HTS data such as organellar genomes and transcriptomes can be used to construct well resolved phylogenies, leading to a stable and natural classification of algal groups. We include examples of bioinformatic workflows that may be applied to process data for each purpose, along with common programs used to achieve each step.
    [Show full text]
  • Complex Communities of Small Protists and Unexpected Occurrence Of
    Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, Purificación López-García To cite this version: Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, et al.. Complex communities of small protists and unexpected occurrence of typical marine lineages in shal- low freshwater systems. Environmental Microbiology, Society for Applied Microbiology and Wiley- Blackwell, 2015, 17 (10), pp.3610-3627. 10.1111/1462-2920.12591. hal-03022575 HAL Id: hal-03022575 https://hal.archives-ouvertes.fr/hal-03022575 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Europe PMC Funders Group Author Manuscript Environ Microbiol. Author manuscript; available in PMC 2015 October 26. Published in final edited form as: Environ Microbiol. 2015 October ; 17(10): 3610–3627. doi:10.1111/1462-2920.12591. Europe PMC Funders Author Manuscripts Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, and Purificación López-García* Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405 Orsay, France Summary Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well-known.
    [Show full text]
  • The Taxonomy and Biology of Phytophthora and Pythium
    Journal of Bacteriology & Mycology: Open Access Review Article Open Access The taxonomy and biology of Phytophthora and Pythium Abstract Volume 6 Issue 1 - 2018 The genera Phytophthora and Pythium include many economically important species Hon H Ho which have been placed in Kingdom Chromista or Kingdom Straminipila, distinct from Department of Biology, State University of New York, USA Kingdom Fungi. Their taxonomic problems, basic biology and economic importance have been reviewed. Morphologically, both genera are very similar in having coenocytic, hyaline Correspondence: Hon H Ho, Professor of Biology, State and freely branching mycelia, oogonia with usually single oospores but the definitive University of New York, New Paltz, NY 12561, USA, differentiation between them lies in the mode of zoospore differentiation and discharge. Email [email protected] In Phytophthora, the zoospores are differentiated within the sporangium proper and when mature, released in an evanescent vesicle at the sporangial apex, whereas in Pythium, the Received: January 23, 2018 | Published: February 12, 2018 protoplast of a sporangium is transferred usually through an exit tube to a thin vesicle outside the sporangium where zoospores are differentiated and released upon the rupture of the vesicle. Many species of Phytophthora are destructive pathogens of especially dicotyledonous woody trees, shrubs and herbaceous plants whereas Pythium species attacked primarily monocotyledonous herbaceous plants, whereas some cause diseases in fishes, red algae and mammals including humans. However, several mycoparasitic and entomopathogenic species of Pythium have been utilized respectively, to successfully control other plant pathogenic fungi and harmful insects including mosquitoes while the others utilized to produce valuable chemicals for pharmacy and food industry.
    [Show full text]