The Simple-Septate Basidiomycetes: a Synopsis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Axpcoords & Parallel Axparafit: Statistical Co-Phylogenetic Analyses
BMC Bioinformatics BioMed Central Software Open Access AxPcoords & parallel AxParafit: statistical co-phylogenetic analyses on thousands of taxa Alexandros Stamatakis*1,2, Alexander F Auch3, Jan Meier-Kolthoff3 and Markus Göker4 Address: 1École Polytechnique Fédérale de Lausanne, School of Computer & Communication Sciences, Laboratory for Computational Biology and Bioinformatics STATION 14, CH-1015 Lausanne, Switzerland, 2Swiss Institute of Bioinformatics, 3Center for Bioinformatics (ZBIT), Sand 14, Tübingen, University of Tübingen, Germany and 4Organismic Botany/Mycology, Auf der Morgenstelle 1, Tübingen, University of Tübingen, Germany Email: Alexandros Stamatakis* - [email protected]; Alexander F Auch - [email protected]; Jan Meier- Kolthoff - [email protected]; Markus Göker - [email protected] * Corresponding author Published: 22 October 2007 Received: 26 June 2007 Accepted: 22 October 2007 BMC Bioinformatics 2007, 8:405 doi:10.1186/1471-2105-8-405 This article is available from: http://www.biomedcentral.com/1471-2105/8/405 © 2007 Stamatakis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Current tools for Co-phylogenetic analyses are not able to cope with the continuous accumulation of phylogenetic data. The sophisticated statistical test for host-parasite co-phylogenetic analyses implemented in Parafit does not allow it to handle large datasets in reasonable times. The Parafit and DistPCoA programs are the by far most compute-intensive components of the Parafit analysis pipeline. -
The Soil Fungal Community of Native Woodland in Andean Patagonian
Forest Ecology and Management 461 (2020) 117955 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco The soil fungal community of native woodland in Andean Patagonian forest: T A case study considering experimental forest management and seasonal effects ⁎ Ayelen Inés Carrona,b, , Lucas Alejandro Garibaldic, Sebastian Marquezd, Sonia Fontenlaa,b a Laboratorio de Microbiología Aplicada y Biotecnología Vegetal y del Suelo, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue (UNComahue), Argentina b Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) UNComahue – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina c Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Sede Andina, Universidad Nacional de Río Negro (UNRN) and CONICET, Argentina d Instituto de Investigación en Biodiversidad y Medio Ambiente (INIBIOMA) UNComahue – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina ARTICLE INFO ABSTRACT Keywords: Forest management can alter soil fungal communities which are important in the regulation of biogeochemical Soil fungal classification cycles and other ecosystem services. The current challenge of sustainable management is that management be Diversity analysis carried out while preserving the bioecological aspects of ecosystems. Mixed Patagonian woodlands are subject to Shrubland management continuous disturbance (fire, wood -
Bodenmikrobiologie (Version: 07/2019)
Langzeitmonitoring von Ökosystemprozessen - Methoden-Handbuch Modul 04: Bodenmikrobiologie (Version: 07/2019) www.hohetauern.at Impressum Impressum Für den Inhalt verantwortlich: Dr. Fernando Fernández Mendoza & Prof. Mag Dr. Martin Grube Institut für Biologie, Bereich Pflanzenwissenschaften, Universität Graz, Holteigasse 6, 8010 Graz Nationalparkrat Hohe Tauern, Kirchplatz 2, 9971 Matrei i.O. Titelbild: Ein Transekt im Untersuchungsgebiet Innergschlöss (2350 m üNN) wird im Jahr 2017 beprobt. © Newesely Zitiervorschlag: Fernández Mendoza F, Grube M (2019) Langzeitmonitoring von Ökosystemprozessen im Nationalpark Hohe Tauern. Modul 04: Mikrobiologie. Methoden-Handbuch. Verlag der Österreichischen Akademie der Wissenschaften, Wien. ISBN-Online: 978-3-7001-8752-3, doi: 10.1553/GCP_LZM_NPHT_Modul04 Weblink: https://verlag.oeaw.ac.at und http://www.parcs.at/npht/mmd_fullentry.php?docu_id=38612 Inhaltsverzeichnis Zielsetzung ...................................................................................................................................................... 1 Inhalt Vorbereitungsarbeit und benötigtes Material ................................................................................................... 2 a. Materialien für die Probenahme und Probenaufbewahrung ................................................................ 2 b. Materialien und Geräte für die Laboranalyse ...................................................................................... 2 Arbeitsablauf ................................................................................................................................................... -
Mykologie in Tübingen 1974-2011
Mykologie am Lehrstuhl Spezielle Botanik und Mykologie der Universität Tübingen, 1974-2011 FRANZ OBERWINKLER Kurzfassung Wir beschreiben die mykologischen Forschungsaktivitäten am ehemaligen Lehrstuhl „Spezielle Botanik und Mykologie“ der Universität Tübingen von 1974 bis 2011 und ihrer internationalen Ausstrahlung. Leitschiene unseres gemeinsamen mykologischen Forschungskonzeptes war die Verknüpfung von Gelände- mit Laborarbeiten sowie von Forschung mit Lehre. Dieses Konzept spiegelte sich in einem weit gefächerten Lehrangebot, das insbesondere den Pflanzen als dem Hauptsubstrat der Pilze breiten Raum gab. Lichtmikroskopische Untersuchungen der zellulären Baupläne von Pilzen bildeten das Fundament für unsere Arbeiten: Identifikationen, Ontogeniestudien, Vergleiche von Mikromorphologien, Überprüfen von Kulturen, Präparateauswahl für Elektronenmikroskopie, etc. Bereits an diesen Beispielen wird die Methodenvernetzung erkennbar. In dem zu besprechenden Zeitraum wurden Ultrastrukturuntersuchungen und Nukleinsäuresequenzierungen als revolutionierende Methoden für den täglichen Laborbetrieb verfügbar. Flankiert wurden diese Neuerungen durch ständig verbesserte Datenaufbereitungen und Auswertungsprogramme für Computer. Zusammen mit den traditionellen Anwendungen der Lichtmikroskopie und der Kultivierung von Pilzen stand somit ein effizientes Methodenspektrum zur Verfügung, das für systematische, phylogenetische und ökologische Fragestellungen gleichermaßen eingesetzt werden konnte, insbesondere in der Antibiotikaforschung, beim Studium zellulärer -
Fungal Planet Description Sheets: 716–784 By: P.W
Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H. -
The Flora Mycologica Iberica Project Fungi Occurrence Dataset
A peer-reviewed open-access journal MycoKeys 15: 59–72 (2016)The Flora Mycologica Iberica Project fungi occurrence dataset 59 doi: 10.3897/mycokeys.15.9765 DATA PAPER MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The Flora Mycologica Iberica Project fungi occurrence dataset Francisco Pando1, Margarita Dueñas1, Carlos Lado1, María Teresa Telleria1 1 Real Jardín Botánico-CSIC, Claudio Moyano 1, 28014, Madrid, Spain Corresponding author: Francisco Pando ([email protected]) Academic editor: C. Gueidan | Received 5 July 2016 | Accepted 25 August 2016 | Published 13 September 2016 Citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) The Flora Mycologica Iberica Project fungi occurrence dataset. MycoKeys 15: 59–72. doi: 10.3897/mycokeys.15.9765 Resource citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) Flora Mycologica Iberica Project fungi occurrence dataset. v1.18. Real Jardín Botánico (CSIC). Dataset/Occurrence. http://www.gbif.es/ipt/resource?r=floramicologicaiberi ca&v=1.18, http://doi.org/10.15468/sssx1e Abstract The dataset contains detailed distribution information on several fungal groups. The information has been revised, and in many times compiled, by expert mycologist(s) working on the monographs for the Flora Mycologica Iberica Project (FMI). Records comprise both collection and observational data, obtained from a variety of sources including field work, herbaria, and the literature. The dataset contains 59,235 records, of which 21,393 are georeferenced. These correspond to 2,445 species, grouped in 18 classes. The geographical scope of the dataset is Iberian Peninsula (Continental Portugal and Spain, and Andorra) and Balearic Islands. The complete dataset is available in Darwin Core Archive format via the Global Biodi- versity Information Facility (GBIF). -
Jason Stajich UC Riverside Fungidb Supported by Sloan Foundation
FungiDB and 1000 Fungal genomes Jason Stajich UC Riverside FungiDB supported by Sloan Foundation • Data coordinating center - Knight, Sogin, Meyer labs • Fungal microbiome support - Stajich Lab (Greg Gu, Steven Ahrendt) --> Scott Bates, Jon Leff Fierer Lab Fungal genome sequencing * ** 10-15 “Zygos” + Chytrids + Cryptomycota 400-500+ genomes of Fungi http://www.diark.org/diark/statistics http://1000.fungalgenomes.org Addressing the phylogenetic diversity: 1000 Fungal genomes project !"#$%&'%()*+#+,- !"#$%&'%()*+#+,- .%#$'/+%()*+#+,- .%#$'/+%()*+#+,- 01"%2%()*+#+,- 01"%2%()*+#+,- D+%E8%,,%()*+#+,- D+%E8%,,%()*+#+,- F+G'G%()*%2&4- 3&*+"#4+-,+/',- F+G'G%()*%2&4- 3&*+"#4+-,+/',- 547%187+&'%()*+#+,- 547%187+&'%()*+#+,- 5+*4&%"%()*+#+,- 5+*4&%"%()*+#+,- 5+%2%()*+#+,- 5+%2%()*+#+,- 5'*$'&%()*+#+,- 5'*$'&%()*+#+,- 6"7'8'%()*+#+,- 6"7'8'%()*+#+,- F+G'G%()*+#+,- F+G'G%()*+#+,- H4**$4"%()*%2&4- H%"/4"'%()*+#+,- H4**$4"%()*%2&4- H%"/4"'%()*+#+,- H4**$4"%()*+#+,- H4**$4"%()*+#+,- I+%8+*#%()*+#+,- I+%8+*#%()*+#+,- J4K$"'&%()*%2&4- F&+1(%*),2/'%()*+#+,- J4K$"'&%()*%2&4- F&+1(%*),2/'%()*+#+,- H*$'G%,4**$4"%()*+#+,- H*$'G%,4**$4"%()*+#+,- J4K$"'&%()*+#+,- J4K$"'&%()*+#+,- M,284E'&%()*%2&4- 0L%74,'/'%()*+#+,- M,284E'&%()*%2&4- 0L%74,'/'%()*+#+,- M,284E'&%()*+#+,- M,284E'&%()*+#+,- !E4"'*%,287%()*+#+,- !E4"'*%,287%()*+#+,- !#"4*2+88%()*+#+,- !#"4*2+88%()*+#+,- N84,,'*18%()*+#+,- N84,,'*18%()*+#+,- F1**'&'%()*%2&4- N")K#%()*%*%84*%()*+#+,- F1**'&'%()*%2&4- N")K#%()*%*%84*%()*+#+,- N),#%74,'/'%()*+#+,- N),#%74,'/'%()*+#+,- O'*"%7%#")%()*+#+,- O'*"%7%#")%()*+#+,- -
Crittendenia Gen. Nov., a New Lichenicolous Lineage in the Agaricostilbomycetes (Pucciniomycotina), and a Review of the Biology
The Lichenologist (2021), 53, 103–116 doi:10.1017/S002428292000033X Standard Paper Crittendenia gen. nov., a new lichenicolous lineage in the Agaricostilbomycetes (Pucciniomycotina), and a review of the biology, phylogeny and classification of lichenicolous heterobasidiomycetes Ana M. Millanes1, Paul Diederich2, Martin Westberg3 and Mats Wedin4 1Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, E-28933 Móstoles, Spain; 2Musée national d’histoire naturelle, 25 rue Munster, L-2160 Luxembourg; 3Museum of Evolution, Norbyvägen 16, SE-75236 Uppsala, Sweden and 4Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden Abstract The lichenicolous ‘heterobasidiomycetes’ belong in the Tremellomycetes (Agaricomycotina) and in the Pucciniomycotina. In this paper, we provide an introduction and review of these lichenicolous taxa, focusing on recent studies and novelties of their classification, phylogeny and evolution. Lichen-inhabiting fungi in the Pucciniomycotina are represented by only a small number of species included in the genera Chionosphaera, Cyphobasidium and Lichenozyma. The phylogenetic position of the lichenicolous representatives of Chionosphaera has, however, never been investigated by molecular methods. Phylogenetic analyses using the nuclear SSU, ITS, and LSU ribosomal DNA mar- kers reveal that the lichenicolous members of Chionosphaera form a monophyletic group in the Pucciniomycotina, distinct from Chionosphaera and outside the Chionosphaeraceae. The new genus Crittendenia is described to accommodate these lichen-inhabiting spe- cies. Crittendenia is characterized by minute synnemata-like basidiomata, the presence of clamp connections and aseptate tubular basidia from which 4–7 spores discharge passively, often in groups. Crittendenia, Cyphobasidium and Lichenozyma are the only lichenicolous lineages known so far in the Pucciniomycotina, whereas Chionosphaera does not include any lichenicolous taxa. -
Epiphytic Seed Microbiomes of Wheat, Canola, and Lentil
EPIPHYTIC SEED MICROBIOMES OF WHEAT, CANOLA, AND LENTIL A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon By Zayda Piedad Morales Moreira © Copyright Zayda Piedad Morales Moreira, June, 2021. All rights reserved. Unless otherwise noted, copyright of the material in this thesis belongs to the author PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying, publication, or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Food and Bioproduct Sciences University of Saskatchewan 51 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 Canada OR Dean of the College of Graduate and Postdoctoral Studies University of Saskatchewan 107 Administration Place Saskatoon, Saskatchewan S7N 5A2 Canada i ABSTRACT Microorganisms are found colonizing all plant organs including seeds. -
<I>Thecaphora Capensis</I>
Persoonia 21, 2008: 147–152 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X387462 Thecaphora capensis sp. nov., an unusual new anther smut on Oxalis in South Africa F. Roets 1, L.L. Dreyer 2, M.J. Wingfield 3, D. Begerow 4 Key words Abstract The smut genus Thecaphora contains plant parasitic microfungi that typically infect very specific plant organs. In this study, we describe a new species of Thecaphora from Oxalis lanata var. rosea (Oxalidaceae) in the anther-smut Cape Floristic Region of South Africa. Molecular phylogenetic reconstructions based on large subunit ribosomal Cape Floristic Region DNA sequence data confirmed the generic placement of the fungus and confirmed that it represents an undescribed Oxalis species for which the name T. capensis sp. nov. is provided. The closest known sister species of the new taxon is phylogeny T. oxalidis that infects the fruits of Oxalis spp. in Europe, Asia and the Americas. In contrast, T. capensis produces Thecaphora teliospores within the anthers of its host. This is the first documented case of an anther-smut from an African spe- cies of Oxalis and the first Thecaphora species described from Africa. Article info Received: 24 August 2008; Accepted: 30 October 2008; Published: 10 November 2008. INTRODUCTION The smut genus Thecaphora resides in the Glomosporiaceae (Goldblatt & Manning 2000) and the largest bulbous genus in (Bauer et al. 2001, Vánky et al. 2008) and includes c. 60 de- the region. The CFR Oxalis spp. flower during the wet winter scribed species. Species of Thecaphora produce sori within months (April to August), and escape the drier summer months various plant organs including seeds, flowers, leaves, stems below ground, only to emerge again at the onset of the next and roots. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Using Rdptools Output with Phyloseq John Quensen & Qiong Wang October 23, 2015
Using RDPTools Output with Phyloseq John Quensen & Qiong Wang October 23, 2015 Introduction The purpose of this document is to demonstrate how to generate RDPTools (Cole et al., 2014) output from sequencing data and import it into the R/Bioconductor package phyloseq (McMurdie and Holmes, 2012). Once this is done, the data can be analyzed not only using phyloseq’s wrapper functions, but by any method available in R. For examples see the section Examples of Data Analysis below. You may install R from the Comprehensive R Archive Network (CRAN) repository at http://cran.us. r-project.org/. As an aid to working with R, we suggest that you also install RStudio, an IDE interface for R, available at http://www.rstudio.com/. By loading the Rmd file included with the tutorial files (see below) into RStudio, you can easily recreate the R portions of these tutorials on your own computer. And you can get an explanation of how to use any function in a code block by placing the cursor anywhere in the function name and pressing key F1. RDPTools The Ribosomal Database Project (RDP) at Michigan State University has long provided web-based tools for processing pyrosequencing data. These tools were originally developed for handling data for bacterial and archaeal 16S rRNA genes, but since then their capabilities have been expanded to include functional genes, 28S rRNA and ITS fungal sequences, and Illumina data. To handle the increased demands of analyzing larger data sets, command line versions of the tools have been made available as RDPTools on GitHub (https://github.com/rdpstaff/RDPTools).