Positive Train Control Systems; Final Rule

Total Page:16

File Type:pdf, Size:1020Kb

Positive Train Control Systems; Final Rule Friday, January 15, 2010 Part II Department of Transportation Federal Railroad Administration 49 CFR Part 229, 234, 235, et al. Positive Train Control Systems; Final Rule VerDate Nov<24>2008 14:43 Jan 14, 2010 Jkt 220001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\15JAR2.SGM 15JAR2 erowe on DSK5CLS3C1PROD with RULES_2 2598 Federal Register / Vol. 75, No. 10 / Friday, January 15, 2010 / Rules and Regulations DEPARTMENT OF TRANSPORTATION • Hand Delivery: Room W12–140 on accomplished by December 31, 2015. the Ground level of the West Building, This final rule intends to provide the Federal Railroad Administration 1200 New Jersey Avenue, SE., necessary Federal oversight, guidance, Washington, DC between 9 a.m. and 5 and assistance toward successful 49 CFR Parts 229, 234, 235, and 236 p.m. Monday through Friday, except completion of that congressional [Docket No. FRA–2008–0132, Notice No. 3] Federal holidays. requirement. This final rule also Instructions: All submissions must necessitates or results in some minimal RIN 2130–AC03 include the agency name and docket revision or amendment to parts 229, number or Regulatory Identification 234, and 235, as well as previously Positive Train Control Systems Number (RIN) for this rulemaking. Note existing subparts A through H of part AGENCY: Federal Railroad that all petitions received will be posted 236. without change to http:// Administration (FRA), Department of Table of Contents for Supplementary www.regulations.gov including any Transportation (DOT). Information ACTION: Final rule; request for comment personal information. Please see the on specific issues. Privacy Act heading in the I. Introduction SUPPLEMENTARY INFORMATION section of II. Background SUMMARY: FRA is issuing regulations this document for Privacy Act A. The Need for Positive Train Control implementing a requirement of the Rail information related to any submitted Technology petitions, comments, or materials. B. Earlier Efforts To Encourage Voluntary Safety Improvement Act of 2008 that PTC Implementation defines criteria for certain passenger and Docket: For access to the docket to C. Technology Advances Under Subpart H freight rail lines requiring the read background documents or III. The Rail Safety Improvement Act of 2008 implementation of positive train control comments received, go to http:// IV. Public Participation (PTC) systems. This final rule includes www.regulations.gov or to Room W12– A. RSAC Process required functionalities of PTC system 140 on the Ground level of the West B. Public Hearing and Comments Filed technology and the means by which Building, 1200 New Jersey Avenue, SE., V. Overview: The Proposed Rule, Comments, PTC systems will be certified. This final Washington, DC between 9 a.m. and 5 and Resolution of Comments rule also describes the contents of the p.m. Monday through Friday, except VI. Seeking Further Comments Federal holidays. VII. Section-by-Section Analysis PTC implementation plans required by VIII. Regulatory Impact and Notices the statute and contains the process for FOR FURTHER INFORMATION CONTACT: A. Executive Order 12866 and DOT submission of those plans for review Thomas McFarlin, Office of Safety Regulatory Policies and Procedures and approval by FRA. These regulations Assurance and Compliance, Staff B. Regulatory Flexibility Act and Executive could also be voluntarily complied with Director, Signal & Train Control Order 13272 by entities not mandated to install PTC Division, Federal Railroad C. Paperwork Reduction Act systems. This is a final rule; however, Administration, Mail Stop 25, West D. Federalism Implications FRA has identified specific provisions Building 3rd Floor, Room W35–332, E. Environmental Impact for which we are considering making 1200 New Jersey Avenue, SE., F. Unfunded Mandates Reform Act of 1995 G. Energy Impact changes to the final rule, if warranted by Washington, DC 20590 (telephone: 202– H. Privacy Act the public comments received. We 493–6203); or Jason Schlosberg, Trial IX. The Rule expect to publish our response to those Attorney, Office of Chief Counsel, RCC– comments, including any possible 10, Mail Stop 10, West Building 3rd I. Introduction changes to the rule made as a result of Floor, Room W31–217, 1200 New Jersey This final rule provides new them, as soon as possible following the Avenue, SE., Washington, DC 20590 performance standards for the end of the comment period. However, (telephone: 202–493–6032). implementation and operation of PTC the limited areas of this rule open for SUPPLEMENTARY INFORMATION: FRA is systems as mandated by the RSIA08 and additional comment do not affect the issuing this final rule to provide as otherwise voluntarily adopted. This requirement for railroads to prepare and regulatory guidance and performance final rule also details the process and submit plans in accordance with the standards for the development, testing, identifies the documents that railroads deadlines established in this final rule. implementation, and use of Positive and operators of passenger trains are to DATES: This final rule is effective March Train Control (PTC) systems for utilize and incorporate in their PTC 16, 2010. Petitions for reconsideration railroads mandated by the Rail Safety implementation plans required by the must be received on or before March 16, Improvement Act of 2008 § 104, Public RSIA08. The final rule also details the 2010. Comments must be received on or Law 110–432, 122 Stat. 4854 (Oct. 16, process and procedure for obtaining before February 16, 2010. 2008) (codified at 9 U.S.C. 20157) FRA approval of such plans. ADDRESSES: Petitions for reconsideration (hereinafter ‘‘RSIA08’’), to implement While developing this final rule, FRA and comments: Any petitions for PTC systems. These regulations may applied the performance-based reconsideration or comments related to also be voluntarily complied with by principles embodied in existing subpart Docket No. FRA–2008–0132, may be entities not mandated to install PTC in H of part 236 to identify and remedy submitted by any of the following lieu of the requirements contained in any weaknesses discovered in the methods: subpart H of part 236. The final rule subpart H regulatory approach, while • Web site: The Federal eRulemaking establishes requirements for PTC system exploiting lessons learned from Portal, http://www.regulations.gov. standard design and functionality, the products developed under subpart H. Follow the Web site’s online associated submissions for FRA PTC FRA has continued to make instructions for submitting comments. system approval and certification, performance-based safety decisions • Fax: 202–493–2251. requirements for training, and required while supporting railroads in their • Mail: Docket Management Facility, risk-based criteria. The RSIA08 development and implementation of U.S. Department of Transportation, 1200 mandates that widespread PTC system technologies. Development New Jersey Avenue, SE., W12–140, implementation of PTC across a major of this final rule was enhanced with the Washington, DC 20590. portion of the U.S. rail industry be participation of the Railroad Safety VerDate Nov<24>2008 14:43 Jan 14, 2010 Jkt 220001 PO 00000 Frm 00002 Fmt 4701 Sfmt 4700 E:\FR\FM\15JAR2.SGM 15JAR2 erowe on DSK5CLS3C1PROD with RULES_2 Federal Register / Vol. 75, No. 10 / Friday, January 15, 2010 / Rules and Regulations 2599 Advisory Committee (RSAC), which operating rules designed to prevent (ATCS). With broad participation by tasked a PTC Working Group to provide them. suppliers, railroads, and FRA, detailed advice regarding development of As early as 1970, following its specifications were developed for a implementing regulations for PTC investigation of the August 20, 1969, multi-level ‘‘open’’ architecture that systems and their deployment that are head-on collision of two Penn Central would permit participation by many required under the RSIA08. The PTC Commuter trains near Darien, suppliers while ensuring that systems Working Group made a number of Connecticut, in which 4 people were deployed on various railroads would consensus recommendations, which killed and 45 people were injured, the work in harmony as trains crossed were identified and included in the National Transportation Safety Board corporate boundaries. ATCS was proposed rule, and has contributed (NTSB) asked FRA to study the intended to serve a variety of business further refinements in the form of feasibility of requiring a form of purposes, in addition to enhancing the recommendations for resolution of the automatic train control system to protect safety of train operations. Pilot versions public comments. The preamble against train operator error and prevent of ATCS and a similar system known as discusses the statutory background, the train collisions. Following the Darien Advanced Railroad Electronic Systems regulatory background, the RSAC accident, the NTSB continued to (ARES) were tested relatively proceedings, the alternatives considered investigate one railroad accident after successfully, but the systems were never and the rationale for the options another caused by human error. During deployed on a wide scale primarily due selected, the proceedings to date, as the next two decades, the NTSB issued to cost. However, sub-elements of these well as the comments and conclusions a number of safety recommendations systems were employed for various on general issues. Other comments and asking for train control measures. purposes, particularly for replacement resolutions are discussed
Recommended publications
  • Download HX™ Brochure
    SERIES ™ HX THE ALL NEW INTERNATIONAL® HX™ SERIES. Introducing the International® HX™ Series. Four tough new models, each engineered to outwork and outlast, hour after demanding hour. The HX Series is designed to endure the most punishing of jobsites, and to look great while doing it. Not to mention providing its driver a spacious, comfortable environment for work, day in and day out. Built to sustain whatever comes its way, and extensively tested to move you to the head of the class. HX520 HX620 HX515 HX615 HX515 Confi guration: Short Hood Set-Forward Axle Application: Truck Engine: Navistar® N13 PUTTING UPTIME UP FRONT No matter how extreme the conditions, no matter how tough your job, the HX Series The HX™ Series is purpose-built to has what it takes to deliver. deliver Uptime in every aspect of its productivity, effi ciency, reliability and u The industry’s only dedicated aluminum performance. OnCommand™ Connection cab for severe service applications is lightweight and features riveted and comes standard, offering real time data bonded lap seams for higher driver productivity and faster u Huck-bolted frame and crossmembers maintenance. Every component has for superior clamping force over time been rigorously tested and proven to u Available, industry-leading 12.5" x 0.5" meet tough environments and tougher single frame rail delivers 3.5 million RBM jobsites. And you’re supported by u All-new 3-piece Metton hood on the unprecedented service available at nearly HX615 and HX620 700 International Dealer locations across u The optimized cab suspension provides a the U.S.
    [Show full text]
  • ERTMS/ETCS Railway Signalling
    Appendix A ERTMS/ETCS Railway Signalling Salvatore Sabina, Fabio Poli and Nazelie Kassabian A.1 Interoperable Constituents The basic interoperability constituents in the Control-Command and Signalling Sub- systems are, respectively, defined in TableA.1 for the Control-Command and Sig- nalling On-board Subsystem [1] and TableA.2 for the Control-Command and Sig- nalling Trackside Subsystem [1]. The functions of basic interoperability constituents may be combined to form a group. This group is then defined by those functions and by its remaining exter- nal interfaces. If a group is formed in this way, it shall be considered as an inter- operability constituent. TableA.3 lists the groups of interoperability constituents of the Control-Command and Signalling On-board Subsystem [1]. TableA.4 lists the groups of interoperability constituents of the Control-Command and Signalling Trackside Subsystem [1]. S. Sabina (B) Ansaldo STS S.p.A, Via Paolo Mantovani 3-5, 16151 Genova, Italy e-mail: [email protected] F. Poli Ansaldo STS S.p.A, Via Ferrante Imparato 184, 80147 Napoli, Italy e-mail: [email protected] N. Kassabian Ansaldo STS S.p.A, Via Volvera 50, 10045 Piossasco Torino, Italy e-mail: [email protected] © Springer International Publishing AG, part of Springer Nature 2018 233 L. Lo Presti and S. Sabina (eds.), GNSS for Rail Transportation,PoliTO Springer Series, https://doi.org/10.1007/978-3-319-79084-8 234 Appendix A: ERTMS/ETCS Railway Signalling Table A.1 Basic interoperability constituents in the Control-Command
    [Show full text]
  • CONTRACT T-8000-1415 AUTOMATIC TRAIN CONTROL TECHNICAL SPECIFICATION THIS PAGE INTENTIONALLY LEFT BLANK Contents
    ATTACHMENT C PART 2 – ATC SYSTEM MARYLAND TRANSIT ADMINISTRATION CONTRACT T-8000-1415 AUTOMATIC TRAIN CONTROL TECHNICAL SPECIFICATION THIS PAGE INTENTIONALLY LEFT BLANK Contents 1 GENERAL REQUIREMENTS 2 COMMUNICATIONS BASED TRAIN CONTROL REQUIREMENTS 3 MAIN LINE AND STORAGE YARD SOLID STATE INTERLOCKING REQUIREMENTS 4 AUTOMATIC TRAIN SUPERVISION REQUIREMENTS 5 DATA COMMUNICATIONS SYSTEM REQUIREMENTS 6 AUXILIARY WAYSIDE EQUIPMENT REQUIREMENTS 7 ENVIRONMENTAL AND EMC 8 SYSTEM SAFETY REQUIREMENTS 9 RELIABILITY, AVAILABILITY, AND MAINTAINABILITY REQUIREMENTS 10 INSTALLATION CUTOVER AND CONSTRUCTION REQUIREMENTS 11 ATC TESTING 12 QUALITY ASSURANCE AND CONTROL 13 TECHNICAL SUPPORT 14 TRAINING Attachment C, Part 2, ATC System T-8000-1415 i September 2015 THIS PAGE INTENTIONALLY LEFT BLANK Attachment C, Part 2, ATC System T-8000-1415 ii September 2015 SECTION 1 GENERAL REQUIREMENTS Contents 1.1 GENERAL..................................................................................................................................1-1 1.2 PROJECT OBJECTIVES ...............................................................................................................1-2 1.2.1 PROVEN DESIGN......................................................................................................1-3 1.2.2 COMMISSIONING ON A REVENUE SYSTEM...............................................................1-3 1.2.3 DESIGN LIFE.............................................................................................................1-3 1.3 SCOPE OF WORK......................................................................................................................1-3
    [Show full text]
  • General Motor Diesel Locomotive
    (Govt. of India) (Ministry of Railways) INTRODUCTION HAND BOOK ON GENERAL MOTOR DIESEL LOCOMOTIVE (For official use only) IRCAMTECH/2006/M/D/GM loco/1.0 FEBRUARY-2006 Centre for Advanced Maintenance TECHnology Excellence in Maintenance MAHARAJPUR, GWALIOR – 474020 INTRODUCTION HAND BOOK ON GENERAL MOTOR DIESEL LOCOMOTIVE i PREFACE The GM Locomotives have been included in the Diesel Locomotive fleet of Indian railway. Production of GM locomotive has already started in DLW, Varanasi. The 4000 HP, computer controlled GM locomotive has a large number of special and improved features vis-a-vis the Alco design diesel locomotive presently running in Indian railway. All those in the field of diesel locomotive need to get acquainted with the GM locomotive. This book “Introduction hand book on GM locomotive” prepared by the CAMTECH has been prepared with the purpose of disseminating the introductory information to all those in diesel loco maintenance field. The suggestions are invited from the readers to improve and make the book more useful. Any such suggestion shell be included in next publication. Date: - 28.02.2006 KUNDAN KUMAR Director (Mech) ii CONTENTS S No. Description Page No. 1. Preface i 2. Contents ii 3. Book details iii 4. Correction slips iv 5. Introduction of the GM Locomotive 1 to 2 6. General information data 3 to6 7. Various parts and its location 7 to 21 8. Fuel Oil System 22 to 25 9. Cooling Water System 26 to 30 10. Lube Oil System 31 to 37 11. Air Intake System 38 to 41 12. Compressed air system 42 to 43 13.
    [Show full text]
  • CBTC Test Simulation Bench
    Computers in Railways XII 485 CBTC test simulation bench J. M. Mera, I. Gómez-Rey & E. Rodrigo CITEF (Railway Technology Research Centre), Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Spain Abstract Due to its safety characteristics, signalling equipment requires a great amount of testing and validation during the different stages of its life cycle, and particularly during the installation and commissioning of a new line or upgrade of an existing line, the latter being even more complicated due to the short engineering periods available overnight. This project aims to develop a tool to reduce the above-mentioned efforts by simulating the CBTC trackside, fulfilling the interfaces between subsystems and elements of these subsystems, and using some real elements. In this way, a testing environment for signalling equipment and data has been developed for the CBTC system. The aims of the project that were set out at the beginning of the development and completed with the present simulator are as follows: Real CBTC equipment trials and integration: CBTC on-board equipment, CBTC Radio Centre, etc. Other signalling elements trials and integration: interlockings and SCCs. CBTC track data validation. In order to achieve these objectives, various simulation applications have been developed, of which the most important are the following: Infrastructure, Automatic trains, Train systems, Planning and Control Desk, etc. This system has been developed, and is currently adding new modules and functionalities, for companies of the Invensys Group: Westinghouse Rail WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press www.witpress.com, ISSN 1743-3509 (on-line) doi:10.2495/CR100451 486 Computers in Railways XII Systems in the UK and Dimetronic Signals in Spain, which are using it for the new CBTC lines under their responsibility.
    [Show full text]
  • Report on Railway Accident with Freight Car Set That Rolled Uncontrolledly from Alnabru to Sydhavna on 24 March 2010
    Issued March 2011 REPORT JB 2011/03 REPORT ON RAILWAY ACCIDENT WITH FREIGHT CAR SET THAT ROLLED UNCONTROLLEDLY FROM ALNABRU TO SYDHAVNA ON 24 MARCH 2010 Accident Investigation Board Norway • P.O. Box 213, N-2001 Lillestrøm, Norway • Phone: + 47 63 89 63 00 • Fax: + 47 63 89 63 01 www.aibn.no • [email protected] This report has been translated into English and published by the AIBN to facilitate access by international readers. As accurate as the translation might be, the original Norwegian text takes precedence as the report of reference. The Accident Investigation Board has compiled this report for the sole purpose of improving railway safety. The object of any investigation is to identify faults or discrepancies which may endanger railway safety, whether or not these are causal factors in the accident, and to make safety recommendations. It is not the Board’s task to apportion blame or liability. Use of this report for any other purpose than for railway safety should be avoided. Photos: AIBN and Ruter As Accident Investigation Board Norway Page 2 TABLE OF CONTENTS NOTIFICATION OF THE ACCIDENT ............................................................................................. 4 SUMMARY ......................................................................................................................................... 4 1. INFORMATION ABOUT THE ACCIDENT ..................................................................... 6 1.1 Chain of events ...................................................................................................................
    [Show full text]
  • Road Level Crossing Protection Equipment
    Engineering Procedure Signalling CRN SM 013 ROAD LEVEL CROSSING PROTECTION EQUIPMENT Version 2.0 Issued December 2013 Owner: Principal Signal Engineer Approved by: Stewart Rendell Authorised by: Glenn Dewberry Disclaimer. This document was prepared for use on the CRN Network only. John Holland Rail Pty Ltd makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. It is the document user’s sole responsibility to ensure that the copy of the document it is viewing is the current version of the document as in use by JHR. JHR accepts no liability whatsoever in relation to the use of this document by any party, and JHR excludes any liability which arises in any manner by the use of this document. Copyright. The information in this document is protected by Copyright and no part of this document may be reproduced, altered, stored or transmitted by any person without the prior consent of JHR. © JHR UNCONTROLLED WHEN PRINTED Page 1 of 66 Issued December 2013 Version 2.0 CRN Engineering Procedure - Signalling CRN SM 013 Road Level Crossing Protection Equipment Document control Revision Date of Approval Summary of change 1.0 June 1999 RIC Standard SC 07 60 01 00 EQ Version 1.0 June 1999. 1.0 July 2011 Conversion to CRN Signalling Standard CRN SM 013. 2.0 December 2013 Inclusion of Safetran S40 and S60 Mechanisms, reformatting of figures and tables, and updating text Summary of changes from previous version Section Summary of change All Include automated
    [Show full text]
  • Collision Between Two BNSF Railway Company Freight Trains Near Gunter, Texas May 19, 2004
    National Transportation Safety Board Washington, D.C. 20594 PRSRT STD OFFICIAL BUSINESS Postage & Fees Paid Penalty for Private Use, $300 NTSB Permit No. G-200 Collision Between Two BNSF Railway Company Freight Trains Near Gunter, Texas May 19, 2004 Railroad Accident Report NTSB/RAR-06/02 PB2006-916302 Notation 7793A National National Transportation Transportation Safety Board Safety Board Washington, D.C. Washington, D.C. THE CORRECTIONS BELOW ARE INCLUDED IN THIS VERSION OF THE PUBLISHED REPORT RAILROAD ACCIDENT REPORT NTSB/RAR-06/02 (PB2006-916302) COLLISION BETWEEN TWO BNSF RAILWAY COMPANY FREIGHT TRAINS NEAR GUNTER, TEXAS MAY 19, 2004 • Page 26, table 2 first row has been updated to include column head text (Fort Worth Conductor Extra Board*). The text did not print in the original version. (10 OCT 2006) Railroad Accident Report Collision Between Two BNSF Railway Company Freight Trains Near Gunter, Texas May 19, 2004 NTSB/RAR-06/02 PB2006-916302 National Transportation Safety Board Notation 7793A 490 L’Enfant Plaza, S.W. Adopted June 13, 2006 Washington, D.C. 20594 National Transportation Safety Board. 2006. Collision Between Two BNSF Railway Company Freight Trains Near Gunter, Texas, May 19, 2004. Railroad Accident Report NTSB/RAR-06/02. Washington, DC. Abstract: About 5:46 p.m., central daylight time, on May 19, 2004, two BNSF Railway Company freight trains collided head on near Gunter, Texas. The southbound train, BNSF 6789 South, was traveling about 37 mph, and the northbound train, BNSF 6351 North, was traveling about 40 mph when the collision occurred. The trains were being operated under track warrant control rules on non-signaled single track.
    [Show full text]
  • Geographic Signaling System (Geo)
    FIELD REFERENCE MANUAL GEOGRAPHIC SIGNALING SYSTEM (GEO) JULY 2008 (REVISED SEPTEMBER 2018) DOCUMENT NO. SIG-00-05-09 VERSION D Siemens Mobility 700 East Waterfront Drive Munhall, Pennsylvania 15120 1-800-793-SAFE Copyright © 2008-2018 Siemens Mobility, Inc. All rights reserved PRINTED IN THE U.S.A. PROPRIETARY INFORMATION The material contained herein constitutes proprietary and confidential information, and is the intellectual property of Siemens Mobility, Inc., Rail Automation (Siemens) protected under United States patent, copyright and/or other laws and international treaty provisions. This information and the software it describes are for authorized use only, and may not be: (i) modified, translated, reverse engineered, decompiled, disassembled or used to create derivative works; (ii) copied or reproduced for any reason other than specific application needs; or (iii) rented, leased, lent, sublicensed, distributed, remarketed, or in any way transferred; without the prior written authorization of Siemens. This proprietary notice and any other associated labels may not be removed. TRANSLATIONS The manuals and product information of Siemens Mobility, Inc. are intended to be produced and read in English. Any translation of the manuals and product information are unofficial and can be imprecise and inaccurate in whole or in part. Siemens Mobility, Inc. does not warrant the accuracy, reliability, or timeliness of any information contained in any translation of manual or product information from its original official released version in English and shall not be liable for any losses caused by such reliance on the accuracy, reliability, or timeliness of such information. Any person or entity that relies on translated information does so at his or her own risk.
    [Show full text]
  • [(Central] [Central, 6 E -1 4
    /NEWYORK^ Fnewyork^ [(Central] [Central, 6 e -1 4 Reference Marks NEW YORK CENTRAL LC.L Between POPULAR ALL-COACH DAYLINER Dally. II Meal station. Sunday only. • Thla train does not carry baggage SERVICE ADVANTAGES Chicago, Pittsburgh & Boston Daily except Sunday- Ex. Sun.—Runs dally except Sunday. Daily except Monday. E.T.—Eastern Standard Time. Daily except Saturday. C.T.—Central Standard Time. In addition to the train service shown, buses of the United Traction Company run at frequent intervals between Albany and Troy. | I i^i ichedulot . pcart'd to 5 Packing and handling research Stops on signal to receive passengers for stations beyond Albuny. traffic requirement! for most ... they assure the security ol Stops to receive or discbarge passengers for or from Astatabula and beyond. Stops except Saturdays and Sundays. rX|M*llitioilH .1. Ii\ i-r n--. the shipped merchandise. bb Stops at 6.25 a. m. to discharge passengers from Rochester and beyond or to 2 Free pick up and delivery ser• receive passengers for Chicago. Smooth operation . easy 4 Stops on signal to receive passengers for beyond Troy. vice . direct from Hliippcr's grades... superlative roadbed. Stops on signal to discharge or receive passengers. to roiisipiirrV door. No baggage handled for or from this station; *y Constant supervision and pro• Stops regularly, but only to receive passengers. * f Optional trucking allowance to tection in transit.. still mon Stops only to discbarge passengers. nhi|»|MTH jiiul roiittignrcR ... a security for shipped merchan Runs Saturdays only. mi I • i i ii i ii I tavina to both. dise.
    [Show full text]
  • Mrr 199908.Pdf
    Ako PAs Modeling C&NW SD9s Plastics Cars (Part 2) DCC Update (Part XXI) Diesel Detail: WM GP35 A Closure for Chupadera """' :J Track & Wheel Mtce. (Part 3) Athearn's 20' Container Chassis I :20.3 Narrow Gauge Large Scale MINE STRUCTURES & ORE CARS Capturing the atmosphere of a real, working industrial railroad, Bachmann presents 1 :20.3 Scale Mine Structures and Side Dump Cars. The Mining Kit features a realistic Mine Head with Shaft and Mine Shack, both designed for easy, snap-fit assembly. Also included with the Mining Kit is one Assembled 4-Wheel Side Dump Car that works just like the prototype, with a four-point center sill pivot for manual operation (allowing you to dump your cargo to either side of the tracks). A set of three assembled Four-Wheel Side Dump Mining Cars is also available. Four Wheel Side Dump Mining Car • I :20.3 narrow gauge model • prototypical manual operation (dumps to either side of track) • four-point center sill pivot • metal tie down chains • appropriate for mining and many other industrial applications 24.5mm SMALL METAL WHEEL SET Mine Shack Item #92422 MSRP: S 17.00 snap-fit assembly • If desired, you can install • operating window shutter Bachmann's new 24.5mm • tin-style roof Small Metal Wheel Sets on your • chimney Mining Cars. Available separately. • woodgrained wall planking • simulated, rolled-canvas doorway cover Mine Head with Shaft • snap-fit assembly Bachmann Industries, Inc. Philadelphia, PA • simulated timber supports, -_ ....... -... _ .'- frame and mine shaft walls � www.bachmanntrains.com RAILROADINGMODEL August 1999 VOLUME 29 NUMBER 8 FEATURES 20 ..
    [Show full text]
  • Positive Train Control
    POSITIVE TRAIN CONTROL Carolyn Hayward-Williams Director – Technical Oversight Dennis Stonecypher PTC Specialist National Space-Based PNT Advisory Board Meeting – June 2019 Outline 1. What is Positive Train Control (PTC) and Why is it being Implemented? 2. What does PTC do? 3. The Interoperable Electronic Train Management System (I-ETMS) 4. Use of Non-Us GNSS signals for PTC 2 What is Positive Train Control? PTC is a technology capable of automatically controlling train speeds and movements, should a train operator fail to take appropriate action in the prevailing conditions. PTC MUST reliably and functionally prevent train-to-train collisions, overspeed derailments, incursions into established work zone limits, and movements of trains through switches in the wrong position. 3 Why PTC? Chatsworth, CA September 12, 2008 25 Deaths, 135 Injuries 4 PTC is Required by Statute Congress passed the Rail Safety Improvement Act of 2008 (RSIA), requiring PTC systems to be fully implemented by December 31, 2015 on: Class I railroads’ main lines that transport poison- or toxic-by-inhalation hazardous materials and Any main lines with regularly scheduled intercity or commuter rail passenger service In October 2015, Congress extended the deadline for full implementation by at least three years to December 31, 2018, and required FRA to approve any railroad’s request for an “alternative schedule and sequence” with a final deadline not later than December 31, 2020, if a railroad demonstrated it met certain statutory criteria by December 31, 2018. 5 Overview of a PTC System GPS 2. Communication Segment 3. Wayside Segment Back Office Server (BOS) 4.
    [Show full text]