AND AZYGOS VEINS by REGINALD J

Total Page:16

File Type:pdf, Size:1020Kb

AND AZYGOS VEINS by REGINALD J DEVELOPMENT OF THE INFERIOR VENA CAVA IN THE LIGHT OF RECENT RESEARCH, WITH ESPECIAL REFERENCE TO CERTAIN ABNORMALITIES, AND CUR- RENT DESCRIPTIONS OF THE ASCENDING LUMBAR AND AZYGOS VEINS By REGINALD J. GLADSTONE, M.D., F.R.C.S. University of London, King's College INTRODUCTION SINCE the publication of Rathke's, Kerschner's and Hochstetter's pioneer researches on the development of the venous system, a large amount of ad- mirable work has been carried out on the development of the postrenal part of the inferior vena cava, both in animals and in man. The bulk of this work has been accomplished by American embryologists and more especially by Lewis, Miller, Huntington, McClure, Butler, Sabin and Reagan. The older methods of reconstruction have now been supplemented by the intravascular injection of solutions of Indian ink, nitrate of silver, Prussian blue, and other dyes, into living embryos, the tissues being afterwards fixed, cleared and mounted in celloidin. This method has furnished most beautiful demonstrations of the finer vessels and their anastomoses, even in quite young embryos, e.g. rat embryos having only 2-3 somites (Reagan). But although, under exceptional circumstances, the successful injection of a living human embryo has been accomplished (Broedel), the careful study and reconstruc- tion of serial sections of human embryos is still the most valuable method of research with regard to the development of these blood vessels in man. COMMENTS ON CURRENT DESCRIPTIONS OF THE ASCENDING LUMBAR AND AZYGOS VEINS In three papers written before the publication of the more recent work of the above-mentioned authors, I recorded: (A) two cases of a dorsal position of the ureter relative to the inferior vena cava; (B) one of a postaortic course of the left renal vein; and (C) one of a left postrenal vena cava. In the article dealing with the postcaval position of the ureter, I drew attention to the development of the ascending lumbar vein, by the formation of a longitudinal anastomosis between the lumbar intersegmental veins. This vessel courses vertically in front of the transverse processes of the lumbar vertebrae, and behind the psoas major muscle (fig. 6 of that article). Development of the Vena Cava, etc. 71 The course of an anastomotic vein (text-fig. 1), which commonly arises from the dorsal aspect of the inferior vena cava, and proceeds upwards through the right crus of the diaphragm, or its aortic opening, to join the vena azygos major in front of the body of either the 12th or 11th thoracic vertebra, was also commented on, and figured. A similar anastomotic vein is frequently present on the left side, and passes into the thorax through the left crus of ?>IA. ,.v/s>,, A .~~~ ~ ~~~~~~~~~~~~~~........ Text-fig. 1. Drawing from an adult male subject showing the origin of the vena azygos major and vena azygos minor; and the relation of these vessels to the sympathetic chain, the splanchnic nerves, and the intersegmental arteries. The dotted lines indicate the position of the crura of the diaphragm. ALV. Ascending lumbar vein. NSMi. Lesser splanchnic nerve. IA. Intercostal arteries. RLAzV. Right lumbar azygos vein. HAV. Hemiazygos vein. sa. Sympathetic cord. LLAzV. Left lumbar azygos veinl. Sey. Subcostal vein. NSMa. Greater splanchnic nerve. the diaphragm (text-fig. 1); this vein may arise from a left lumbar vein, the left renal vein or the inferior vena cava, and it usually joins the hemiazygos vein at the level of the body of the 12th thoracic vertebra. The first accurate description of these anastomotic veins in the adult human subject, in this country, was by Robinson(22), who figured five cases, showing the origin of the right anastomotic vein, from the dorsal aspect of the inferior vena cava, at a point below the termination in it of the renal 72 Reginald J. Gladstone veins; and he also drew attention to the frequent termination of the 1st, and sometimes the 2nd lumbar vein in the anastomotic vein of the corre- sponding side. Unfortunately, however, although well aware of the relations, he did not in this paper make any allusion to the termination of the subcostal vein which unites, as is correctly described in the majority of textbooks on human anatomy, with the ascending lumbar vein. This union normally takes place behind the origin of the diaphragm, close to the head of the 12th rib, and by the side of the body of the 12th thoracic vertebra. On the right side the vein which is formed by the union of the subcostal vein with the ascending lumbar vein is regarded as the commencement of the vena azygos major, and the similar vein on the left side as the commencement of the vena azygos minor or hemiazygos vein. The subcostal vein passes into the thorax beneath the lateral lumbocostal arch; the ascending lumbar vein passes upward behind the psoas muscle, and beneath the medial lumbocostal arch. The vena azygos major then ascends in the thoracic cavity for a distance of one or two inches, before it is joined by the slender anastomotic vein (sometimes merely a fibrous cord, text-fig. 3), which ascends in front of the vertebral column either through the right crus of the diaphragm or its aortic opening. The statement therefore that the vena azygos major passes through the aortic opening of the diaphragm does not accord with the description of the origin of the vena azygos major, from the junction of the right subcostal vein, with the right ascending lumbar vein; and since the anastomotic vein in many cases does not pass through the aortic opening, but traverses the right crus of the diaphragm, and is sometimes represented only by an impervious cord, it is obvious that the alternative description of the vena azygos major arising in the abdomen from an "ascending lumbar vein" in front of the vertebral column and psoas muscle and passing through the aortic opening of the diaphragm is inconsistent with the more classical description of its origin in the thorax from the junction of the right subcostal vein with the ascending lumbar vein, namely, that vein which lies behind the psoas major muscle, and in front of the transverse processes of the lumbar vertebrae. The necessity for a more exact description and drawings of the ascending lumbar veins, and of the origin of the vena azygos major, will be apparent on comparing the statements which are quoted below from current textbooks on human anatomy: (1) The vena azygos major or right azygos vein commences in the abdomen, as the right ascending lumbar vein, and enters the thorax through the aortic opening of the diaphragm, lying on the right side of the aorta, the thoracic duct intervening. The ascending lumbar vein is depicted in a figure on the succeeding page as passing upward in front of the psoas muscle, although it is correctly described in the text under the heading of the Lumbar Veins: The vessels of each side are connected by a series of longitudinal anastomosing veins, in front of the lumbar transverse pro- gesses, and the longitudinal vessel thus formed is called the ascending lumbar vein. (2) The azygos vein (O.T. vena azygos major) usually takes origin in the right ascending lumbar vein. It will be found in the interval between the right crus of the diaphragm and the aorta, upon the right side of the cisterna chyli, and it will Development of the Vena Cava, etc. 73 be noticed to enter the thorax by passing through the aortic opening....The vena azygos commences in the abdomen where it anastomoses either with one of the upper lumbar veins or directly with the inferior vena cava. (3) Between the crura and to the right of the aorta lies the right ascending lumbar vein, a longitudinal trunk linking together the transversely coursing lumbar veins, which pass inwards from under cover of the fibrous arches of the psoas to open into the inferior vena cava. This ascending lumbar vein is the beginning of the vena azygos major, but the latter vessel always has a communication with the back of the inferior vena cava as well. In many cases the ascending lumbar vein is hardly visible, and then the vena azygos rises entirely from the inferior vena cava. (4) The larger or right azygos vein commences opposite the first or second lumbar vertebra, by a branch from the right lumbar veins (the ascending lumbar); sometimes by a branch from the right renal vein, or from the inferior vena cava. It enters the thorax through the aortic opening of the diaphragm. (5) The vena azygos major begins in the abdomen, where it may be looked upon as the continuation upwards of the ascending lumbar vein. It passes through the aortic opening of the diaphragm....The trunk lumbar veins are connected be- neath the psoas muscle by vertical branches, which cross in front of the transverse processes. I would suggest that the term " ascending lumbar vein" be limited to the vertical precostal anastomosis, which extends between the iliolumbar vein and the termination of the subcostal vein; in other words, the longitudinal vessel behind the psoas major muscle which commences below in the ilio- lumbar tributary of the common iliac vein, and terminates above by uniting with the subcostal vein, to form on the right side the vena azygos major, and on the left side the vena azygos minor or hemiazygos vein. I would also suggest that the small anastomotic vein which commences on the dorsal aspect of the inferior vena cava or from one of its tributaries near the termination of the right renal vein, and passes upward through the aortic opening of the diaphragm to join the vena azygos major, be called the right lumbar azygos vein; further that the classical description of the origin of the vena azygos major, by the union of the right ascending lumbar vein with the right subcostal vein, be retained, and as a corollary to this, that the description of the vena azygos major commencing in the abdomen as a continuation of the ascending lumbar vein and entering the thorax through the aortic opening of the diaphragm be discarded altogether.
Recommended publications
  • Venous and Lymphatic Vessels. ANATOM.UA PART 1
    Lection: Venous and lymphatic vessels. ANATOM.UA PART 1 https://fipat.library.dal.ca/ta2/ Ch. 1 Anatomia generalis PART 2 – SYSTEMATA MUSCULOSKELETALIA Ch. 2 Ossa Ch. 3 Juncturae Ch. 4 Musculi PART 3 – SYSTEMATA VISCERALIA Ch. 5 Systema digestorium Ch. 6 Systema respiratorium Ch. 7 Cavitas thoracis Ch. 8 Systema urinarium Ch. 9 Systemata genitalia Ch. 10 Cavitas abdominopelvica PART 4 – SYSTEMATA INTEGRANTIA I Ch. 11 Glandulae endocrinae Ch. 12 Systema cardiovasculare Ch. 13 Organa lymphoidea PART 5 – SYSTEMATA INTEGRANTIA II Ch. 14 Systema nervosum Ch. 15 Organa sensuum Ch. 16 Integumentum commune ANATOM.UA ANATOM.UA Cardiovascular system (systema cardiovasculare) consists of the heart and the tubes, that are used for transporting the liquid with special functions – the blood or lymph, that are necessary for supplying the cells with nutritional substances and the oxygen. ANATOM.UA 5 Veins Veins are blood vessels that bring blood back to theheart. All veins carry deoxygenatedblood with the exception of thepulmonary veins and umbilical veins There are two types of veins: Superficial veins: close to the surface of thebody NO corresponding arteries Deep veins: found deeper in the body With corresponding arteries Veins of the systemiccirculation: Superior and inferior vena cava with their tributaries Veins of the portal circulation: Portal vein ANATOM.UA Superior Vena Cava Formed by the union of the right and left Brachiocephalic veins. Brachiocephalic veins are formed by the union of internal jugular and subclavianveins. Drains venous blood from: Head &neck Thoracic wall Upper limbs It Passes downward and enter the rightatrium. Receives azygos vein on the posterior aspect just before it enters theheart.
    [Show full text]
  • Split Azygos Vein: a Case Report
    Open Access Case Report DOI: 10.7759/cureus.13362 Split Azygos Vein: A Case Report Stefan Lachkar 1 , Joe Iwanaga 2 , Emma Newton 2 , Aaron S. Dumont 2 , R. Shane Tubbs 2 1. Anatomy, Seattle Chirdren's, Seattle, USA 2. Neurosurgery, Tulane University School of Medicine, New Orleans, USA Corresponding author: Joe Iwanaga, [email protected] Abstract The azygos venous system, which comprises the azygos, hemiazygos, and accessory hemiazygos veins, assists in blood drainage into the superior vena cava (SVC) from the thoracic cage and portions of the posterior mediastinum. Routine dissection of a fresh-frozen cadaveric specimen revealed a split azygos vein. The azygos vein branched off the inferior vena cava (IVC) at the level of the second lumbar vertebra as a single trunk and then split into two tributaries after forming a venous plexus. The right side of this system drained into the SVC and, inferiorly, the collective system drained into the IVC. Variant forms in the venous system, especially the vena cavae, are prone to dilation and tortuosity, leading to an increased likelihood of injury. Knowledge of the anatomical variations of the azygos vein is important for surgeons who use an anterior approach to the spine for diverse procedures. Categories: Anatomy Keywords: inferior vena cava, embryology, azygos vein, variation, anatomy, cadaver Introduction The inferior vena cava (IVC) is the largest vein in the human body. Its principal function is to return venous blood from the abdomen and lower extremities to the right atrium of the heart [1]. Developmental patterning of the IVC consists of three paired embryonic veins: subcardinal, supracardinal, and postcardinal.
    [Show full text]
  • Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies
    ORIGINAL ARTICLE Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies Anouk Scholten, MD; Robin M. Cisco, MD; Menno R. Vriens, MD, PhD; Wen T. Shen, MD; Quan-Yang Duh, MD Importance: Knowing the types and frequency of ad- Results: Variant venous anatomy was encountered in renal vein variants would help surgeons identify and con- 70 of 546 adrenalectomies (13%). Variants included no trol the adrenal vein during laparoscopic adrenalec- main adrenal vein identifiable (n=18), 1 main adrenal tomy. vein with additional small veins (n=11), 2 adrenal veins (n=20), more than 2 adrenal veins (n=14), and vari- Objectives: To establish the surgical anatomy of the main ants of the adrenal vein drainage to the inferior vena cava vein and its variants for laparoscopic adrenalectomy and and hepatic vein or of the inferior phrenic vein (n=7). to analyze the relationship between variant adrenal ve- Variants occurred more often on the right side than on nous anatomy and tumor size, pathologic diagnosis, and the left side (42 of 250 glands [17%] vs 28 of 296 glands operative outcomes. [9%], respectively; P=.02). Patients with variant anatomy compared with those with normal anatomy had larger Design, Setting, and Patients: In a retrospective re- tumors (mean, 5.1 vs 3.3 cm, respectively; PϽ.001), more view of patients at a tertiary referral hospital, 506 patients pheochromocytomas (24 of 70 [35%] vs 100 of 476 [21%], underwent 546 consecutive laparoscopic adrenalecto- respectively; P=.02), and more estimated blood loss mies between April 22, 1993, and October 21, 2011. Pa- (mean, 134 vs 67 mL, respectively; P=.01).
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Aberrant Inferior Suprarenal Vessels Crossing Posterior Pararenal Space: a Case Report
    Maryna Kornieieva et al., IJCR, 2019 4:86 Case Report IJCR (2019) 4:86 International Journal of Case Reports (ISSN:2572-8776) Aberrant inferior suprarenal vessels crossing posterior pararenal space: a case report Maryna Kornieieva, Andrew Vierra, Abdul Razzaq American University of Caribbean School of Medicine, Lowlands, Sint Maarten ABSTRACT During routine educational dissection of a cadaver (63-year-old, *Correspondence to Author: male, USA), an atypical course of the left inferior suprarenal ves- Maryna Kornieieva sels via the posterior pararenal space was discovered. American University of Caribbean Detailed analysis of the abdominal vascular pattern showed that School of Medicine, Lowlands, Sint the atypical inferior suprarenal artery represented a terminal Maarten branch of the left inferior phrenic artery. The last one branched off from the very beginning of the left renal artery, ascended between the fibers of the left crus of the diaphragm, then ran How to cite this article: laterally giving off muscular branches and, finally, descended Maryna Kornieieva, Andrew Vierra, along the costal part of the diaphragm to the left posterior para- Abdul Razzaq. Aberrant inferior renal space. The terminal branch of the inferior phrenic artery suprarenal vessels crossing poste- pierced the retrorenal fascia and entered the perirenal space rior pararenal space: a case report. as an atypical left inferior suprarenal artery. It ran upward and International Journal of Case Re- medially crossing the anterior surface of the kidney to reach and ports, 2019 4:86 supply the lower pole of the left suprarenal gland. The left inferior phrenic vein accompanied the artery taking a similar course. It received numerous tributaries passing via the posterior parare- nal space, drained the inferior suprarenal vein, and opened into the left renal vein.
    [Show full text]
  • Variant Branching Pattern of the Right Internal Iliac Vessels in a Male
    Case Report Original Article Archives of Clinical Experimental Surgery Increased of Langerhans Cells in Smokeless Tobacco-Associated Oral Mucosal Lesions Érica Dorigatti de Ávila1, Rafael Scaf de Molon2, Melaine de Almeida Lawall1, Renata Bianco Consolaro1, Alberto Consolaro1 Variant Branching Pattern of the Right Internal Iliac Vessels in A Male: A Case Report Satheesha Nayak Badagabettu, Naveen Kumar, Surekha Devadasa Shetty, Srinivasa Rao Sirasanagandla 1Bauru Dental School Abstract University of São Paulo Department of AnatomyBauru–SP, Brazil AbstractObjective: To evaluate the changes in the number of Langerhans Cells (LC) observed in the epitheliumMelaka ofManipal Medical College 2Araraquara Dental School smokeless tobacco (SLT-induced) lesions. (Manipal Campus) Internal iliac vessels show frequent variations in their branching pattern. We saw variations in the São Paulo State University Methods: Microscopic sections from biopsies carried out in the buccal mucosa of twenty patients, whoManipal were University branching pattern of right internal iliac vessels in a male cadaver. The internal iliac artery did not divide Manipal, Karnataka,Araraquara-SP, India Brazil intochronic anterior users and of posteriorsmokeless divisions. tobacco There (SLT), were were three utilized. common For thetrunks: control one group,for iliolumbar twenty andnon-SLT lateral users of SLT Received: Aug 09,Received: 2012 February 05, 2012 sacralwith normalarteries, mucosa another forwere inferior selected. gluteal The and sections internal werepudendal studied arteries, with routineand the thirdcoloring one forand superior were immunostained Accepted: Oct 09,Accepted: 2012 February 29, 2012 vesicalfor S-100, and CD1a,obturator Ki-67 arteries. and p63.The Thesesuperior data gluteal were and statistically middle rectal analyzed arteries by thearose Student’s directly t-testfrom tothe investigate Arch Clin the Exp SurgArch 2014;3:197-200 Clin Exp Surg 2012;X: X-X DOI:10.5455/aces.20121009120145 maindifferences trunk of in the the internal expression iliac artery.
    [Show full text]
  • What Is the History of the Term “Azygos Vein” in the Anatomical Terminology?
    Surgical and Radiologic Anatomy (2019) 41:1155–1162 https://doi.org/10.1007/s00276-019-02238-3 REVIEW What is the history of the term “azygos vein” in the anatomical terminology? George K. Paraskevas1 · Konstantinos N. Koutsoufianiotis1 · Michail Patsikas2 · George Noussios1 Received: 5 December 2018 / Accepted: 2 April 2019 / Published online: 26 April 2019 © Springer-Verlag France SAS, part of Springer Nature 2019 Abstract The term “azygos vein” is in common use in modern anatomical and cardiovascular textbooks to describe the vein which ascends to the right side of the vertebral column in the region of the posterior mediastinum draining into the superior vena cava. “Azygos” in Greek means “without a pair”, explaining the lack of a similar vein on the left side of the vertebral column in the region of the thorax. The term “azygos” vein was utilized frstly by Galen and then was regenerated during Sylvius’ dissections and Vesalius’ anatomical research, where it received its fnal concept as an ofcial anatomical term. The purpose of this study is to highlight the origin of the term “azygos vein” to the best of our knowledge for the frst time and its evolu- tion from the era of Hippocrates to Realdo Colombo. Keywords Anatomy · “azygos vein” · “sine pari vena” · Terminology · Vesalius Introduction History of the origin of the term “azygos vein” The term “azygos vein” can be found in all modern ana- tomical textbooks. The term is used to describe a vein that Hippocrates (Fig. 1) did not make any mention with regard ascends on the right side of the vertebral column in the to the azygos vein.
    [Show full text]
  • Intercostal Arteries a Single Posterior & Two Anterior Intercostal Arteries
    Intercostal Arteries •Each intercostal space contains: . A single posterior & .Two anterior intercostal arteries •Each artery gives off branches to the muscles, skin, parietal pleura Posterior Intercostal Arteries In the upper two spaces, arise from the superior intercostal artery (a branch of costocervical trunk of the subclavian artery) In the lower nine spaces, arise from the branches of thoracic aorta The course and branching of the intercostal arteries follow the intercostal Posterior intercostal artery Course of intercostal vessels in the posterior thoracic wall Anterior Intercostal Arteries In the upper six spaces, arise from the internal thoracic artery In the lower three spaces arise from the musculophrenic artery (one of the terminal branch of internal thoracic) Form anastomosis with the posterior intercostal arteries Intercostal Veins Accompany intercostal arteries and nerves Each space has posterior & anterior intercostal veins Eleven posterior intercostal and one subcostal vein Lie deepest in the costal grooves Contain valves which direct the blood posteriorly Posterior Intercostal Veins On right side: • The first space drains into the right brachiocephalic vein • Rest of the intercostal spaces drain into the azygos vein On left side: • The upper three spaces drain into the left brachiocephalic vein. • Rest of the intercostal spaces drain into the hemiazygos and accessory hemiazygos veins, which drain into the azygos vein Anterior Intercostal Veins • The lower five spaces drain into the musculophrenic vein (one of the tributary of internal thoracic vein) • The upper six spaces drain into the internal thoracic vein • The internal thoracic vein drains into the subclavian vein. Lymphatics • Anteriorly drain into anterior intercostal nodes that lie along the internal thoracic artery • Posterioly drain into posterior intercostal nodes that lie in the posterior mediastinum .
    [Show full text]
  • Nervous and Vascular System
    NO. A100 KEY CHART FOR MODEL NERVOUS AND VASCULAR SYSTEM 神経系・循環系・門脈系 模型 MADE IN JAPAN KEY CHART FOR MODEL NO. A100 NERVOUS AND VASCULAR SYSTEM 神経系・循環系・門脈系模型 White labels BRAIN ENCEPHALON 脳 A.Frontal lobe of cerebrum A. Lobus frontalis A. 前頭葉 1. Marginal gyrus 1. Gyrus frontalis superior 1. 上前頭回 2. Middle frontal gyrus 2. Gyrus frontalis medius 2. 中前頭回 3. Inferior frontal gyrus 3. Gyrus frontalis inferior 3. 下前頭回 4. Precentral gyru 4. Gyrus precentralis 4. 中心前回 B. Parietal lobe of cerebrum B. Lobus parietalis B. 全頂葉 5. Postcentral gyrus 5. Gyrus postcentralis 5. 中心後回 6. Superior parietal lobule 6. Lobulus parietalis superior 6. 上頭頂小葉 7. Inferior parietal lobule 7. Lobulus parietalis inferior 7. 下頭頂小葉 C.Occipital lobe of cerebrum C. Lobus occipitalis C. 後頭葉 D. Temporal lobe D. Lobus temporalis D. 側頭葉 8. Superior temporal gyrus 8. Gyrus temporalis superior 8. 上側頭回 9. Middle temporal gyrus 9. Gyrus temporalis medius 9. 中側頭回 10. Inferior temporal gyrus 10. Gyrus temporalis inferior 10. 下側頭回 11. Lateral sulcus 11. Sulcus lateralis 11. 外側溝(外側大脳裂) E. Cerebellum E. Cerebellum E. 小脳 12. Biventer lobule 12. Lobulus biventer 12. 二腹小葉 13. Superior semilunar lobule 13. Lobulus semilunaris superior 13. 上半月小葉 14. Inferior lobulus semilunaris 14. Lobulus semilunaris inferior 14. 下半月小葉 15. Tonsil of cerebellum 15. Tonsilla cerebelli 15. 小脳扁桃 16. Floccule 16. Flocculus 16. 片葉 F.Pons F. Pons F. 橋 G.Medullary G. Medulla oblongata G. 延髄 SPINAL CORD MEDULLA SPINALIS 脊髄 H. Cervical enlargement H.Intumescentia cervicalis H. 頸膨大 I.Lumbosacral enlargement I. Intumescentia lumbalis I. 腰膨大 J.Cauda equina J.
    [Show full text]
  • Surgical Anatomy of the Common Iliac Veins During Para-Aortic and Pelvic Lymphadenectomy for Gynecologic Cancer
    Original Article J Gynecol Oncol Vol. 25, No. 1:64-69 http://dx.doi.org/10.3802/jgo.2014.25.1.64 pISSN 2005-0380·eISSN 2005-0399 Surgical anatomy of the common iliac veins during para-aortic and pelvic lymphadenectomy for gynecologic cancer Kazuyoshi Kato, Shinichi Tate, Kyoko Nishikimi, Makio Shozu Department of Gynecology, Chiba University School of Medicine, Chiba, Japan See accompanying editorial by Lee on page 1. Objective: Compression of the left common iliac vein between the right common iliac artery and the vertebrae is known to be associated with the occurrence of left iliofemoral deep vein thrombosis (DVT). In this study, we described the variability in vascular anatomy of the common iliac veins and evaluated the relationship between the degree of iliac vein compression and the presence of DVT using the data from surgeries for gynecologic cancer. Methods: The anatomical variations and the degrees of iliac vein compression were determined in 119 patients who underwent systematic para-aortic and pelvic lymphadenectomy during surgery for primary gynecologic cancer. Their medical records were reviewed with respect to patient-, disease-, and surgery-related data. Results: The degrees of common iliac vein compression were classified into three grades: grade A (n=28, 23.5%), with a calculated percentage of 0%-25% compression; grade B (n=47, 39.5%), with a calculated percentage of 26%-50% compression; and grade C (n=44, 37%), with a calculated percentage of more than 50% compression. Seven patients (5.9%) had common iliac veins with anomalous anatomies; three were divided into small caliber vessels, two with a flattened structure, and two had double inferior vena cavae.
    [Show full text]
  • Co-Existence of the Double Inferior Vena Cava with Complex Interiliac
    Folia Morphol. Vol. 77, No. 1, pp. 151–155 DOI: 10.5603/FM.a2017.0074 C A S E R E P O R T Copyright © 2018 Via Medica ISSN 0015–5659 www.fm.viamedica.pl Co-existence of the double inferior vena cava with complex interiliac venous communication and aberrant common hepatic artery arising from superior mesenteric artery: a case report V. Chentanez, N. Nateniyom, T. Huanmanop, S. Agthong Department of Anatomy, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand [Received: 19 June 2017; Accepted: 31 July 2017] Variations of the arterial and venous system of the abdomen and pelvis have im- portant clinical significance in hepatobiliary surgery, abdominal laparoscopy, and radiological intervention. A case of double inferior vena cava (IVC) with complex interiliac communication and variation of the common hepatic artery (CHA) arising from superior mesenteric artery (SMA) in a 79-year-old male cadaver is presented. Both IVCs ascended on either side of the abdominal aorta. The left-sided IVC crossed anterior to the aorta at the level of the left renal vein. The union of both IVCs was at the level just above the right renal vein. The diameter of right-sided IVC, left-sided IVC and the common IVC were 16.73 mm, 21.57 mm and 28.75 mm, respectively. In the pelvic cavity, the right common iliac vein was formed by a union of right external and internal iliac veins while the formation of left common iliac vein was from the external iliac vein and two internal iliac veins. An interiliac vein ran from right internal iliac vein to left common iliac vein with an additional communicating vein running from the middle of this interiliac vein to the right common iliac vein.
    [Show full text]
  • Pelvic Venous Disorders
    PELVIC VENOUS DISORDERS Anatomy and Pathophysiology Two Abdomino-Pelvic Compression Syndromes DIAGNOSIS of ABDOMINOO-PELVICP z Nutcracker Syndrome 9 Compression of the left renal vein COMPRESSIONCO SS O SYNDROMES S O with venous congestion of the left (with Emphasis on Duplex Ultrasound) kidney and left ovarian vein reflux R. Eugene Zierler, M.D. z May-Thurner Syndrome 9 Compression of the left common iliac vein by the right common The DD.. EE.. StrandnessStrandness,, JrJr.. Vascular Laboratory iliac artery with left lower University of Washington Medical Center extremity venous stasis and left DivisionDivision of Vascular Surgery internal iliac vein reflux University of Washington, School of Medicine ABDOMINO-PELVIC COMPRESSION Nutcracker Syndrome Left Renal Vein Entrapment z Grant 1937: Anatomical observation “…the left renal vein, as it lies between the aorta and superior mesenteric artery, resembles a nut between the jaws of a nutcracker.” X z El-Sadr 1950: Described first patient with the clinical syndrome X z De Shepper 1972: Named the disorder “Nutcracker Syndrome” Copy Here z Nutcracker Phenomenon z Nutcracker Syndrome 9 Anatomic finding only 9 Hematuria, proteinuria 9 Compression of left renal 9 Flank pain vein - medial narrowing 9 Pelvic pain/congestion with lateral (hilar) dilation 9 Varicocele ABDOMINO-PELVIC COMPRESSION ABDOMINO-PELVIC COMPRESSION Nutcracker Syndrome - Diagnosis Nutcracker Syndrome z Anterior Nutcracker z Posterior Nutcracker z Evaluate the left renal vein for aorto-mesenteric compression 9 Compression between
    [Show full text]