<<

Zeta-values from Euler to Weil-étale

Alexey Beshenov Université de Bordeaux / Universiteit Leiden

Advised by Baptiste Morin and Bas Edixhoven

15 May 2017, Leiden

ALGANT Erasmus Mundus

2:3

0 / 20 Outline

∑ ▶ 1 XVIII century : n≥1 n2k . ▶ XIX century mathematics: ζ(s) and ζF(s). ▶ XX century mathematics: ζX(s). ▶ Algebraic K-theory. ▶ Motivic cohomology. ▶ Weil-étale cohomology.

1 / 20 before Riemann

▶ ∑Pietro Mengoli, 1644, the “Basel problem”: 1 = + 1 + 1 + 1 + 1 + ··· =????? n≥1 n2 1 4 9 16 25 ▶ π2 Euler (“De summis serierum reciprocarum”, 1740): 6 . ▶ In general (ibid.), ∑ 2k−1 1 = (− )k+1 2 π2k n≥1 n2k 1 B2k (2k)! . ▶ Bernoulli numbers: 1 1 − 1 B0 = 1, B1 = 2 , B2 = 6 , B3 = 0, B4 = 30 , B5 = 0, 1 − 1 5 B6 = 42 , B7 = 0, B8 = 30 , B9 = 0, B10 = 66 , ... (Jacob Bernoulli, “Ars Conjectandi”, 1713). ▶ ∑Faulhaber’s formula:∑ ( ) k 1 k+1 k+1−i 1≤i≤n i = k+1 0≤i≤k i Bi n (Johann Faulhaber, “Academia Algebræ”, 1631; Bernoulli, 1713).

2 / 20 Riemann zeta function Riemann, “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse” (1859): ∑ ▶ 1 ζ(s) := n≥1 ns (Re s > 1). ▶ Euler∏ (“Variæ observationes circa series infinitas”, 1744): 1 = p prime 1−p−s . ▶ Meromorphic continuation to C with one simple pole at s = 1. ▶ Functional equation ( ) πs ζ(1 − s) = 2 (2π)−s Γ(s) cos ζ(s). 2

▶ (Trivial) simple zeros at s = −2, −4, −6,... − ▶ − k+1 22k 1 2k Euler’s calculation ζ(2k) = ( 1) B2k (2k)! π becomes B ζ(−n) = − n+1 for n = 1, 2, 3, 4,... n + 1

3 / 20 ζ(s)

interesting things

s

( ) = − 1 ζ 0 2

s = 1

4 / 20 ζ(s)

1 1 120 240 −9 −5 −1 s −7 −3 − 1 − 1 252 132

− 1 12

5 / 20 Riemann zeta function at positive odd integers

▶ Roger Apéry, 1977: ζ(3) = 1.2020569... is irrational. ▶ Tanguy Rivoal, 2000: infinitely many irrationals ζ(2k + 1). ▶ Wadim Zudilin, 2001: at least one irrational among ζ(5), ζ(7), ζ(9), ζ(11) (which one?) ▶ Conjecture: ζ(2k + 1) are transcendental, algebraically independent.

6 / 20 Dedekind zeta function: definition

▶ F/Q — number field, OF := the . ▶ Dedekind, appendix to Dirichlet’s “Vorlesungen über Zahlentheorie” (1863):

∑ 1 ∏ 1 : ζF(s) = s = −s . (Re s > 1) NF/Q(a) 1 − NF/Q(p) a⊂OF p⊂OF a≠ 0 prime

▶ Note: ζQ(s) = ζ(s).

7 / 20 Dedekind zeta function: functional equation

▶ Hecke, “Über die Zetafunktion beliebiger algebraischer Zahlkörper”, 1917: meromorphic continuation with simple pole at s = 1; functional equation

( ) ( ) s−1/2 πs r1+r2 πs r2 ζF(1 − s) = |∆F| cos sin 2 ( 2 ) −s d 2 (2π) Γ(s) ζF(s),

where r1 := real places, r2 := conjugate pairs of complex places; d := [F : Q] = r1 + 2 r2 and ∆F := discriminant. ▶ (Trivial) zeros: s: 0 −1 −2 −3 −4 −5 ··· order: r1 + r2 − 1 r2 r1 + r2 r2 r1 + r2 r2 ···

8 / 20

Dirichlet, “Recherches sur diverses applications de l’analyse infinitésimale à la théorie des nombres” (1839); * Gauss, “Disquisitiones Arithmeticæ” (1801): ▶ Pole at s = 1:

2r1 (2π)r2 # Cl(F) lim(s − 1) ζ (s) = √ R , → F F s 1 #µF · |∆F| ⊂ O× where Cl(F) — class group; µF F — roots of unity; RF — Dirichlet regulator. ▶ Zero at s = 0: # Cl(F) −(r1+r2−1) lim s ζF(s) = − RF. s→0 #µF

9 / 20 Values of the Dedekind zeta function

▶ If F is totally real (r2 = 0), then ζF(−n) ≠ 0 for odd n. ▶ “Siegel–Klingen theorem”, 1961: ζF(−n) ∈ Q. ▶ Günter Harder, “A Gauss–Bonnet formula for discrete arithmetically defined groups”, 1971:

1 ∏ χ(Sp (O )) = ζ (1 − 2n). 2n F 2n (d−n) F 1≤i≤n

▶ Q Example: F = , n = 1, Sp2 = SL2, 1 B χ(SL (Z)) = − = − 2 = ζ(−1) 2 12 2

(“orbifold Euler characteristic” of H/ SL2(Z)).

10 / 20 Zeta function of a scheme

▶ X → Spec Z — arithmetic scheme (separated, of finite type). ∏ ▶ 1 ζ (s) := − . (Re s > dim X). X x∈X0 1−N(x) s X0 := closed points; N(x) := #residue field at x. ▶ Note: ζSpec Z(s) = ζ(s) and ζSpec OF (s) = ζF(s). ▶ Conjecture (!): meromorphic continuation and a functional equation ζX(s) ↔ ζX(dim X − s). ▶ Special values may be studied via i K-theory Kn(X) or motivic cohomology H (X, Z(n)).

11 / 20 Algebraic K-theory

▶ Input: an “exact category” C. ≃ Examples: VB(X) and R-Projfg VB(Spec R). ▶ Grothendieck, 1957 (work on [Grothendieck–Hirzebruch]–Riemann–Roch):

Z ⟨isomorphism classes of objects of C⟩ K (C) := . 0 [B] = [A] + [C] for each s.e.s. 0 → A → B → C → 0

▶ Quillen, 1973:

∼ K0(C) = π1(BQC, 0),

Kn(C) := πn+1(BQC, 0);

Q — Quillen’s “Q-construction”, B — geometric realization of the nerve.

12 / 20 © Sidney Harris 13 / 20 Some of the few known calculations

▶ Quillen, 1972:

∼ K0(Fq) = Z,

K2n(Fq) = 0, ∼ n K2n−1(Fq) = Z/(q − 1)Z.

▶ F − − −1 Note: #K2n−1( q) = ζFq ( n) . ▶ Quillen, 1973: Kn(OF) are finitely generated. ▶ Armand Borel, 1974:  0, n = 2k, rk Kn(O ) = r + r , n = 4k + 1, (k > 0) F  1 2 r2, n = 4k − 1. ▶ Note: rk K2n+1(OF) = order of zero of ζF(s) at s = −n.

14 / 20 Torsion in the K-theory of Z

▶ ∼ Milnor, 1971: K2(Z) = Z/2Z. ▶ ∼ Lee, Szczarba, 1976: K3(Z) = Z/48Z. ▶ Rognes, 2000: K4(Z) = 0. ▶ ∼ Elbaz-Vincent, Gangl, Soulé, 2002: K5(Z) = Z. ▶ Using the Bloch–Kato conjecture (Voevodsky, Rost, ...):

n: 2 3 4 5 Kn(Z): Z/2Z Z/48Z 0 Z n: 6 7 8 9 Kn(Z): 0 Z/240Z (0?) Z ⊕ Z/2Z n: 10 11 12 13 Kn(Z): Z/2Z Z/1008Z (0?) Z n: 14 15 16 17 Kn(Z): 0 Z/480Z (0?) Z ⊕ Z/2Z n: 18 19 20 21 Kn(Z): Z/2Z Z/528Z (0?) Z n: 22 23 24 25 Kn(Z): Z/691ZZ/65 520Z (0?) Z ⊕ Z/2Z

15 / 20 Lichtenbaum's conjecture

▶ ∼ Easy: K0(OF) = Cl(F) ⊕ Z. ▶ O ∼ O× Not-so-easy (Bass, Milnor, Serre, 1967): K1( F) = F . × − ▶ O ∼ Zr1+r2 1 ⊕ Dirichlet’s theorem: F = µF. ▶ Class number formula: #K (O ) −(r1+r2−1) 0 F tors lim s ζF(s) = − RF. s→0 #K1(OF)tors ▶ Lichtenbaum, 1973:

− #K (O ) lim(n − s) µn ζ (−s) = 2? 2n F R . → F F,n s n #K2n+1(OF)tors

RF,n — “higher regulators” (Borel, Beĭlinson). Z Z ▶ Example: ζ(−1) = − B2 = − 1 , #K2( ) = # /2 = 1 . 2 12 #K3(Z) #Z/48 24 ▶ ζ(− ) = − B12 = 691 = 691 Example: 11 12 12·2730 23·32·5·7·13 , #K22(Z) 691 691 = = 4 2 . #K23(Z) 65520 2 ·3 ·5·7·13

16 / 20 Motivic cohomology

▶ Bloch, 1986: complexes of Zariski / étale sheaves Z(n). ▶ i Z i Z H (XZar, (n)), H (Xét, (n)) — (hyper)cohomology groups. ▶ Finite generation, boundedness for arithmetic X: conjectures. ▶ Possible motivation (no pun intended):

pq p Z ⇒ E2 = H (X, (q)) = K2q−p(X), similar to the Atiyah–Hirzebruch spectral sequence. ▶ i Z H (Xét, (n)) might be better for studying the zeta-values.

17 / 20 Weil-étale cohomology (Lichtenbaum, 2005)

For an arithmetic scheme X there should (!) exist abelian i Z i Re groups HW,c(X, (0)) and real vector spaces HW(X, (0)), i Re HW,c(X, (0)) such that i Z 1. HW,c(X, (0)) are f.g., almost all zero. ∼ i Z ⊗ R −→= i Re 2. HW,c(X, (0)) HW,c(X, (0)). ∈ 1 Re 3. For a canonical class θ HW(X, (0))

··· −→∪θ i Re −→∪θ i+1 Re −→·∪θ · · HW,c(X, (0)) HW,c(X, (0)) a bounded acyclic complex of f.d. vector spaces. ∑ − i · · i Z 4. ords=0 ζ(X, s) = i≥0( 1) i rkZ H (X, (0)). ⊗ W,c Z · ∗ −1 i Z (−1)i 5. λ(ζ (X, 0) ) = i∈Z detZ HW,c(X, (0)) , ∼ (⊗ ) R −→= i Z (−1)i ⊗ R where λ: i∈Z detZ HW,c(X, (0)) .

18 / 20 Weil-étale cohomology

▶ Geisser, 2004; Lichtenbaum, 2005: construction of i Z HW,c(X, (n)) for smooth varieties over finite fields. ▶ i Z O Lichtenbaum, 2009: HW,c(X, (0)) for X = Spec F. ▶ i Z Morin, 2012: HW,c(X, (0)) for proper regular arithmetic schemes. ▶ i Z ∈ Z Flach, Morin, 2016: HW,c(X, (n)) for n for proper regular arithmetic schemes. ▶ i Z My thesis, work in progress: HW,c(X, (n)) ▶ for any arithmetic scheme (makes things harder) ▶ and n = −1, −2, −3, −4,... (makes things easier) ▶ Construction via the cycle complexes Z(n), following Flach and Morin (input: conjectures on finite generation and boundedness).

19 / 20 Thank you!