19 the Analytic Class Number Formula

Total Page:16

File Type:pdf, Size:1020Kb

19 the Analytic Class Number Formula 18.785 Number theory I Fall 2017 Lecture #19 11/13/2017 19 The analytic class number formula In the previous lecture we proved Dirichlet's theorem on primes in arithmetic progressions modulo the claim that the L-function L(s; χ) is holomorphic and nonvanishing at s = 1 for all non-principal Dirichlet characters χ. To establish this claim we will prove a more general result that has many other applications. Recall that the Dedekind zeta function of a number field K is defined by X −s Y −s −1 ζK (s) := N(a) = (1 − N(p) ) ; a p where a ranges over nonzero ideals of OK and p ranges over nonzero prime ideals of OK ; as we showed in the previous lecture the sum and product converge absolutely on Re(s) > 1. The following theorem is often attributed to Dirichlet, although he originally proved it only for quadratic fields (this is all he needed to prove his theorem on primes in arithmetic progressions, but we will use it in a stronger form). The formula for the limit in the theorem was proved by Dedekind [2, Supplement XI] (as a limit from the right, without an analytic continuation to a punctured neighborhood of z = 1), and analytic continuation was proved by Landau [3]. Hecke later showed that, like the Riemann zeta function, the Dedekind zeta function has an analytic continuation to all of C and satisfies a functional equation [1], but we won't take the time to prove this; see Remark x19.13 for details. Theorem (Analytic Class Number Formula). Let K be a number field of degree n. 1 The Dedekind zeta function ζK (z) extends to a meromorphic function on Re(z) > 1 − n that is holomorphic except for a simple pole at z = 1 with residue 2r(2π)sh R lim (z − 1)ζ (z) = K K ; K 1=2 z!1+ wK jDK j where r and s are the number of real and complex places of K, respectively, hK := # cl OK is the class number, RK is the regulator, wK := #µK is the number of roots of unity, and DK := disc OK is the absolute discriminant. 1=2 r s Recall that jDj is the covolume of OK as a lattice in KR := K ⊗Q R ' R × C × (Proposition 14.12), and RK is the covolume of ΛK := Log(OK ) as a lattice in the trace- r+s zero hyperplane R0 (see Definition 15.14) The residue of ζK (z) at z = 1 thus reflects both the additive and multiplicative structure of the ring of integers OK . Remark 19.1. In practice the class number hK is usually the most difficult quantity in the analytic class number formula to compute. We can approximate the limit on the LHS to any desired precision using a finite truncation of either the sum or product defining ζK (s). Provided we can compute the other quantities to similar precision, this provides a method for computing (or at least bounding) the class number hK ; this explains the origin of the term \analytic class number formula". You will have an opportunity to explore a computational application of this formula on Problem Set 9. Example 19.2. For K = Q we have n = 1, r = 1, s = 0, h = 1, w = #{±1g = 2, D = 1, and the regulator R is the covolume of a lattice in a zero-dimensional vector space, equivalently, the determinant of a 0 × 0 matrix, which is 1. In this case the theorem states 1 that ζQ(z) = ζ(z) is holomorphic on Re z > 1 − 1 = 0 except for a simple pole at z = 1 with residue 21(2π)0 · 1 · 1 lim (z − 1)ζQ(z) = = 1: z!1+ 2 · j1j1=2 Andrew V. Sutherland 19.1 Lipschitz parametrizability In order to prove the analytic class number formula we need an asymptotic estimate for the number of nonzero OK -ideals a with absolute norm N(a) bounded by a parameter t 2 R>0 that we will let tend to infinity; this is necessary for us to understand the behavior of P −z + × ζK (z) = a N(a) as z ! 1 . Our strategy is to count points in Log(OK \ K ) that lie r+s inside a suitably chosen region S of R that we will than scale by t. In order to bound this count as a function of t we need a condition on S that ensures that the count grows smoothly with t; this requires S to have a \reasonable" shape. A sufficient condition for this is Lipschitz parametrizability. Definition 19.3. Let X and Y be metric spaces. A function f : X ! Y is Lipschitz continuous if there exists c > 0 such that for all distinct x1; x2 2 X d(f(x1); f(x2)) ≤ c · d(x1; x2): Every Lipschitz continuous function is uniformly continuous, but the converse need p not hold. For example, the function f(x) = x on [0; 1] is uniformly continuous but not p Lipschitz continuous, since jp1=n − 0j=j1=n − 0j = n is unbounded as 1=n ! 0. Definition 19.4. A set B in a metric space X is d-Lipschitz parametrizable if it is the d union of the images of a finite number of Lipschitz continuous functions fi : [0; 1] ! B. Before stating our next result, we recall the asymptotic notation f(t) = g(t) + O(h(t)) (as t ! a); for real or complex valued functions f; g; h of a real variable t, which means f(t) − g(t) lim sup < 1: t!a h(t) Typically a = 1, and this is assumed if a is not specified. n 0 Lemma 19.5. Let S ⊆ R be a set whose boundary @S := S − S is (n − 1)-Lipschitz parametrizable. Then n n n−1 #(tS \ Z ) = µ(S)t + O(t ); n as t ! 1, where µ is the standard Lebesgue measure on R . n n Proof. It suffices to prove the lemma for positive integers, since #(tS \ Z ) and µ(S)t are both monotonically increasing functions of t and µ(S)(t + 1)n − µ(S)tn = O(tn−1). We can n partition R as the disjoint union of half-open cubes of the form C(a1; : : : ; an) = f(x1; : : : ; xn) 2 Rn : xi 2 [ai; ai + 1)g; with a1; : : : ; an 2 Z. Let C be the set of all such half-open cubes C. For each t > 0 define B0(t) := #fC 2 C : C ⊆ tSg; B1(t) := #fC 2 C : C \ tS 6= ;g: For every t > 0 we have n B0(t) ≤ #(tS \ Z ) ≤ B1(t): 18.785 Fall 2017, Lecture #19, Page 2 We can bound B1(t)−B0(t) by noting that each C(a1; : : : ; an) counted by this difference n p contains a point (a1; : : : ; an) 2 Z within a distance n = O(1) of a point in @tS = t@S. n−1 Let f1; : : : ; fm be Lipschitz functions [0; 1] ! @S whose images cover @S, and let n−1 c1; : : : cm be constants such that d(fi(x1); fi(x2)) ≤ cid(x1; x2) for all x1; x2 2 [0; 1] For any y 2 @S, we have y = fi(x1; : : : ; xn−1) for some i, and if we put rj = btxjc 2 Z so that 0 ≤ xj − rj=t ≤ 1=t, then p r1 rn−1 r1 rn−1 d(y; fi( t ;:::; t )) ≤ ci · d (x1; : : : ; xn−1); ( t ;:::; t ) < ci n=t ≤ c=t; p where c := n maxi ci. Thus every y 2 @S lies within a distance c=t of a point in the set r1 rn−1 P = fi t ;:::; t : 1 ≤ i ≤ m; 0 ≤ r1; : : : ; rn−1 ≤ t : which has cardinality m(t + 1)n−1 = O(tn−1). It follows that every point of @tS is within a distance c of one of the O(tn−1) points in tP. The number of integer lattice points within p a distance n of a point in t@S is thus also O(tn−1), and therefore n−1 B1(t) − B0(t) = O(t ): n We now note that B0(t) ≤ µ(tS) ≤ B1(t) and µ(tS) = t µ(S); the lemma follows. n Corollary 19.6. Let Λ be a lattice in an R-vector space V ' R and let S ⊆ V be a set whose boundary is (n − 1)-Lipschitz parametrizable. Then µ(S) #(tS \ Λ) = tn + O(tn−1): covol(Λ) n Proof. The case Λ ⊆ Z is given by the lemma; note that the normalization of the Haar measure µ is irrelevant, since we are taking a ratio of volumes which is necessarily preserved n under the isomorphism of topological vector spaces V ' R . We now note that if the corollary holds for sΛ, for some s > 0, then it also holds for Λ, since tS \ sΛ = (t=s)S \ Λ. For any lattice Λ, we can choose s > 0 so that sΛ is arbitrarily close to an integer lattice (for example, take s to be the LCM of all denominators appearing in rational approximations of the coordinates of a basis for Λ). The corollary follows. Remark 19.7. Recall that covol(Λ) = µ(F ) for any fundamental region F for Λ, so the ratio µ(S)= covol(Λ) = µ(S)/µ(F ) in Corollary 19.6 does not depend on the normalization of the Haar measure µ. However, we plan to apply the corollary to Λ = OK and want to p 1=2 replace covol(OK ) with j disc(OK )j = jDK j via Proposition 14.12, which requires us to use the normalized Haar measure on KR defined in x14.2.
Recommended publications
  • Arithmetic Equivalence and Isospectrality
    ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK .
    [Show full text]
  • Generalized Riemann Hypothesis Léo Agélas
    Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics.
    [Show full text]
  • Dirichlet's Theorem
    Dirichlet's Theorem Austin Tran 2 June 2014 Abstract Shapiro's paper \On Primes in Arithmetic Progression" [11] gives a nontraditional proof for Dirichlet's Theorem, utilizing mostly elemen- tary algebraic number theory. Most other proofs of Dirichlet's theo- rem use Dirichlet characters and their respective L-functions, which fall under the field of analytic number theory. Dirichlet characters are functions defined over a group modulo n and are used to construct se- ries representing what are called Dirichlet L-functions in the complex plane. This paper provides the appropriate theoretical background in all number theory, and provides a detailed proof of Dirichlet's Theo- rem connecting analytic number theory from [11] and [9] and algebraic number theory from sources such as [1]. 1 Introduction Primes, and their distributions, have always been a central topic in num- ber theory. Sequences of primes, generated by functions and particularly polynomials, have captured the attention of famous mathematicians, unsur- prisingly including Euler and Dirichlet. In 1772 Euler famously noticed that the quadratic n2 −n+41 always produce primes for n from 1 to 41. However, it has been known for even longer that it is impossible for any polynomial to always evaluate to a prime. The proof is a straightforward one by contradic- tion, and we can give it here. Lemma 0: If f is a polynomial with integer coefficients, f(n) cannot be prime for all integers n. 1 Suppose such f exists. Then f(1) = p ≡ 0 (mod p). But f(1 + kp) is also equivalent to 0 modulo p for any k, so unless f(1 + kp) = p for all k, f does not produce all primes.
    [Show full text]
  • An Explicit Formula for Dirichlet's L-Function
    University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 5-2018 An explicit formula for Dirichlet's L-Function Shannon Michele Hyder University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Mathematics Commons Recommended Citation Hyder, Shannon Michele, "An explicit formula for Dirichlet's L-Function" (2018). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. An Explicit Formula for Dirichlet's L-Function Shannon M. Hyder Departmental Honors Thesis The University of Tennessee at Chattanooga Department of Mathematics Thesis Director: Dr. Andrew Ledoan Examination Date: April 9, 2018 Members of Examination Committee Dr. Andrew Ledoan Dr. Cuilan Gao Dr. Roger Nichols c 2018 Shannon M. Hyder ALL RIGHTS RESERVED i Abstract An Explicit Formula for Dirichlet's L-Function by Shannon M. Hyder The Riemann zeta function has a deep connection to the distribution of primes. In 1911 Landau proved that, for every fixed x > 1, X T xρ = − Λ(x) + O(log T ) 2π 0<γ≤T as T ! 1. Here ρ = β + iγ denotes a complex zero of the zeta function and Λ(x) is an extension of the usual von Mangoldt function, so that Λ(x) = log p if x is a positive integral power of a prime p and Λ(x) = 0 for all other real values of x.
    [Show full text]
  • An Introduction to Iwasawa Theory
    An Introduction to Iwasawa Theory Notes by Jim L. Brown 2 Contents 1 Introduction 5 2 Background Material 9 2.1 AlgebraicNumberTheory . 9 2.2 CyclotomicFields........................... 11 2.3 InfiniteGaloisTheory . 16 2.4 ClassFieldTheory .......................... 18 2.4.1 GlobalClassFieldTheory(ideals) . 18 2.4.2 LocalClassFieldTheory . 21 2.4.3 GlobalClassFieldTheory(ideles) . 22 3 SomeResultsontheSizesofClassGroups 25 3.1 Characters............................... 25 3.2 L-functionsandClassNumbers . 29 3.3 p-adicL-functions .......................... 31 3.4 p-adic L-functionsandClassNumbers . 34 3.5 Herbrand’sTheorem . .. .. .. .. .. .. .. .. .. .. 36 4 Zp-extensions 41 4.1 Introduction.............................. 41 4.2 PowerSeriesRings .......................... 42 4.3 A Structure Theorem on ΛO-modules ............... 45 4.4 ProofofIwasawa’stheorem . 48 5 The Iwasawa Main Conjecture 61 5.1 Introduction.............................. 61 5.2 TheMainConjectureandClassGroups . 65 5.3 ClassicalModularForms. 68 5.4 ConversetoHerbrand’sTheorem . 76 5.5 Λ-adicModularForms . 81 5.6 ProofoftheMainConjecture(outline) . 85 3 4 CONTENTS Chapter 1 Introduction These notes are the course notes from a topics course in Iwasawa theory taught at the Ohio State University autumn term of 2006. They are an amalgamation of results found elsewhere with the main two sources being [Wash] and [Skinner]. The early chapters are taken virtually directly from [Wash] with my contribution being the choice of ordering as well as adding details to some arguments. Any mistakes in the notes are mine. There are undoubtably type-o’s (and possibly mathematical errors), please send any corrections to [email protected]. As these are course notes, several proofs are omitted and left for the reader to read on his/her own time.
    [Show full text]
  • Automorphic Functions and Fermat's Last Theorem(3)
    Jiang and Wiles Proofs on Fermat Last Theorem (3) Abstract D.Zagier(1984) and K.Inkeri(1990) said[7]:Jiang mathematics is true,but Jiang determinates the irrational numbers to be very difficult for prime exponent p.In 1991 Jiang studies the composite exponents n=15,21,33,…,3p and proves Fermat last theorem for prime exponenet p>3[1].In 1986 Gerhard Frey places Fermat last theorem at the elliptic curve that is Frey curve.Andrew Wiles studies Frey curve. In 1994 Wiles proves Fermat last theorem[9,10]. Conclusion:Jiang proof(1991) is direct and simple,but Wiles proof(1994) is indirect and complex.If China mathematicians had supported and recognized Jiang proof on Fermat last theorem,Wiles would not have proved Fermat last theorem,because in 1991 Jiang had proved Fermat last theorem.Wiles has received many prizes and awards,he should thank China mathematicians. - Automorphic Functions And Fermat’s Last Theorem(3) (Fermat’s Proof of FLT) 1 Chun-Xuan Jiang P. O. Box 3924, Beijing 100854, P. R. China [email protected] Abstract In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous proof, which this margin is too small to contain.” This means: xyznnnn+ =>(2) has no integer solutions, all different from 0(i.e., it has only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT).
    [Show full text]
  • Introduction to L-Functions: Dedekind Zeta Functions
    Introduction to L-functions: Dedekind zeta functions Paul Voutier CIMPA-ICTP Research School, Nesin Mathematics Village June 2017 Dedekind zeta function Definition Let K be a number field. We define for Re(s) > 1 the Dedekind zeta function ζK (s) of K by the formula X −s ζK (s) = NK=Q(a) ; a where the sum is over all non-zero integral ideals, a, of OK . Euler product exists: Y −s −1 ζK (s) = 1 − NK=Q(p) ; p where the product extends over all prime ideals, p, of OK . Re(s) > 1 Proposition For any s = σ + it 2 C with σ > 1, ζK (s) converges absolutely. Proof: −n Y −s −1 Y 1 jζ (s)j = 1 − N (p) ≤ 1 − = ζ(σ)n; K K=Q pσ p p since there are at most n = [K : Q] many primes p lying above each rational prime p and NK=Q(p) ≥ p. A reminder of some algebraic number theory If [K : Q] = n, we have n embeddings of K into C. r1 embeddings into R and 2r2 embeddings into C, where n = r1 + 2r2. We will label these σ1; : : : ; σr1 ; σr1+1; σr1+1; : : : ; σr1+r2 ; σr1+r2 . If α1; : : : ; αn is a basis of OK , then 2 dK = (det (σi (αj ))) : Units in OK form a finitely-generated group of rank r = r1 + r2 − 1. Let u1;:::; ur be a set of generators. For any embedding σi , set Ni = 1 if it is real, and Ni = 2 if it is complex. Then RK = det (Ni log jσi (uj )j)1≤i;j≤r : wK is the number of roots of unity contained in K.
    [Show full text]
  • SMALL ISOSPECTRAL and NONISOMETRIC ORBIFOLDS of DIMENSION 2 and 3 Introduction. in 1966
    SMALL ISOSPECTRAL AND NONISOMETRIC ORBIFOLDS OF DIMENSION 2 AND 3 BENJAMIN LINOWITZ AND JOHN VOIGHT ABSTRACT. Revisiting a construction due to Vigneras,´ we exhibit small pairs of orbifolds and man- ifolds of dimension 2 and 3 arising from arithmetic Fuchsian and Kleinian groups that are Laplace isospectral (in fact, representation equivalent) but nonisometric. Introduction. In 1966, Kac [48] famously posed the question: “Can one hear the shape of a drum?” In other words, if you know the frequencies at which a drum vibrates, can you determine its shape? Since this question was asked, hundreds of articles have been written on this general topic, and it remains a subject of considerable interest [41]. Let (M; g) be a connected, compact Riemannian manifold (with or without boundary). Asso- ciated to M is the Laplace operator ∆, defined by ∆(f) = − div(grad(f)) for f 2 L2(M; g) a square-integrable function on M. The eigenvalues of ∆ on the space L2(M; g) form an infinite, discrete sequence of nonnegative real numbers 0 = λ0 < λ1 ≤ λ2 ≤ ::: , called the spectrum of M. In the case that M is a planar domain, the eigenvalues in the spectrum of M are essentially the frequencies produced by a drum shaped like M and fixed at its boundary. Two Riemannian manifolds are said to be Laplace isospectral if they have the same spectra. Inverse spectral geom- etry asks the extent to which the geometry and topology of M are determined by its spectrum. For example, volume, dimension and scalar curvature can all be shown to be spectral invariants.
    [Show full text]
  • “Character” in Dirichlet's Theorem on Primes in an Arithmetic Progression
    The concept of “character” in Dirichlet’s theorem on primes in an arithmetic progression∗ Jeremy Avigad and Rebecca Morris October 30, 2018 Abstract In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. We survey implicit and explicit uses of Dirichlet characters in presentations of Dirichlet’s proof in the nineteenth and early twentieth centuries, with an eye towards understanding some of the pragmatic pres- sures that shaped the evolution of modern mathematical method. Contents 1 Introduction 2 2 Functions in the nineteenth century 3 2.1 Thegeneralizationofthefunctionconcept . 3 2.2 Theevolutionofthefunctionconcept . 10 3 Dirichlet’s theorem 12 3.1 Euler’s proof that there are infinitely many primes . 13 3.2 Groupcharacters ........................... 14 3.3 Dirichlet characters and L-series .................. 17 3.4 ContemporaryproofsofDirichlet’stheorem . 18 arXiv:1209.3657v3 [math.HO] 26 Jun 2013 4 Modern aspects of contemporary proofs 19 5 Dirichlet’s original proof 22 ∗This essay draws extensively on the second author’s Carnegie Mellon MS thesis [64]. We are grateful to Michael Detlefsen and the participants in his Ideals of Proof workshop, which provided feedback on portions of this material in July, 2011, and to Jeremy Gray for helpful comments. Avigad’s work has been partially supported by National Science Foundation grant DMS-1068829 and Air Force Office of Scientific Research grant FA9550-12-1-0370. 1 6 Later presentations 28 6.1 Dirichlet................................ 28 6.2 Dedekind ............................... 30 6.3 Weber ................................. 34 6.4 DelaVall´ee-Poussin ......................... 36 6.5 Hadamard..............................
    [Show full text]
  • Notes on the Riemann Hypothesis Ricardo Pérez-Marco
    Notes on the Riemann Hypothesis Ricardo Pérez-Marco To cite this version: Ricardo Pérez-Marco. Notes on the Riemann Hypothesis. 2018. hal-01713875 HAL Id: hal-01713875 https://hal.archives-ouvertes.fr/hal-01713875 Preprint submitted on 21 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NOTES ON THE RIEMANN HYPOTHESIS RICARDO PEREZ-MARCO´ Abstract. Our aim is to give an introduction to the Riemann Hypothesis and a panoramic view of the world of zeta and L-functions. We first review Riemann's foundational article and discuss the mathematical background of the time and his possible motivations for making his famous conjecture. We discuss some of the most relevant developments after Riemann that have contributed to a better understanding of the conjecture. Contents 1. Euler transalgebraic world. 2 2. Riemann's article. 8 2.1. Meromorphic extension. 8 2.2. Value at negative integers. 10 2.3. First proof of the functional equation. 11 2.4. Second proof of the functional equation. 12 2.5. The Riemann Hypothesis. 13 2.6. The Law of Prime Numbers. 17 3. On Riemann zeta-function after Riemann.
    [Show full text]
  • And Siegel's Theorem We Used Positivi
    Math 259: Introduction to Analytic Number Theory A nearly zero-free region for L(s; χ), and Siegel's theorem We used positivity of the logarithmic derivative of ζq to get a crude zero-free region for L(s; χ). Better zero-free regions can be obtained with some more effort by working with the L(s; χ) individually. The situation is most satisfactory for 2 complex χ, that is, for characters with χ = χ0. (Recall that real χ were also the characters that gave us the most difficulty6 in the proof of L(1; χ) = 0; it is again in the neighborhood of s = 1 that it is hard to find a good zero-free6 region for the L-function of a real character.) To obtain the zero-free region for ζ(s), we started with the expansion of the logarithmic derivative ζ 1 0 (s) = Λ(n)n s (σ > 1) ζ X − − n=1 and applied the inequality 1 0 (z + 2 +z ¯)2 = Re(z2 + 4z + 3) = 3 + 4 cos θ + cos 2θ (z = eiθ) ≤ 2 it iθ s to the phases z = n− = e of the terms n− . To apply the same inequality to L 1 0 (s; χ) = χ(n)Λ(n)n s; L X − − n=1 it it we must use z = χ(n)n− instead of n− , obtaining it 2 2it 0 Re 3 + 4χ(n)n− + χ (n)n− : ≤ σ Multiplying by Λ(n)n− and summing over n yields L0 L0 L0 0 3 (σ; χ ) + 4 Re (σ + it; χ) + Re (σ + 2it; χ2) : (1) ≤ − L 0 − L − L 2 Now we see why the case χ = χ0 will give us trouble near s = 1: for such χ the last term in (1) is within O(1) of Re( (ζ0/ζ)(σ + 2it)), so the pole of (ζ0/ζ)(s) at s = 1 will undo us for small t .
    [Show full text]
  • Arxiv:1802.06193V3 [Math.NT] 2 May 2018 Etr ...I Hsppr Efi H Udmna Discrimi Fundamental the fix Fr We Quadratic Paper, Binary I This a Inverse by in the Squares 1.4.]
    THE LEAST PRIME IDEAL IN A GIVEN IDEAL CLASS NASER T. SARDARI Abstract. Let K be a number field with the discriminant DK and the class number hK , which has bounded degree over Q. By assuming GRH, we prove that every ideal class of K contains a prime ideal with norm less 2 2 than hK log(DK ) and also all but o(hK ) of them have a prime ideal with 2+ǫ norm less than hK log(DK ) . For imaginary quadratic fields K = Q(√D), by assuming Conjecture 1.2 (a weak version of the pair correlation conjecure), we improve our bounds by removing a factor of log(D) from our bounds and show that these bounds are optimal. Contents 1. Introduction 1 1.1. Motivation 1 1.2. Repulsion of the prime ideals near the cusp 5 1.3. Method and Statement of results 6 Acknowledgements 7 2. Hecke L-functions 7 2.1. Functional equation 7 2.2. Weil’s explicit formula 8 3. Proof of Theorem 1.8 8 4. Proof of Theorem 1.1 11 References 12 1. Introduction 1.1. Motivation. One application of our main result addresses the optimal upper arXiv:1802.06193v3 [math.NT] 2 May 2018 bound on the least prime number represented by a binary quadratic form up to a power of the logarithm of its discriminant. Giving sharp upper bound of this form on the least prime or the least integer representable by a sum of two squares is crucial in the analysis of the complexity of some algorithms in quantum compiling.
    [Show full text]