Motives and Motivic L-Functions

Total Page:16

File Type:pdf, Size:1020Kb

Motives and Motivic L-Functions Motives and Motivic L-functions Christopher Elliott December 6, 2010 1 Introduction This report aims to be an exposition of the theory of L-functions from the motivic point of view. The classical theory of pure motives provides a category consisting of `universal cohomology theories' for smooth projective varieties defined over { for instance { number fields. Attached to every motive we can define a function which is holomorphic on a subdomain of C which at least conjecturally satisfies similar properties to the Riemann zeta function: for instance meromorphic continuation and functional equation. The properties of this function are expected to encode deep arithmetic properties of the underlying variety. In particular, we will discuss a conjecture of Deligne and its more general forms due to Beilinson and others, that relates certain \special" values of the L-function { values at integer points { to a subtle arithmetic invariant called the regulator, vastly generalising the analytic class number formula. Finally I aim to describe potentially fruitful ways in which these exciting conjectures might be rephrased or reinterpreted, at least to make things clearer to me. There are several sources from which I have drawn ideas and material. In particular, the book [1] is a very good exposition of the theory of pure motives. For the material on L-functions, and in particular the Deligne and Beilinson conjectures, I referred to the surveys [9], [11] and [4] heavily. In particular, my approach to the Deligne conjecture follows the survey [11] of Schneider closely. Finally, when I motivate the definition of the motivic L-function I use the ideas and motivation in the introduction to the note [5] of Kim heavily. These notes were written for a seminar topics class at Northwestern university directed by David Nadler. I gave a series of lectures on motives and motivic L-functions with Clemens Koppensteiner and Marc Hoyois. 2 Pure Motives 2.1 The Weil Conjectures The following extremely well-known conjectures of Andr´eWeil on the number of points on varieties over finite fields will serve as the starting point for all of the theory that will follow: Conjecture 2.1. Let X be a smooth projective variety over Fq of dimension n. We define the zeta function of X by 1 ! X Nm ζ(X; s) = exp (q−s)m m m=0 −s where Nm denotes the number of Fqm points of X. Write t = q . Then 1. The zeta function can be written as a rational function of t. Furthermore P (t)P (t) ··· P (t) ζ(X; s) = 1 3 2d−1 P0(t)P2(t) ··· P2d(t) where Pi(t) 2 Z(t), 2 Section 2 Pure Motives 2. It satisfies a functional equation of the form ζ(X; s) = ±q(n=2−s)χζ(X; n − s) where χ = χ(X) is the Euler characteristic. 3. (The Riemann hypothesis) We can factor Pi(t) as nj Y Pi(t) = (q − αijt); j=0 i=2 i and jαijj = q . Thus the zeroes of Pi lie on the critical line <s = 2 . The zeta function is a generating function for the number of points of X over finite extensions Fqn of Fq. We'll see how these zeta functions fit into a more general picture later on. This particular viewpoint is the main focus of this report, with the Weil conjectures as one motivating aspect, justifying how studying these meromorphic functions might tell about concrete geometric facts like the number of points over various finite fields (i.e. solving congruences). The case where X is an elliptic curve was proved by Weil himself (he also proved the conjecture for all curves and abelian varieties), and is particularly easy. The reason is that we have a nice linearisation of the curve to use { the Tate module T`(E) for a prime ` 6= p { which allows us to reduce to an argument of linear algebra. This method is essentially cohomological. In general, associated to a variety X we can produce a number of cohomology theories, which one should think of as linearisations of X, that remember as much of its structure as they can. One might imagine a simple proof of the Weil conjectures in their full generality proceeding as follows: produce a sufficiently nice cohomology theory for smooth projective varieties, so that one has in particular a Lefschetz trace formula, then mimic Weil's proof for the elliptic curve. In fact, once the theory of ´etalecohomology was invented and sufficiently well developed, this was sufficient for Deligne to prove the Weil conjectures in full generality, though not quite with the beautiful proof invisioned by Grothendieck: the Riemann hypothesis proved particularly tricky, and needed more subtle methods. 2.2 Cohomology Theories Although cohomology groups have a similar use in algebraic geometry to their use in topology: as linearisations of geometric objects, allowing one to attack geometric problems by methods of linear algebra, the situation is quite difficult for the following reason. In the topological setting there is essentially only one possible choice of a cohomology theory, at least if one imposes certain reasonable restrictions on what functors are allowed. This is the content of the Eilenberg-Steenrod theorem. In the algebro-geometric setting however, things are nowhere near this nice. Indeed, we have a sensible notion of a `reasonable' cohomology theory: what is called a Weil cohomology theory. One can define these over various different base fields. The problems arise in part due to the non-existence of a Weil cohomology theory over the rational numbers. This makes it quite difficult to compare, for instance, cohomology theories with C coefficients to those with Q` coefficients. Slightly more formally, though omitting many details, Definition 2.2. A Weil cohomology theory is a contravariant functor H∗ from the category of smooth projective varieties over a field k, to graded vector spaces over a field K where K has characteristic zero, satisfying a number of conditions: 1. dim H2(P1) = 1 2. H∗ preserves the monoidal structure, where ⊗ on the category of smooth projective varieties is given by the usual product. This automatically makes H∗(X) into a commutative algebra, because the diagonal embedding of varieties automatically gives a variety X the structure of a coalgebra. We get a K¨unneth formula H∗(X × Y ) =∼ H∗(X) ⊗ H∗(Y ) for free. 3 Section 2 Pure Motives 3. We have Poincar´eduality: loosely, ignoring technical issues of weights, this is a perfect pairing Hi(X) × H2d−i(X) ! K; where d = dim X. 4. There is a cycle class map, which assigns a cohomology class of degree i to an algebraic cycle of codimension i. Loosely, this is a homomorphism of rings for each X ∗ 2∗ clX : CH (X) ! H (X) where CH∗(X) is the Chow ring of algebraic cycles modulo rational equivalence, with the intersection product. These homomorphisms should be compatible with the induced morphisms coming from morphisms f : X ! Y There are a number of ways to prove that there is no Weil cohomology theory when K = Q that underlies the other Weil cohomology theories. One could for instance give the explicit counterexample of a supersingular elliptic curve. This is described in Milne's expository article [8]. The most important examples of Weil cohomology theories for our purposes are: ∗ • If K = C, the de Rham cohomology HdR(X(C)), where X(C) is given the analytic topology. ∗ • If K = Q`, the `-adic topology H´et(X; Q`). This is well behaved whenever char k 6= `, where k is the field of definition of X. ∗ • If char k = 0, given an embedding ν : k ,! C, the singular cohomology H ((X ×k,ν C)(C);K) for any subfield K of C. Again we give the complex points the analytic topology. Comparison theorems between these rings and others are not easy to come by. For a truly unified approach we would need some kind of universal cohomology theory. Since there is no genuine universal Weil cohomology theory, to produce such a thing we will need a larger target abelian category. This is exactly the role the category of pure motives plays. 2.3 The construction As before, assume X is smooth and projective over K any field. We will enlarge the category of smooth projective varieties over K, first by producing extra morphisms from the intersection theory of subvarieties of X (correspon- dences), then splitting idempotents, then inverting the Lefschetz motive h2(P1) to ensure Poincar´eduality works. We will only sketch the construction here. For full details, see the book [1] by Yves Andr´e. So, first of all, let Var(K) denote the category of smooth projective varieties over K. For X in this category, let C∗(X) denote the group of algebraic cycles in X, graded by codimension. There are a number of sources where these notions of intersection theory are explained, but I found [7] and [12] section III to be particularly helpful. This comes equipped with an intersection product and there are a number of equivalence relations we can impose on cycles to make this into a genuine multiplication on the group, compatible with the grading. Choosing rational equivalence we produce the Chow ring, but this will turn out to be too coarse for our needs. For now we will denote ∗ by C∼(X) the ring of cycles produced by choosing some adequate equivalence relation ∼. ∗ We enlarge the hom sets of Var(K) by putting HomCorr(X; Y ) = C∼(X × Y ). Note that this includes all former morphisms, as their graphs describe an algebraic cycle. One defines composition by pushing forward to the triple product X × Y × Z, applying the intersection product, then pulling back to X × Z, and this produces a category Corr(K) which contains all the data of algebraic cycles that we might need for the cycle class map to exist.
Recommended publications
  • Arithmetic Equivalence and Isospectrality
    ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK .
    [Show full text]
  • Etale and Crystalline Companions, I
    ETALE´ AND CRYSTALLINE COMPANIONS, I KIRAN S. KEDLAYA Abstract. Let X be a smooth scheme over a finite field of characteristic p. Consider the coefficient objects of locally constant rank on X in ℓ-adic Weil cohomology: these are lisse Weil sheaves in ´etale cohomology when ℓ 6= p, and overconvergent F -isocrystals in rigid cohomology when ℓ = p. Using the Langlands correspondence for global function fields in both the ´etale and crystalline settings (work of Lafforgue and Abe, respectively), one sees that on a curve, any coefficient object in one category has “companions” in the other categories with matching characteristic polynomials of Frobenius at closed points. A similar statement is expected for general X; building on work of Deligne, Drinfeld showed that any ´etale coefficient object has ´etale companions. We adapt Drinfeld’s method to show that any crystalline coefficient object has ´etale companions; this has been shown independently by Abe–Esnault. We also prove some auxiliary results relevant for the construction of crystalline companions of ´etale coefficient objects; this subject will be pursued in a subsequent paper. 0. Introduction 0.1. Coefficients, companions, and conjectures. Throughout this introduction (but not beyond; see §1.1), let k be a finite field of characteristic p and let X be a smooth scheme over k. When studying the cohomology of motives over X, one typically fixes a prime ℓ =6 p and considers ´etale cohomology with ℓ-adic coefficients; in this setting, the natural coefficient objects of locally constant rank are the lisse Weil Qℓ-sheaves. However, ´etale cohomology with p-adic coefficients behaves poorly in characteristic p; for ℓ = p, the correct choice for a Weil cohomology with ℓ-adic coefficients is Berthelot’s rigid cohomology, wherein the natural coefficient objects of locally constant rank are the overconvergent F -isocrystals.
    [Show full text]
  • Introduction to L-Functions: Dedekind Zeta Functions
    Introduction to L-functions: Dedekind zeta functions Paul Voutier CIMPA-ICTP Research School, Nesin Mathematics Village June 2017 Dedekind zeta function Definition Let K be a number field. We define for Re(s) > 1 the Dedekind zeta function ζK (s) of K by the formula X −s ζK (s) = NK=Q(a) ; a where the sum is over all non-zero integral ideals, a, of OK . Euler product exists: Y −s −1 ζK (s) = 1 − NK=Q(p) ; p where the product extends over all prime ideals, p, of OK . Re(s) > 1 Proposition For any s = σ + it 2 C with σ > 1, ζK (s) converges absolutely. Proof: −n Y −s −1 Y 1 jζ (s)j = 1 − N (p) ≤ 1 − = ζ(σ)n; K K=Q pσ p p since there are at most n = [K : Q] many primes p lying above each rational prime p and NK=Q(p) ≥ p. A reminder of some algebraic number theory If [K : Q] = n, we have n embeddings of K into C. r1 embeddings into R and 2r2 embeddings into C, where n = r1 + 2r2. We will label these σ1; : : : ; σr1 ; σr1+1; σr1+1; : : : ; σr1+r2 ; σr1+r2 . If α1; : : : ; αn is a basis of OK , then 2 dK = (det (σi (αj ))) : Units in OK form a finitely-generated group of rank r = r1 + r2 − 1. Let u1;:::; ur be a set of generators. For any embedding σi , set Ni = 1 if it is real, and Ni = 2 if it is complex. Then RK = det (Ni log jσi (uj )j)1≤i;j≤r : wK is the number of roots of unity contained in K.
    [Show full text]
  • SMALL ISOSPECTRAL and NONISOMETRIC ORBIFOLDS of DIMENSION 2 and 3 Introduction. in 1966
    SMALL ISOSPECTRAL AND NONISOMETRIC ORBIFOLDS OF DIMENSION 2 AND 3 BENJAMIN LINOWITZ AND JOHN VOIGHT ABSTRACT. Revisiting a construction due to Vigneras,´ we exhibit small pairs of orbifolds and man- ifolds of dimension 2 and 3 arising from arithmetic Fuchsian and Kleinian groups that are Laplace isospectral (in fact, representation equivalent) but nonisometric. Introduction. In 1966, Kac [48] famously posed the question: “Can one hear the shape of a drum?” In other words, if you know the frequencies at which a drum vibrates, can you determine its shape? Since this question was asked, hundreds of articles have been written on this general topic, and it remains a subject of considerable interest [41]. Let (M; g) be a connected, compact Riemannian manifold (with or without boundary). Asso- ciated to M is the Laplace operator ∆, defined by ∆(f) = − div(grad(f)) for f 2 L2(M; g) a square-integrable function on M. The eigenvalues of ∆ on the space L2(M; g) form an infinite, discrete sequence of nonnegative real numbers 0 = λ0 < λ1 ≤ λ2 ≤ ::: , called the spectrum of M. In the case that M is a planar domain, the eigenvalues in the spectrum of M are essentially the frequencies produced by a drum shaped like M and fixed at its boundary. Two Riemannian manifolds are said to be Laplace isospectral if they have the same spectra. Inverse spectral geom- etry asks the extent to which the geometry and topology of M are determined by its spectrum. For example, volume, dimension and scalar curvature can all be shown to be spectral invariants.
    [Show full text]
  • DENINGER COHOMOLOGY THEORIES Readers Who Know What the Standard Conjectures Are Should Skip to Section 0.6. 0.1. Schemes. We
    DENINGER COHOMOLOGY THEORIES TAYLOR DUPUY Abstract. A brief explanation of Denninger's cohomological formalism which gives a conditional proof Riemann Hypothesis. These notes are based on a talk given in the University of New Mexico Geometry Seminar in Spring 2012. The notes are in the same spirit of Osserman and Ile's surveys of the Weil conjectures [Oss08] [Ile04]. Readers who know what the standard conjectures are should skip to section 0.6. 0.1. Schemes. We will use the following notation: CRing = Category of Commutative Rings with Unit; SchZ = Category of Schemes over Z; 2 Recall that there is a contravariant functor which assigns to every ring a space (scheme) CRing Sch A Spec A 2 Where Spec(A) = f primes ideals of A not including A where the closed sets are generated by the sets of the form V (f) = fP 2 Spec(A) : f(P) = 0g; f 2 A: By \f(P ) = 000 we means f ≡ 0 mod P . If X = Spec(A) we let jXj := closed points of X = maximal ideals of A i.e. x 2 jXj if and only if fxg = fxg. The overline here denote the closure of the set in the topology and a singleton in Spec(A) being closed is equivalent to x being a maximal ideal. 1 Another word for a closed point is a geometric point. If a point is not closed it is called generic, and the set of generic points are in one-to-one correspondence with closed subspaces where the associated closed subspace associated to a generic point x is fxg.
    [Show full text]
  • Introduction to L-Functions: the Artin Cliffhanger…
    Introduction to L-functions: The Artin Cliffhanger. Artin L-functions Let K=k be a Galois extension of number fields, V a finite-dimensional C-vector space and (ρ, V ) be a representation of Gal(K=k). (unramified) If p ⊂ k is unramified in K and p ⊂ P ⊂ K, put −1 −s Lp(s; ρ) = det IV − Nk=Q(p) ρ (σP) : Depends only on conjugacy class of σP (i.e., only on p), not on P. (general) If G acts on V and H subgroup of G, then V H = fv 2 V : h(v) = v; 8h 2 Hg : IP With ρjV IP : Gal(K=k) ! GL V . −1 −s Lp(s; ρ) = det I − Nk=Q(p) ρjV IP (σP) : Definition For Re(s) > 1, the Artin L-function belonging to ρ is defined by Y L(s; ρ) = Lp(s; ρ): p⊂k Artin’s Conjecture Conjecture (Artin’s Conjecture) If ρ is a non-trivial irreducible representation, then L(s; ρ) has an analytic continuation to the whole complex plane. We can prove meromorphic. Proof. (1) Use Brauer’s Theorem: X χ = ni Ind (χi ) ; i with χi one-dimensional characters of subgroups and ni 2 Z. (2) Use Properties (4) and (5). (3) L (s; χi ) is meromorphic (Hecke L-function). Introduction to L-functions: Hasse-Weil L-functions Paul Voutier CIMPA-ICTP Research School, Nesin Mathematics Village June 2017 A “formal” zeta function Let Nm, m = 1; 2;::: be a sequence of complex numbers. 1 m ! X Nmu Z(u) = exp m m=1 With some sequences, if we have an Euler product, this does look more like zeta functions we have seen.
    [Show full text]
  • THE WEIL CONJECTURES I Arxiv:1807.10810V2 [Math.AG] 26
    THE WEIL CONJECTURES I By Pierre Deligne (translated by Evgeny Goncharov) [email protected],∗ [email protected] I attempted to write the full translation of this article to make the remarkable proof of Pierre Deligne available to a greater number of people. Overviews of the proofs can be found elsewhere. I especially recommend the notes of James Milne on Etale Cohomology that also contain a justifica- tion for the theory underlying this article and proofs of the results used by Deligne. The footnotes are mostly claims that some details appear in Milne, clarifications of some of the terminology or my personal struggles. I have also made a thorough overview of the proof together with more detailed explanations - https: // arxiv. org/ abs/ 1807. 10812 . Enjoy! Abstract In this article I prove the Weil conjecture about the eigenvalues of Frobenius endomor- phisms. The precise formulation is given in (1.6). I tried to make the demonstration as geometric and elementary as possible and included reminders: only the results of paragraphs 3, 6, 7 and 8 are original. In the article following this one I will give various refinements of the intermediate results and the applications, including the hard Lefschetz theorem (on the iterated cup products by the cohomology class of a hyperplane section). The text faithfully follows from the six lectures given at Cambridge in July 1973. I thank N.Katz for allowing me to use his notes. Contents 1 The theory of Grothendieck: a cohomological interpretation of L-functions 2 2 The theory of Grothendieck: Poincare duality 7 arXiv:1807.10810v2 [math.AG] 26 Jan 2019 3 The main lemma (La majoration fondamentale) 10 4 Lefschetz theory: local theory 13 5 Lefschetz theory: global theory 15 6 The rationality theorem 20 7 Completion of the proof of (1.7) 23 8 First applications 26 ∗Cambridge University, Center for Mathematical Sciences, Wilberforce Road, Cambridge, UK yNational Research University Higher School of Economics (NRU HSE), Usacheva 6, Moscow, Russia.
    [Show full text]
  • The Role of the Ramanujan Conjecture in Analytic Number Theory
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 2, April 2013, Pages 267–320 S 0273-0979(2013)01404-6 Article electronically published on January 14, 2013 THE ROLE OF THE RAMANUJAN CONJECTURE IN ANALYTIC NUMBER THEORY VALENTIN BLOMER AND FARRELL BRUMLEY Dedicated to the 125th birthday of Srinivasa Ramanujan Abstract. We discuss progress towards the Ramanujan conjecture for the group GLn and its relation to various other topics in analytic number theory. Contents 1. Introduction 267 2. Background on Maaß forms 270 3. The Ramanujan conjecture for Maaß forms 276 4. The Ramanujan conjecture for GLn 283 5. Numerical improvements towards the Ramanujan conjecture and applications 290 6. L-functions 294 7. Techniques over Q 298 8. Techniques over number fields 302 9. Perspectives 305 J.-P. Serre’s 1981 letter to J.-M. Deshouillers 307 Acknowledgments 313 About the authors 313 References 313 1. Introduction In a remarkable article [111], published in 1916, Ramanujan considered the func- tion ∞ ∞ Δ(z)=(2π)12e2πiz (1 − e2πinz)24 =(2π)12 τ(n)e2πinz, n=1 n=1 where z ∈ H = {z ∈ C |z>0} is in the upper half-plane. The right hand side is understood as a definition for the arithmetic function τ(n) that nowadays bears Received by the editors June 8, 2012. 2010 Mathematics Subject Classification. Primary 11F70. Key words and phrases. Ramanujan conjecture, L-functions, number fields, non-vanishing, functoriality. The first author was supported by the Volkswagen Foundation and a Starting Grant of the European Research Council. The second author is partially supported by the ANR grant ArShiFo ANR-BLANC-114-2010 and by the Advanced Research Grant 228304 from the European Research Council.
    [Show full text]
  • L-Functions and Non-Abelian Class Field Theory, from Artin to Langlands
    L-functions and non-abelian class field theory, from Artin to Langlands James W. Cogdell∗ Introduction Emil Artin spent the first 15 years of his career in Hamburg. Andr´eWeil charac- terized this period of Artin's career as a \love affair with the zeta function" [77]. Claude Chevalley, in his obituary of Artin [14], pointed out that Artin's use of zeta functions was to discover exact algebraic facts as opposed to estimates or approxi- mate evaluations. In particular, it seems clear to me that during this period Artin was quite interested in using the Artin L-functions as a tool for finding a non- abelian class field theory, expressed as the desire to extend results from relative abelian extensions to general extensions of number fields. Artin introduced his L-functions attached to characters of the Galois group in 1923 in hopes of developing a non-abelian class field theory. Instead, through them he was led to formulate and prove the Artin Reciprocity Law - the crowning achievement of abelian class field theory. But Artin never lost interest in pursuing a non-abelian class field theory. At the Princeton University Bicentennial Conference on the Problems of Mathematics held in 1946 \Artin stated that `My own belief is that we know it already, though no one will believe me { that whatever can be said about non-Abelian class field theory follows from what we know now, since it depends on the behavior of the broad field over the intermediate fields { and there are sufficiently many Abelian cases.' The critical thing is learning how to pass from a prime in an intermediate field to a prime in a large field.
    [Show full text]
  • On the Selberg Class of L-Functions
    ON THE SELBERG CLASS OF L-FUNCTIONS ANUP B. DIXIT Abstract. The Selberg class of L-functions, S, introduced by A. Selberg in 1989, has been extensively studied in the past few decades. In this article, we give an overview of the structure of this class followed by a survey on Selberg's conjectures and the value distribution theory of elements in S. We also discuss a larger class of L-functions containing S, namely the Lindel¨ofclass, introduced by V. K. Murty. The Lindel¨ofclass forms a ring and its value distribution theory surprisingly resembles that of the Selberg class. 1. Introduction The most basic example of an L-function is the Riemann zeta-function, which was intro- duced by B. Riemann in 1859 as a function of one complex variable. It is defined on R s 1 as ∞ 1 ( ) > ζ s : s n=1 n It can be meromorphically continued to( the) ∶= wholeQ complex plane C with a pole at s 1 with residue 1. The unique factorization of natural numbers into primes leads to another representation of ζ s on R s 1, namely the Euler product = −1 1 ( ) ( ) > ζ s 1 : s p prime p The study of zeta-function is vital to( ) understanding= M − the distribution of prime numbers. For instance, the prime number theorem is a consequence of ζ s having a simple pole at s 1 and being non-zero on the vertical line R s 1. ( ) = In pursuing the analogous study of distribution( ) = of primes in an arithmetic progression, we consider the Dirichlet L-function, ∞ χ n L s; χ ; s n=1 n ( ) for R s 1, where χ is a Dirichlet character( ) ∶= moduloQ q, defined as a group homomorphism ∗ ∗ χ Z qZ C extended to χ Z C by periodicity and setting χ n 0 if n; q 1.
    [Show full text]
  • Hasse-Weil Zeta-Function in a Special Case
    Universit´eParis-Sud 11 Universiteit Leiden Master Erasmus Mundus ALGANT HASSE-WEIL ZETA-FUNCTION IN A SPECIAL CASE Weidong ZHUANG Advisor: Professor M. Harris 1 HASSE-WEIL ZETA-FUNCTION IN A SPECIAL CASE WEIDONG ZHUANG I sincerely thank Prof. M. Harris for guiding me to this fantastic topic. I wish to thank all those people who have helped me when I am studying for the thesis. I also appreciate ERASMUS MUNDUS ALGANT, especially Universit´eParis-Sud 11 and Universiteit Leiden for all conveniences afforded. 2 Contents 1. Introduction 3 2. Preliminaries 5 2.1. Elliptic curves 5 2.2. Moduli space with level structure in good reduction 5 2.3. Moduli space with level structure in bad reduction 6 3. Basics of representations 7 3.1. Representations of GL2 7 3.2. Weil group 10 3.3. The Bernstein center 11 4. Harmonic analysis 12 4.1. Basics of integration 12 4.2. Character of representations 13 4.3. Selberg trace formula 14 5. Advanced tools 15 5.1. Crystalline cohomology 15 5.2. Nearby cycles 17 5.3. Base change 18 5.4. Counting points over finite fields 21 6. The semi-simple trace and semi-simple local factor 22 6.1. Basics of the semi-simple trace and semi-simple local factor 23 6.2. Nearby cycles 24 6.3. The semi-simple trace of Frobenius as a twisted orbital integral 27 6.4. Lefschetz number 29 7. The Hasse-Weil zeta-function 31 7.1. Contributions from the boundary 31 7.2. The Arthur-Selberg Trace formula 32 7.3.
    [Show full text]
  • Deligne's Proof of the Weil-Conjecture
    Deligne's Proof of the Weil-conjecture Prof. Dr. Uwe Jannsen Winter Term 2015/16 Inhaltsverzeichnis 0 Introduction 3 1 Rationality of the zeta function 9 2 Constructible sheaves 14 3 Constructible Z`-sheaves 21 4 Cohomology with compact support 24 5 The Frobenius-endomorphism 27 6 Deligne's theorem: Formulation and first reductions 32 7 Weights and determinant weights 36 8 Cohomology of curves and L-series 42 9 Purity of real Q`-sheaves 44 10 The formalism of nearby cycles and vanishing cycles 46 11 Cohomology of affine and projective spaces, and the purity theorem 55 12 Local Lefschetz theory 59 13 Proof of Deligne's theorem 74 14 Existence and global properties of Lefschetz pencils 86 0 Introduction The Riemann zeta-function is defined by the sum and product X 1 Y 1 ζ(s) = = (s 2 C) ns 1 − p−s n≥1 p which converge for Re(s) > 1. The expression as a product, where p runs over the rational prime numbers, is generally attributed to Euler, and is therefore known as Euler product formula with terms the Euler factors. Formally the last equation is easily achieved by the unique decomposition of natural numbers as a product of prime numbers and by the geometric series expansion 1 1 X = p−ms : 1 − p−s m=0 The { to this day unproved { Riemann hypothesis states that all non-trivial zeros of ζ(s) 1 should lie on the line Re(s) = 2 . This is more generally conjectured for the Dedekind zeta functions X 1 Y 1 ζ (s) = = : K Nas 1 − Np−s a⊂OK p Here K is a number field, i.e., a finite extension of Q, a runs through the ideals =6 0 of the ring OK of the integers of K, p runs through the prime ideals =6 0, and Na = jOK =aj, where jMj denotes the cardinality numbers of a finite set M.
    [Show full text]