THE ANALYTIC CLASS NUMBER FORMULA and L-FUNCTIONS 1. Overview 3 2. L-Functions: Analytic Properties 5 2.1. Analytic Continuation

Total Page:16

File Type:pdf, Size:1020Kb

THE ANALYTIC CLASS NUMBER FORMULA and L-FUNCTIONS 1. Overview 3 2. L-Functions: Analytic Properties 5 2.1. Analytic Continuation THE ANALYTIC CLASS NUMBER FORMULA AND L-FUNCTIONS AKSHAY VENKATESH NOTES BY TONY FENG CONTENTS 1. Overview 3 2. L-functions: analytic properties 5 2.1. Analytic continuation 5 2.2. Epstein ζ functions 7 2.3. The Dedekind zeta function 10 2.4. Generalizations 14 3. L-functions: arithmetic properties 18 3.1. Rationality 18 3.2. p-adic continuation. 18 3.3. Abstract sequence spaces 19 3.4. Application to rationality 21 4. p-adic L-functions 25 4.1. Analyticity for real quadratic fields 25 4.2. Totally real fields 30 5. Hurwitz zeta functions 35 5.1. Interlude on analysis 35 5.2. Hurwitz zeta functions 36 5.3. Explicit evaluations 38 6. Artin L-functions 41 6.1. Motivation 41 6.2. Artin’s conjecture 42 6.3. The conductor-discriminant formula 44 6.4. Analytic properties 46 6.5. Positive characteristic speculation 49 7. Stark’s conjectures 51 7.1. The class number formula 51 7.2. Aside: how to compute L(s,ρ) 52 7.3. Stark’s conjectures 54 7.4. Compatibility with class number formula 58 7.5. Imaginary quadratic fields 61 8. Class numbers of cyclotomic fields 67 1 Math 263C 2015 8.1. Reformulating Stark’s conjecture 67 8.2. Stickelberger’s Theorem 69 8.3. Herbrand’s Theorem 76 9. Converse to Herbrand’s Theorem 79 9.1. Ribet’s proof 79 9.2. Cyclotomic units 80 9.3. Converse to Herbrand 88 9.4. Euler Systems 89 2 Math 263C 2015 1. OVERVIEW Let K be a number field. Then we have an associated Dedekind ζ func- tion X s ζK (s ) = (Nm I )− I K ⊂O generalizing the Riemann zeta function (which is the special case K = Q), and possessing the following basic properties: The series defining ζK (s ) is convergent for Reps > 1. (This is easy; • it follows from the observation that there are very few ideals of a given norm.) ζK (s ) has an Euler product factorization: • Y 1 ζ s . K ( ) = 1 Nmp s p prime ( )− − ζK (s ) has a meromorphic continuation to s C, with the only • pole being a simple pole at s = 1. 2 We have a class number formula • hR r1 r2 Ress =1 ζK (s ) = 2 (2π) (1) w pdisc K Here R is the regulator, which can be thought of as the “volume” of K∗ , h is the class number, w is the number of roots of unity, andOr1 and r2 are the number of real and complex places of K . It satisfies a functional equation. An elegant way to phrase this is • that s =2 r1 r2 (disc K ) ΓR(s ) ΓC(s ) ζK (s ) is symmetric under s 1 s. $ − Here s s =2 s 2 and s 2 2 s s . ΓR( ) = π− Γ( = ) ΓC( ) = ( π)− Γ( ) We will begin by discussing the proofs of these properties, following the classical method of Hecke. If K is Galois over Q, then Y ζK (s ) = L(s,ρ) ρ irred. rep’n. of Gal(K =Q) where L(s,ρ) is the Artin L-function attach to ρ. Each L(s,ρ) has (at least conjecturally) analogous properties to those mentioned above. Example 1.0.1. If K = Q(i ), then X 1 ζ s K ( ) = m 2 n 2 s n+mi ( + ) 3 Math 263C 2015 and the corresponding factorization into Artin L-functions is s s s ζK (s ) = ζ(s ) (1− 3− + 5− ...). |{z}| − {z − } ρ=triv ρ=sign The main point of the course is to discuss the following question: since ζK factors, there should be a corresponding factorization of the class num- ber formula (1): so the right hand side should be expressible as hR Y h ρ R ρ “ ( ) ( )”. w = w ρ (ρ) Even to formulate precisely what this factorization should be is a little tricky. Example 1.0.2. Even for the case K = Q(i ) (when the Galois group has size 2, and there are two representations), what goes on is subtle because of issues at 2. The problem is analogous to the following general issue: if A is a finite abelian group with an action of Z=2, then one can define “eigenspaces” A+,A . The map A+ A A fails to be an isomorphism − − in the presence of 2-torsion, which× appears! in both “eigenspaces.” This idea motivates many things in number theory, like Stark’s conjec- ture and the Main Conjecture of Iwasawa theory. 4 Math 263C 2015 2. L-FUNCTIONS: ANALYTIC PROPERTIES We’ll now prove some of the basic properties of ζK , following Hecke. 2.1. Analytic continuation. We first digress briefly about what it means to have analytic continuation (we use this blanket term even when re- ferring to what might technically be called meromorphic continuation). When one says that the standard ζ function X 1 ζ(s ) = s n n has “analytic continuation,” it usually comes with connotations of com- plex analysis. For us, complex analysis is not important; what’s important is that there is a way to “make sense” of the expression for any s . Example 2.1.1. How might we make sense of P 1 ? Observe that at least pn P 1 for Reps > 1, n s can be approximated by an integral. Therefore, we consider N Z N X1 1 X 1 d x = lim . n s N n s x s n=1 !1 n=1 − 0 N 1 s − You can prove that this has a limit for Reps > 0. The integral is 1 s , so − N X 1 N 1 s lim − N n s 1 s n 1 − !1 = − exists for Reps > 0. It equals ζ(s ) for Reps > 1, and we can “make sense” of ζ(s ) by simply setting it to be the above expression for all Reps > 0. You can play similar games to extend it further “by hand.” Example 2.1.2. Let K = Q(i ). Then X 1 1 X 1 . m 2 n 2 s = 4 m 2 n 2 s m+ni ( + ) (m,n)=(0,0) ( + ) 6 We can interpret this as the sum of a particular binary quadratic form 2 over the lattice Z C. We can generalize this by asking about the sum of any (say definite) quadratic⊂ form Q over a lattice Λ C. ⊂ ¨ positive definite « binary quadratic forms ax 2 bx y cy 2 =SL2(Z) o / H=SL2(Z) + + O disc=1 n lattices Λ C o of covolume⊂ 1 up to rotation 5 Math 263C 2015 TONY: [discriminant should be 1 to be positive-definite, eh?] The horizontal♠♠♠ map sends Q to the root of Q−(z ,1) lying in H. The vertical map sends z 1,z =Im(z )1=2, with the associated quadratic form Λ (choos- ing a positively7! h i oriented basis). We actually show that there is a kind of functional equation for a gen- eral sum of the form X 2s z − , z =Q(z ). z Λ 0 jj jj jj jj 2 −{ g This is (for fixed s ) a real-analytic Eisenstein series on SL2(Z) H. More n precisely, we’ll show that if Λ R is a lattice of covolume 1, n ⊂ X s ΓR(s ) v − v Λ jj jj 2 has an analytic continuation with simple poles at s = 0 and s = n, and is symmetric under s n s . Then we’ll recover the results for ζQ(i ) by taking Λ = Z[i ] C. However,7! − it’s not so obvious what to do for real qua- dratic fields like⊂ . ζQ(p2) Example 2.1.3. Just to convince you that this is not a mysterious object, let’s write it in a more concrete way. X 1 ζ ( 2)(s ) = . Q p (a 2 2b 2)s a+bp2 Z[p2]=units 2 − The unit group 2 is generated by 1, 2 1. Let 2 1; then is Z[p ]∗ p α = p α positive under one embedding and negative− − under the other.− Therefore, any β = a +bp2 can be made totally positive by multiplying by a unit. If 2 β = a +bp2 is totally positive, then by multiplying by something in (α )Z we can assume that β 1 < α4. β ≤ You can check that in terms of a and b, this is equivalent to b > 0,3b 2a. This gives a fundamental domain in 2 for 2 2 . So the≤ zeta R Z[p ]=Z[p ]∗ 2 2 1 function is the sum over a,b in some cone in of 2 2 s . This ( ) Z R (a 2b ) ⊂ − 2 is again a sum of a quadratic form over lattice points in a cone in R , but the quadratic form is indefinite. However, the cone is away from the indefinite locus, so it doesn’t “see” the indefiniteness. This idea is due to Shintani, and we’ll discuss it again later. The cones are not simplicial, i.e. the integer points on the interior are not an inte- ger linear combination of those on the boundary. Shintani works with simplicial subdivisions to resolve this, but it isn’t important for us. 6 Math 263C 2015 For any arbitrary imaginary quadratic field K , ζK (s ) is a sum of sums of the form P z 2s as ranges over the ideal classes of K . Hecke re- z Λ 0 − Λ alized that there2 −{ isg j aj way to extend this to real quadratic fields as well. For imaginary K , we get a finite subset of SL2(Z) H associated to K (namely, the points corresponding to the lattices of then ideal classes).
Recommended publications
  • Arithmetic Equivalence and Isospectrality
    ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK .
    [Show full text]
  • Artin L-Functions
    Artin L-functions Charlotte Euvrard Laboratoire de Mathématiques de Besançon January 10, 2014 Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 1 / 12 Definition L=K Galois extension of number fields G = Gal(L=K ) its Galois group Let (r;V ) be a representation of G and c the associated character. Let p be a prime ideal in the ring of integers OK of K , we denote by : Ip the inertia group jp the Frobenius automorphism I V p = fv 2 V : 8i 2 Ip; r(i)(v) = vg Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 2 / 12 1 In the particular case K = Q : L(s;c;L=Q) = ∏ det(Id − p−sj ;V Ip ) p2Z p Definition Definition The Artin L-function is defined by : 1 L(s; ;L=K ) = ; Re(s) > 1; c ∏ −s I det(Id − N(p) jp;V p ) p⊂OK where 8 −s < det(Id − N(p) r(jp)) if p is unramified −s Ip −s I det(Id−N(p) jp;V ) = det(Id − N(p) r~(jp)) if p is ramified and V p 6= f0g : 1 otherwise and 1 r~(s¯) = r(js) jI j ∑ p j2Ip Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 3 / 12 Definition Definition The Artin L-function is defined by : 1 L(s; ;L=K ) = ; Re(s) > 1; c ∏ −s I det(Id − N(p) jp;V p ) p⊂OK where 8 −s < det(Id − N(p) r(jp)) if p is unramified −s Ip −s I det(Id−N(p) jp;V ) = det(Id − N(p) r~(jp)) if p is ramified and V p 6= f0g : 1 otherwise and 1 r~(s¯) = r(js) jI j ∑ p j2Ip 1 In the particular case K = Q : L(s;c;L=Q) = ∏ det(Id − p−sj ;V Ip ) p2Z p Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 3 / 12 Sum and Euler product Proposition Let d and d0 be the degrees of the representations (r;V ) and (r~;V Ip ).
    [Show full text]
  • Part III Essay on Serre's Conjecture
    Serre’s conjecture Alex J. Best June 2015 Contents 1 Introduction 2 2 Background 2 2.1 Modular forms . 2 2.2 Galois representations . 6 3 Obtaining Galois representations from modular forms 13 3.1 Congruences for Ramanujan’s t function . 13 3.2 Attaching Galois representations to general eigenforms . 15 4 Serre’s conjecture 17 4.1 The qualitative form . 17 4.2 The refined form . 18 4.3 Results on Galois representations associated to modular forms 19 4.4 The level . 21 4.5 The character and the weight mod p − 1 . 22 4.6 The weight . 24 4.6.1 The level 2 case . 25 4.6.2 The level 1 tame case . 27 4.6.3 The level 1 non-tame case . 28 4.7 A counterexample . 30 4.8 The proof . 31 5 Examples 32 5.1 A Galois representation arising from D . 32 5.2 A Galois representation arising from a D4 extension . 33 6 Consequences 35 6.1 Finiteness of classes of Galois representations . 35 6.2 Unramified mod p Galois representations for small p . 35 6.3 Modularity of abelian varieties . 36 7 References 37 1 1 Introduction In 1987 Jean-Pierre Serre published a paper [Ser87], “Sur les representations´ modulaires de degre´ 2 de Gal(Q/Q)”, in the Duke Mathematical Journal. In this paper Serre outlined a conjecture detailing a precise relationship between certain mod p Galois representations and specific mod p modular forms. This conjecture and its variants have become known as Serre’s conjecture, or sometimes Serre’s modularity conjecture in order to distinguish it from the many other conjectures Serre has made.
    [Show full text]
  • Analytic Continuation of Massless Two-Loop Four-Point Functions
    CERN-TH/2002-145 hep-ph/0207020 July 2002 Analytic Continuation of Massless Two-Loop Four-Point Functions T. Gehrmanna and E. Remiddib a Theory Division, CERN, CH-1211 Geneva 23, Switzerland b Dipartimento di Fisica, Universit`a di Bologna and INFN, Sezione di Bologna, I-40126 Bologna, Italy Abstract We describe the analytic continuation of two-loop four-point functions with one off-shell external leg and internal massless propagators from the Euclidean region of space-like 1 3decaytoMinkowskian regions relevant to all 1 3and2 2 reactions with one space-like or time-like! off-shell external leg. Our results can be used! to derive two-loop! master integrals and unrenormalized matrix elements for hadronic vector-boson-plus-jet production and deep inelastic two-plus-one-jet production, from results previously obtained for three-jet production in electron{positron annihilation. 1 Introduction In recent years, considerable progress has been made towards the extension of QCD calculations of jet observables towards the next-to-next-to-leading order (NNLO) in perturbation theory. One of the main ingredients in such calculations are the two-loop virtual corrections to the multi leg matrix elements relevant to jet physics, which describe either 1 3 decay or 2 2 scattering reactions: two-loop four-point functions with massless internal propagators and→ up to one off-shell→ external leg. Using dimensional regularization [1, 2] with d = 4 dimensions as regulator for ultraviolet and infrared divergences, the large number of different integrals6 appearing in the two-loop Feynman amplitudes for 2 2 scattering or 1 3 decay processes can be reduced to a small number of master integrals.
    [Show full text]
  • Arxiv:1501.01388V2 [Math.NT] 25 Jul 2016 E Od N Phrases
    On the Iwasawa theory of CM fields for supersingular primes KÂZIM BÜYÜKBODUK Abstract. The goal of this article is two-fold: First, to prove a (two-variable) main conjecture for a CM field F without assuming the p-ordinary hypothesis of Katz, making use of what we call the Rubin-Stark -restricted Kolyvagin systems which is constructed out of the conjectural Rubin-Stark EulerL system of rank g. (We are also able to obtain weaker unconditional results in this direction.) Second objective is to prove the Park- Shahabi plus/minus main conjecture for a CM elliptic curve E defined over a general totally real field again using (a twist of the) Rubin-Stark Kolyvagin system. This latter result has consequences towards the Birch and Swinnerton-Dyer conjecture for E. Contents 1. Introduction 2 Notation 3 Statements of the results 3 Overview of the methods and layout of the paper 5 Acknowledgements 5 1.1. Notation and Hypotheses 6 2. Selmer structures and comparing Selmer groups 7 2.1. Structure of the semi-local cohomology groups 7 2.2. Modified Selmer structures for Gm 8 cyc 2.3. Modified Selmer structures for Gm along F and F∞ 9 2.4. Modified Selmer structures for E 12 2.5. Global duality and comparison of Selmer groups 14 3. Rubin-Stark Euler system of rank r 16 3.1. Strong Rubin-Stark Conjectures 17 4. Kolyvagin systems for Gm and E 19 4.1. Rubin-Stark -restricted Kolyvagin systems 22 L arXiv:1501.01388v2 [math.NT] 25 Jul 2016 5. Gras’ conjecture and CM main conjectures over F 24 5.1.
    [Show full text]
  • An Explicit Formula for Dirichlet's L-Function
    University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 5-2018 An explicit formula for Dirichlet's L-Function Shannon Michele Hyder University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Mathematics Commons Recommended Citation Hyder, Shannon Michele, "An explicit formula for Dirichlet's L-Function" (2018). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. An Explicit Formula for Dirichlet's L-Function Shannon M. Hyder Departmental Honors Thesis The University of Tennessee at Chattanooga Department of Mathematics Thesis Director: Dr. Andrew Ledoan Examination Date: April 9, 2018 Members of Examination Committee Dr. Andrew Ledoan Dr. Cuilan Gao Dr. Roger Nichols c 2018 Shannon M. Hyder ALL RIGHTS RESERVED i Abstract An Explicit Formula for Dirichlet's L-Function by Shannon M. Hyder The Riemann zeta function has a deep connection to the distribution of primes. In 1911 Landau proved that, for every fixed x > 1, X T xρ = − Λ(x) + O(log T ) 2π 0<γ≤T as T ! 1. Here ρ = β + iγ denotes a complex zero of the zeta function and Λ(x) is an extension of the usual von Mangoldt function, so that Λ(x) = log p if x is a positive integral power of a prime p and Λ(x) = 0 for all other real values of x.
    [Show full text]
  • Super-Multiplicativity of Ideal Norms in Number Fields
    Super-multiplicativity of ideal norms in number fields Stefano Marseglia Abstract In this article we study inequalities of ideal norms. We prove that in a subring R of a number field every ideal can be generated by at most 3 elements if and only if the ideal norm satisfies N(IJ) ≥ N(I)N(J) for every pair of non-zero ideals I and J of every ring extension of R contained in the normalization R˜. 1 Introduction When we are studying a number ring R, that is a subring of a number field K, it can be useful to understand the size of its ideals compared to the whole ring. The main tool for this purpose is the norm map which associates to every non-zero ideal I of R its index as an abelian subgroup N(I) = [R : I]. If R is the maximal order, or ring of integers, of K then this map is multiplicative, that is, for every pair of non-zero ideals I,J ⊆ R we have N(I)N(J) = N(IJ). If the number ring is not the maximal order this equality may not hold for some pair of non-zero ideals. For example, arXiv:1810.02238v2 [math.NT] 1 Apr 2020 if we consider the quadratic order Z[2i] and the ideal I = (2, 2i), then we have that N(I)=2 and N(I2)=8, so we have the inequality N(I2) > N(I)2. Observe that if every maximal ideal p of a number ring R satisfies N(p2) ≤ N(p)2, then we can conclude that R is the maximal order of K (see Corollary 2.8).
    [Show full text]
  • An Introduction to Iwasawa Theory
    An Introduction to Iwasawa Theory Notes by Jim L. Brown 2 Contents 1 Introduction 5 2 Background Material 9 2.1 AlgebraicNumberTheory . 9 2.2 CyclotomicFields........................... 11 2.3 InfiniteGaloisTheory . 16 2.4 ClassFieldTheory .......................... 18 2.4.1 GlobalClassFieldTheory(ideals) . 18 2.4.2 LocalClassFieldTheory . 21 2.4.3 GlobalClassFieldTheory(ideles) . 22 3 SomeResultsontheSizesofClassGroups 25 3.1 Characters............................... 25 3.2 L-functionsandClassNumbers . 29 3.3 p-adicL-functions .......................... 31 3.4 p-adic L-functionsandClassNumbers . 34 3.5 Herbrand’sTheorem . .. .. .. .. .. .. .. .. .. .. 36 4 Zp-extensions 41 4.1 Introduction.............................. 41 4.2 PowerSeriesRings .......................... 42 4.3 A Structure Theorem on ΛO-modules ............... 45 4.4 ProofofIwasawa’stheorem . 48 5 The Iwasawa Main Conjecture 61 5.1 Introduction.............................. 61 5.2 TheMainConjectureandClassGroups . 65 5.3 ClassicalModularForms. 68 5.4 ConversetoHerbrand’sTheorem . 76 5.5 Λ-adicModularForms . 81 5.6 ProofoftheMainConjecture(outline) . 85 3 4 CONTENTS Chapter 1 Introduction These notes are the course notes from a topics course in Iwasawa theory taught at the Ohio State University autumn term of 2006. They are an amalgamation of results found elsewhere with the main two sources being [Wash] and [Skinner]. The early chapters are taken virtually directly from [Wash] with my contribution being the choice of ordering as well as adding details to some arguments. Any mistakes in the notes are mine. There are undoubtably type-o’s (and possibly mathematical errors), please send any corrections to [email protected]. As these are course notes, several proofs are omitted and left for the reader to read on his/her own time.
    [Show full text]
  • Bernstein's Analytic Continuation of Complex Powers of Polynomials
    Bernsteins analytic continuation of complex p owers c Paul Garrett garrettmathumnedu version January Analytic continuation of distributions Statement of the theorems on analytic continuation Bernsteins pro ofs Pro of of the Lemma the Bernstein p olynomial Pro of of the Prop osition estimates on zeros Garrett Bernsteins analytic continuation of complex p owers Let f b e a p olynomial in x x with real co ecients For complex s let n s f b e the function dened by s s f x f x if f x s f x if f x s Certainly for s the function f is lo cally integrable For s in this range s we can dened a distribution denoted by the same symb ol f by Z s s f x x dx f n R n R the space of compactlysupp orted smo oth realvalued where is in C c n functions on R s The ob ject is to analytically continue the distribution f as a meromorphic distributionvalued function of s This typ e of question was considered in several provo cative examples in IM Gelfand and GE Shilovs Generalized Functions volume I One should also ask ab out analytic continuation as a temp ered distribution In a lecture at the Amsterdam Congress IM Gelfand rened this question to require further that one show that the p oles lie in a nite numb er of arithmetic progressions Bernstein proved the result in under a certain regularity hyp othesis on the zeroset of the p olynomial f Published in Journal of Functional Analysis and Its Applications translated from Russian The present discussion includes some background material from complex function theory and
    [Show full text]
  • Automorphic Functions and Fermat's Last Theorem(3)
    Jiang and Wiles Proofs on Fermat Last Theorem (3) Abstract D.Zagier(1984) and K.Inkeri(1990) said[7]:Jiang mathematics is true,but Jiang determinates the irrational numbers to be very difficult for prime exponent p.In 1991 Jiang studies the composite exponents n=15,21,33,…,3p and proves Fermat last theorem for prime exponenet p>3[1].In 1986 Gerhard Frey places Fermat last theorem at the elliptic curve that is Frey curve.Andrew Wiles studies Frey curve. In 1994 Wiles proves Fermat last theorem[9,10]. Conclusion:Jiang proof(1991) is direct and simple,but Wiles proof(1994) is indirect and complex.If China mathematicians had supported and recognized Jiang proof on Fermat last theorem,Wiles would not have proved Fermat last theorem,because in 1991 Jiang had proved Fermat last theorem.Wiles has received many prizes and awards,he should thank China mathematicians. - Automorphic Functions And Fermat’s Last Theorem(3) (Fermat’s Proof of FLT) 1 Chun-Xuan Jiang P. O. Box 3924, Beijing 100854, P. R. China [email protected] Abstract In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous proof, which this margin is too small to contain.” This means: xyznnnn+ =>(2) has no integer solutions, all different from 0(i.e., it has only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT).
    [Show full text]
  • A Refinement of the Artin Conductor and the Base Change Conductor
    A refinement of the Artin conductor and the base change conductor C.-L. Chai and C. Kappen Abstract For a local field K with positive residue characteristic p, we introduce, in the first part of this paper, a refinement bArK of the classical Artin distribution ArK . It takes values in cyclotomic extensions of Q which are unramified at p, and it bisects ArK in the sense that ArK is equal to the sum of bArK and its conjugate distribution. 1 Compared with 2 ArK , the bisection bArK provides a higher resolution on the level of tame ramification. In the second part of this article, we prove that the base change conductor c(T ) of an analytic K-torus T is equal to the value of bArK on the Qp-rational ∗ ∗ Galois representation X (T ) ⊗Zp Qp that is given by the character module X (T ) of T . We hereby generalize a formula for the base change conductor of an algebraic K-torus, and we obtain a formula for the base change conductor of a semiabelian K-variety with potentially ordinary reduction. Contents 1 Introduction 1 2 Notation 4 3 A bisection of the Artin character 5 4 Analytic tori 15 5 The base change conductor 17 6 A formula for the base change conductor 24 7 Application to semiabelian varieties with potentially ordinary reduc- tion 27 References 30 1. Introduction The base change conductor c(A) of a semiabelian variety A over a local field K is an interesting arithmetic invariant; it measures the growth of the volume of the N´eron model of A under base change, cf.
    [Show full text]
  • Appendices A. Quadratic Reciprocity Via Gauss Sums
    1 Appendices We collect some results that might be covered in a first course in algebraic number theory. A. Quadratic Reciprocity Via Gauss Sums A1. Introduction In this appendix, p is an odd prime unless otherwise specified. A quadratic equation 2 modulo p looks like ax + bx + c =0inFp. Multiplying by 4a, we have 2 2ax + b ≡ b2 − 4ac mod p Thus in studying quadratic equations mod p, it suffices to consider equations of the form x2 ≡ a mod p. If p|a we have the uninteresting equation x2 ≡ 0, hence x ≡ 0, mod p. Thus assume that p does not divide a. A2. Definition The Legendre symbol a χ(a)= p is given by 1ifa(p−1)/2 ≡ 1modp χ(a)= −1ifa(p−1)/2 ≡−1modp. If b = a(p−1)/2 then b2 = ap−1 ≡ 1modp,sob ≡±1modp and χ is well-defined. Thus χ(a) ≡ a(p−1)/2 mod p. A3. Theorem a The Legendre symbol ( p ) is 1 if and only if a is a quadratic residue (from now on abbre- viated QR) mod p. Proof.Ifa ≡ x2 mod p then a(p−1)/2 ≡ xp−1 ≡ 1modp. (Note that if p divides x then p divides a, a contradiction.) Conversely, suppose a(p−1)/2 ≡ 1modp.Ifg is a primitive root mod p, then a ≡ gr mod p for some r. Therefore a(p−1)/2 ≡ gr(p−1)/2 ≡ 1modp, so p − 1 divides r(p − 1)/2, hence r/2 is an integer. But then (gr/2)2 = gr ≡ a mod p, and a isaQRmodp.
    [Show full text]