3 Zeta and L-Functions

Total Page:16

File Type:pdf, Size:1020Kb

3 Zeta and L-Functions 3 Zeta and L-functions In this section we will use analytic methods to (i) develop a formula for class numbers, and (ii) use this to prove Dirichlet’s theorem in arithmetic progressions: that any arithmetic progression: a + m, a +2m, a +3m, . contains infinitely many primes gcd(a, m)=1. This chapter follows [Cohn], though our presentation is reversed from his, together with some supplementary material taken from various other sources. More general treatments are found in [Marcus] and [Neukirch], though they do not do everything we will do here. 3.1 Zeta functions Recall one defines the Riemann zeta function by 1 ⇣(s)= . (3.1) ns X One knows from calculus that this converges for s>1 (compare with 1 x1 s 1 1 1 dx = − = < .) xs 1 s 1 s 1 Z1 − x=1 − Euler observed that (for s>1) one also has the product expansion 1 1 1 1 ⇣(s)= = 1+ + + = . ns ps p2s ··· 1 p s p − X Y ✓ ◆ Y − Here p runs over all primes of N. The last equality just follows from the formula for a geometric n 1 series: 1 a = if a < 1. To see the why product expansion (middle equality) is valid, it’s n=0 1 a | | perhaps easiest to first− notice that it is formally true for s =1, where it says P ⇤ 1 1 1 1 1 1 1 1 1 1 = 1+ + + + 1+ + + + 1+ + + + (3.2) n 2 22 23 ··· 3 32 33 ··· 5 52 53 ··· ··· X ✓ ◆✓ ◆✓ ◆ What does this (formal) infinite product on the right mean? It just means a (formal) limit of the sequence of finite subproducts: 1 1 1 1 1+ + + + = 2 22 23 ··· n n N2 X2 1 1 1 1 1 1 1 1 1 1 1 1 1 1+ + + + 1+ + + + =1+ + + + + + + + 2 22 23 ··· 3 32 33 ··· 2 3 2 3 22 32 22 3 2 32 ··· ✓ ◆✓ ◆ · · · 1 = n n N2,3 2X ⇤When s =1, neither side of the equality actually converges, but the explanation for why both sides should be equal is perhaps more transparent. Here “formally” is not to be confused with rigorously—we mean we can formally manipulate one side to get to the other. 39 1 1 1 1 1 1 1 1 1 1 1+ + + + 1+ + + + 1+ + + + = 2 22 23 ··· 3 32 33 ··· 5 52 53 ··· n ✓ ◆✓ ◆✓ ◆ n N2,3,5 2X . e1 e2 ek where Np1,p2,...,pk = p p p : ei N 0 , i.e., Np1,p2,...,pk is the set of natural numbers 1 2 ··· k 2 [{ } which only contain the primes p ,...p in their prime decomposition. 1 k We now prove rigorously that the formal product expansion for ⇣(s) given above is valid for s>1. Definition 3.1.1. Let p denote the set of primes of N.Letap C for each p. We define { } 2 ap =lim ap. n p !1 n<x Y Y Hence we will say ap converges (diverges) if the limit on the right does. We say ap con- verges absolutely if Q Q lim ap n i !1 i<nY converges for any ordering p ,p ,p ,... of the set of primes p . { 1 2 3 } { } In other words, a product converges absolutely if it converges regardless of the way we order the terms in the product. One can of course similarly define infinite product over any denumerable index set Example 3.1.2. If some ap =0,thenaftersomepoint(nomatterhowthep’s are ordered), we will have a finite subproduct of ap =0.Thus ap will converge to 0 absolutely. Note that if every ap > 0, thenQ log( ap)=Q log ap. An immediate consequence is that ap converges (absolutely) if and only if the series log ap converges (absolutely). Q P Q Proposition 3.1.3. Let (an)n1=1 be a totally multiplicativeP sequence of complex numbers, i.e., amn = 1 aman for any m, n N,andassumea1 =1.If an converges absolutely, then so does 2 p 1 ap and − 1 P 1 Q a = , n 1 a n=1 p p X Y − where the product is taken over all primes p of N. Proof. Suppose an converges absolutely. Let ✏>0. Then for some N N we can say 2 P a <✏. | n| n>NX Let p1,p2,... be any ordering of the set of primes of N. Then there is some K N such that { } 2 p ,...,p contains all N. Observe { 1 K } K K 1 2 = 1+ap + ap + = an. 1 api ··· i=1 − i=1 n Np1,...,pK Y Y 2 X 40 Since Np1,...,pK contains 1,...,N,wehave K 1 1 an an an <✏. − 1 api | | n=1 i=1 − n>N n>N X Y X X Corollary 3.1.4. For any s>1 the Euler product expansion 1 ⇣(s)= s (3.3) 1 p− Y − is valid. s Proof. Apply the proposition with an = n− . The Euler product expansion demonstrates that the zeta function captures information about primes. In fact, it contains a surprising amount of information about primes. The simplest appli- cation of the zeta function to the study of primes is Euler’s proof of the infinitude of primes. Theorem 3.1.5. There are infinitely many primes. Proof. Assume there are finitely many primes, p1,...,pk. Then 1 1 1 1 1 1 ⇣(s)= s s s < 1 p− · 1 p− ···1 p− ! 1 1/p1 · 1 1/p2 ···1 1/pk 1 − 1 − 2 − k − − − as s 1. On the other hand ! 1 1 ⇣(s)= = ns ! n 1 as s 1. Contradiction. X X ! Exercise 3.1. For any integer k>1,onecanshow1/⇣(k) represents the probability that k “ran- domly chosen” integers are coprime (have gcd 1). Let f(x)=x on [ ⇡,⇡),computetheFourier − coefficients and apply Parseval’s identity. Use this to compute ⇣(2),andhencedeterminetheproba- bility that 2 randomly chosen integers are coprime. (Alternatively, you can try to derive the product expansion sin x 1 x 2 = 1 , x − n⇡ n=1 Y ✓ ⇣ ⌘ ◆ and look at the x2 coefficient to find ⇣(2).) We will briefly discuss some deeper connections of ⇣(s) to the study of primes, but first let us give a generalization of the Riemann zeta function. Definition 3.1.6. Let K be a number field. The Dedekind zeta function for K is 1 ⇣ (s)= , K N(a)s a X for s>1 where a runs over all (nonzero) ideals of . OK 41 As before, one can show this series indeed converges for all s>1, and we have an Euler product expansion 1 ⇣ (s)= K 1 N(p) s p − Y − valid for s>1 as above. Hence the Dedekind zeta function can be used to study the prime ideals of of K. We remark that another way to write the above definition is a ⇣ (s)= n K ns X where an denotes the number of ideals of K with norm n (convince yourself of this). Consequently, the Dedekind zeta function can be used to study the number of ideals of norm n. However, we will be interested in it for its applications to the class number hK of K. 3.2 Interlude: Riemann’s crazy ideas Riemann published a single paper in number theory, On the Number of Primes Less Than a Given Magnitude in 1859, which was 8 pages long, contained no formal proofs, and essentially gave birth to all of analytic number theory. We will summarize the main ideas here. We only defined the Riemann zeta function for real s>1, but in fact Riemann considered it for complex values of s. In general if a>0 and z C, then one defines 2 az = ez ln a where zn ez = . n! This allows one formally to make sense of the definitionX 1 ⇣(s)= ns X for s C, and one can show the sum actually converges provided Re(s) > 1. Riemann showed that 2 ⇣(s) can be extended (uniquely) to a differentiable function on all of C except at s =1, where ⇣(s) has a pole (must be ). However the above series expression is only valid for Re(s) > 1. 1 1 Riemann showed that ⇣(s) has a certain symmetry around the line Re(s)= 2 , namely one has the functional equation ⇣(1 s)=Γ⇤(s)⇣(s) − where Γ⇤(s) is a function closely related to the Γ function. The functional equation says one can compute ⇣(1 s) in terms of ⇣(s), so we can indirectly use the series for ⇣(s) to compute ⇣(s) when − Re(s) < 0. The region 0 < Re(s) < 1 is called the critical strip, and the central line of symmetry 1 Re(s)= 2 is called the critical line. Let ⇢ denote the set of zeroes of ⇣(s) inside of the critical strip. There are countably (infinitely) { } many, and let us order them by their absolute value. Let 1 1 f(x)=⇡(x)+ ⇡(x1/2)+ ⇡(x1/3)+ 2 3 ··· 42 where ⇡(x) is the number of primes less than x. Riemann discovered the following formula for f(x) dt f(x) = Li(x) Li(x⇢) log(2) + 1 − − t(t2 1) ln t ⇢ x X Z − x dt where Li(x)= 0 ln t . Hence this formula relates ⇡(x) with the (values of Li at the) zeroes of ⇣(s). In fact, using Möbius inversion, one can rewrite ⇡(x) in terms of f(x) (and therefore the zeroes of R ⇣(s))as 1 1 ⇡(x)=f(x) f(x1/2) (x1/3) − 2 − 3 −··· Essentially this says the following: if we know exactly where all the zeroes ⇢ of ⇣(s) are we know exactly where the primes are (these are the places on the real line where ⇡(x) jumps).
Recommended publications
  • Euler Product Asymptotics on Dirichlet L-Functions 3
    EULER PRODUCT ASYMPTOTICS ON DIRICHLET L-FUNCTIONS IKUYA KANEKO Abstract. We derive the asymptotic behaviour of partial Euler products for Dirichlet L-functions L(s,χ) in the critical strip upon assuming only the Generalised Riemann Hypothesis (GRH). Capturing the behaviour of the partial Euler products on the critical line is called the Deep Riemann Hypothesis (DRH) on the ground of its importance. Our result manifests the positional relation of the GRH and DRH. If χ is a non-principal character, we observe the √2 phenomenon, which asserts that the extra factor √2 emerges in the Euler product asymptotics on the central point s = 1/2. We also establish the connection between the behaviour of the partial Euler products and the size of the remainder term in the prime number theorem for arithmetic progressions. Contents 1. Introduction 1 2. Prelude to the asymptotics 5 3. Partial Euler products for Dirichlet L-functions 6 4. Logarithmical approach to Euler products 7 5. Observing the size of E(x; q,a) 8 6. Appendix 9 Acknowledgement 11 References 12 1. Introduction This paper was motivated by the beautiful and profound work of Ramanujan on asymptotics for the partial Euler product of the classical Riemann zeta function ζ(s). We handle the family of Dirichlet L-functions ∞ L(s,χ)= χ(n)n−s = (1 χ(p)p−s)−1 with s> 1, − ℜ 1 p X Y arXiv:1902.04203v1 [math.NT] 12 Feb 2019 and prove the asymptotic behaviour of partial Euler products (1.1) (1 χ(p)p−s)−1 − 6 pYx in the critical strip 0 < s < 1, assuming the Generalised Riemann Hypothesis (GRH) for this family.
    [Show full text]
  • Arithmetic Equivalence and Isospectrality
    ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK .
    [Show full text]
  • Of the Riemann Hypothesis
    A Simple Counterexample to Havil's \Reformulation" of the Riemann Hypothesis Jonathan Sondow 209 West 97th Street New York, NY 10025 [email protected] The Riemann Hypothesis (RH) is \the greatest mystery in mathematics" [3]. It is a conjecture about the Riemann zeta function. The zeta function allows us to pass from knowledge of the integers to knowledge of the primes. In his book Gamma: Exploring Euler's Constant [4, p. 207], Julian Havil claims that the following is \a tantalizingly simple reformulation of the Rie- mann Hypothesis." Havil's Conjecture. If 1 1 X (−1)n X (−1)n cos(b ln n) = 0 and sin(b ln n) = 0 na na n=1 n=1 for some pair of real numbers a and b, then a = 1=2. In this note, we first state the RH and explain its connection with Havil's Conjecture. Then we show that the pair of real numbers a = 1 and b = 2π=ln 2 is a counterexample to Havil's Conjecture, but not to the RH. Finally, we prove that Havil's Conjecture becomes a true reformulation of the RH if his conclusion \then a = 1=2" is weakened to \then a = 1=2 or a = 1." The Riemann Hypothesis In 1859 Riemann published a short paper On the number of primes less than a given quantity [6], his only one on number theory. Writing s for a complex variable, he assumes initially that its real 1 part <(s) is greater than 1, and he begins with Euler's product-sum formula 1 Y 1 X 1 = (<(s) > 1): 1 ns p 1 − n=1 ps Here the product is over all primes p.
    [Show full text]
  • Density Theorems for Reciprocity Equivalences. Thomas Carrere Palfrey Louisiana State University and Agricultural & Mechanical College
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Louisiana State University Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1989 Density Theorems for Reciprocity Equivalences. Thomas Carrere Palfrey Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Palfrey, Thomas Carrere, "Density Theorems for Reciprocity Equivalences." (1989). LSU Historical Dissertations and Theses. 4799. https://digitalcommons.lsu.edu/gradschool_disstheses/4799 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • The Mobius Function and Mobius Inversion
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Number Theory Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 The Mobius Function and Mobius Inversion Carl Lienert Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_number Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, Number Theory Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Recommended Citation Lienert, Carl, "The Mobius Function and Mobius Inversion" (2020). Number Theory. 12. https://digitalcommons.ursinus.edu/triumphs_number/12 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Number Theory by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. The Möbius Function and Möbius Inversion Carl Lienert∗ January 16, 2021 August Ferdinand Möbius (1790–1868) is perhaps most well known for the one-sided Möbius strip and, in geometry and complex analysis, for the Möbius transformation. In number theory, Möbius’ name can be seen in the important technique of Möbius inversion, which utilizes the important Möbius function. In this PSP we’ll study the problem that led Möbius to consider and analyze the Möbius function. Then, we’ll see how other mathematicians, Dedekind, Laguerre, Mertens, and Bell, used the Möbius function to solve a different inversion problem.1 Finally, we’ll use Möbius inversion to solve a problem concerning Euler’s totient function.
    [Show full text]
  • Prime Factorization, Zeta Function, Euler Product
    Analytic Number Theory, undergrad, Courant Institute, Spring 2017 http://www.math.nyu.edu/faculty/goodman/teaching/NumberTheory2017/index.html Section 2, Euler products version 1.2 (latest revision February 8, 2017) 1 Introduction. This section serves two purposes. One is to cover the Euler product formula for the zeta function and prove the fact that X p−1 = 1 : (1) p The other is to develop skill and tricks that justify the calculations involved. The zeta function is the sum 1 X ζ(s) = n−s : (2) 1 We will show that the sum converges as long as s > 1. The Euler product formula is Y −1 ζ(s) = 1 − p−s : (3) p This formula expresses the fact that every positive integers has a unique rep- resentation as a product of primes. We will define the infinite product, prove that this one converges for s > 1, and prove that the infinite sum is equal to the infinite product if s > 1. The derivative of the zeta function is 1 X ζ0(s) = − log(n) n−s : (4) 1 This formula is derived by differentiating each term in (2), as you would do for a finite sum. We will prove that this calculation is valid for the zeta sum, for s > 1. We also can differentiate the product (3) using the Leibnitz rule as 1 though it were a finite product. In the following calculation, r is another prime: 8 9 X < d −1 X −1= ζ0(s) = 1 − p−s 1 − r−s ds p : r6=p ; 8 9 X <h −2i X −1= = − log(p)p−s 1 − p−s 1 − r−s p : r6=p ; ( ) X −1 = − log(p) p−s 1 − p−s ζ(s) p ( 1 !) X X ζ0(s) = − log(p) p−ks ζ(s) : (5) p 1 If we divide by ζ(s), the sum on the right is a sum over prime powers (numbers n that have a single p in their prime factorization).
    [Show full text]
  • 4 L-Functions
    Further Number Theory G13FNT cw ’11 4 L-functions In this chapter, we will use analytic tools to study prime numbers. We first start by giving a new proof that there are infinitely many primes and explain what one can say about exactly “how many primes there are”. Then we will use the same tools to proof Dirichlet’s theorem on primes in arithmetic progressions. 4.1 Riemann’s zeta-function and its behaviour at s = 1 Definition. The Riemann zeta function ζ(s) is defined by X 1 1 1 1 1 ζ(s) = = + + + + ··· . ns 1s 2s 3s 4s n>1 The series converges (absolutely) for all s > 1. Remark. The series also converges for complex s provided that Re(s) > 1. 2 4 P 1 Example. From the last chapter, ζ(2) = π /6, ζ(4) = π /90. But ζ(1) is not defined since n diverges. However we can still describe the behaviour of ζ(s) as s & 1 (which is my notation for s → 1+, i.e. s > 1 and s → 1). Proposition 4.1. lim (s − 1) · ζ(s) = 1. s&1 −s R n+1 1 −s Proof. Summing the inequality (n + 1) < n xs dx < n for n > 1 gives Z ∞ 1 1 ζ(s) − 1 < s dx = < ζ(s) 1 x s − 1 and hence 1 < (s − 1)ζ(s) < s; now let s & 1. Corollary 4.2. log ζ(s) lim = 1. s&1 1 log s−1 Proof. Write log ζ(s) log(s − 1)ζ(s) 1 = 1 + 1 log s−1 log s−1 and let s & 1.
    [Show full text]
  • Riemann Hypothesis and Random Walks: the Zeta Case
    Riemann Hypothesis and Random Walks: the Zeta case Andr´e LeClaira Cornell University, Physics Department, Ithaca, NY 14850 Abstract In previous work it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for 1 its L-function is valid to the right of the critical line <(s) > 2 , and the Riemann Hypothesis for this class of L-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet L-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a 1-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely 10100-th zero to over 100 digits, far beyond what is currently known. arXiv:1601.00914v3 [math.NT] 23 May 2017 a [email protected] 1 I. INTRODUCTION There are many generalizations of Riemann's zeta function to other Dirichlet series, which are also believed to satisfy a Riemann Hypothesis. A common opinion, based largely on counterexamples, is that the L-functions for which the Riemann Hypothesis is true enjoy both an Euler product formula and a functional equation. However a direct connection between these properties and the Riemann Hypothesis has not been formulated in a precise manner.
    [Show full text]
  • Jeff Connor IDEAL CONVERGENCE GENERATED by DOUBLE
    DEMONSTRATIO MATHEMATICA Vol. 49 No 1 2016 Jeff Connor IDEAL CONVERGENCE GENERATED BY DOUBLE SUMMABILITY METHODS Communicated by J. Wesołowski Abstract. The main result of this note is that if I is an ideal generated by a regular double summability matrix summability method T that is the product of two nonnegative regular matrix methods for single sequences, then I-statistical convergence and convergence in I-density are equivalent. In particular, the method T generates a density µT with the additive property (AP) and hence, the additive property for null sets (APO). The densities used to generate statistical convergence, lacunary statistical convergence, and general de la Vallée-Poussin statistical convergence are generated by these types of double summability methods. If a matrix T generates a density with the additive property then T -statistical convergence, convergence in T -density and strong T -summabilty are equivalent for bounded sequences. An example is given to show that not every regular double summability matrix generates a density with additve property for null sets. 1. Introduction The notions of statistical convergence and convergence in density for sequences has been in the literature, under different guises, since the early part of the last century. The underlying generalization of sequential convergence embodied in the definition of convergence in density or statistical convergence has been used in the theory of Fourier analysis, ergodic theory, and number theory, usually in connection with bounded strong summability or convergence in density. Statistical convergence, as it has recently been investigated, was defined by Fast in 1951 [9], who provided an alternate proof of a result of Steinhaus [23].
    [Show full text]
  • Introduction to L-Functions: Dedekind Zeta Functions
    Introduction to L-functions: Dedekind zeta functions Paul Voutier CIMPA-ICTP Research School, Nesin Mathematics Village June 2017 Dedekind zeta function Definition Let K be a number field. We define for Re(s) > 1 the Dedekind zeta function ζK (s) of K by the formula X −s ζK (s) = NK=Q(a) ; a where the sum is over all non-zero integral ideals, a, of OK . Euler product exists: Y −s −1 ζK (s) = 1 − NK=Q(p) ; p where the product extends over all prime ideals, p, of OK . Re(s) > 1 Proposition For any s = σ + it 2 C with σ > 1, ζK (s) converges absolutely. Proof: −n Y −s −1 Y 1 jζ (s)j = 1 − N (p) ≤ 1 − = ζ(σ)n; K K=Q pσ p p since there are at most n = [K : Q] many primes p lying above each rational prime p and NK=Q(p) ≥ p. A reminder of some algebraic number theory If [K : Q] = n, we have n embeddings of K into C. r1 embeddings into R and 2r2 embeddings into C, where n = r1 + 2r2. We will label these σ1; : : : ; σr1 ; σr1+1; σr1+1; : : : ; σr1+r2 ; σr1+r2 . If α1; : : : ; αn is a basis of OK , then 2 dK = (det (σi (αj ))) : Units in OK form a finitely-generated group of rank r = r1 + r2 − 1. Let u1;:::; ur be a set of generators. For any embedding σi , set Ni = 1 if it is real, and Ni = 2 if it is complex. Then RK = det (Ni log jσi (uj )j)1≤i;j≤r : wK is the number of roots of unity contained in K.
    [Show full text]
  • Natural Density and the Quantifier'most'
    Natural Density and the Quantifier “Most” Sel¸cuk Topal and Ahmet C¸evik Abstract. This paper proposes a formalization of the class of sentences quantified by most, which is also interpreted as proportion of or ma- jority of depending on the domain of discourse. We consider sentences of the form “Most A are B”, where A and B are plural nouns and the interpretations of A and B are infinite subsets of N. There are two widely used semantics for Most A are B: (i) C(A ∩ B) > C(A \ B) C(A) and (ii) C(A ∩ B) > , where C(X) denotes the cardinality of a 2 given finite set X. Although (i) is more descriptive than (ii), it also produces a considerable amount of insensitivity for certain sets. Since the quantifier most has a solid cardinal behaviour under the interpre- tation majority and has a slightly more statistical behaviour under the interpretation proportional of, we consider an alternative approach in deciding quantity-related statements regarding infinite sets. For this we introduce a new semantics using natural density for sentences in which interpretations of their nouns are infinite subsets of N, along with a list of the axiomatization of the concept of natural density. In other words, we take the standard definition of the semantics of most but define it as applying to finite approximations of infinite sets computed to the limit. Mathematics Subject Classification (2010). 03B65, 03C80, 11B05. arXiv:1901.10394v2 [math.LO] 14 Mar 2019 Keywords. Logic of natural languages; natural density; asymptotic den- sity; arithmetic progression; syllogistic; most; semantics; quantifiers; car- dinality.
    [Show full text]
  • SMALL ISOSPECTRAL and NONISOMETRIC ORBIFOLDS of DIMENSION 2 and 3 Introduction. in 1966
    SMALL ISOSPECTRAL AND NONISOMETRIC ORBIFOLDS OF DIMENSION 2 AND 3 BENJAMIN LINOWITZ AND JOHN VOIGHT ABSTRACT. Revisiting a construction due to Vigneras,´ we exhibit small pairs of orbifolds and man- ifolds of dimension 2 and 3 arising from arithmetic Fuchsian and Kleinian groups that are Laplace isospectral (in fact, representation equivalent) but nonisometric. Introduction. In 1966, Kac [48] famously posed the question: “Can one hear the shape of a drum?” In other words, if you know the frequencies at which a drum vibrates, can you determine its shape? Since this question was asked, hundreds of articles have been written on this general topic, and it remains a subject of considerable interest [41]. Let (M; g) be a connected, compact Riemannian manifold (with or without boundary). Asso- ciated to M is the Laplace operator ∆, defined by ∆(f) = − div(grad(f)) for f 2 L2(M; g) a square-integrable function on M. The eigenvalues of ∆ on the space L2(M; g) form an infinite, discrete sequence of nonnegative real numbers 0 = λ0 < λ1 ≤ λ2 ≤ ::: , called the spectrum of M. In the case that M is a planar domain, the eigenvalues in the spectrum of M are essentially the frequencies produced by a drum shaped like M and fixed at its boundary. Two Riemannian manifolds are said to be Laplace isospectral if they have the same spectra. Inverse spectral geom- etry asks the extent to which the geometry and topology of M are determined by its spectrum. For example, volume, dimension and scalar curvature can all be shown to be spectral invariants.
    [Show full text]