3 Zeta and L-Functions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Euler Product Asymptotics on Dirichlet L-Functions 3
EULER PRODUCT ASYMPTOTICS ON DIRICHLET L-FUNCTIONS IKUYA KANEKO Abstract. We derive the asymptotic behaviour of partial Euler products for Dirichlet L-functions L(s,χ) in the critical strip upon assuming only the Generalised Riemann Hypothesis (GRH). Capturing the behaviour of the partial Euler products on the critical line is called the Deep Riemann Hypothesis (DRH) on the ground of its importance. Our result manifests the positional relation of the GRH and DRH. If χ is a non-principal character, we observe the √2 phenomenon, which asserts that the extra factor √2 emerges in the Euler product asymptotics on the central point s = 1/2. We also establish the connection between the behaviour of the partial Euler products and the size of the remainder term in the prime number theorem for arithmetic progressions. Contents 1. Introduction 1 2. Prelude to the asymptotics 5 3. Partial Euler products for Dirichlet L-functions 6 4. Logarithmical approach to Euler products 7 5. Observing the size of E(x; q,a) 8 6. Appendix 9 Acknowledgement 11 References 12 1. Introduction This paper was motivated by the beautiful and profound work of Ramanujan on asymptotics for the partial Euler product of the classical Riemann zeta function ζ(s). We handle the family of Dirichlet L-functions ∞ L(s,χ)= χ(n)n−s = (1 χ(p)p−s)−1 with s> 1, − ℜ 1 p X Y arXiv:1902.04203v1 [math.NT] 12 Feb 2019 and prove the asymptotic behaviour of partial Euler products (1.1) (1 χ(p)p−s)−1 − 6 pYx in the critical strip 0 < s < 1, assuming the Generalised Riemann Hypothesis (GRH) for this family. -
Arithmetic Equivalence and Isospectrality
ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK . -
Of the Riemann Hypothesis
A Simple Counterexample to Havil's \Reformulation" of the Riemann Hypothesis Jonathan Sondow 209 West 97th Street New York, NY 10025 [email protected] The Riemann Hypothesis (RH) is \the greatest mystery in mathematics" [3]. It is a conjecture about the Riemann zeta function. The zeta function allows us to pass from knowledge of the integers to knowledge of the primes. In his book Gamma: Exploring Euler's Constant [4, p. 207], Julian Havil claims that the following is \a tantalizingly simple reformulation of the Rie- mann Hypothesis." Havil's Conjecture. If 1 1 X (−1)n X (−1)n cos(b ln n) = 0 and sin(b ln n) = 0 na na n=1 n=1 for some pair of real numbers a and b, then a = 1=2. In this note, we first state the RH and explain its connection with Havil's Conjecture. Then we show that the pair of real numbers a = 1 and b = 2π=ln 2 is a counterexample to Havil's Conjecture, but not to the RH. Finally, we prove that Havil's Conjecture becomes a true reformulation of the RH if his conclusion \then a = 1=2" is weakened to \then a = 1=2 or a = 1." The Riemann Hypothesis In 1859 Riemann published a short paper On the number of primes less than a given quantity [6], his only one on number theory. Writing s for a complex variable, he assumes initially that its real 1 part <(s) is greater than 1, and he begins with Euler's product-sum formula 1 Y 1 X 1 = (<(s) > 1): 1 ns p 1 − n=1 ps Here the product is over all primes p. -
Density Theorems for Reciprocity Equivalences. Thomas Carrere Palfrey Louisiana State University and Agricultural & Mechanical College
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Louisiana State University Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1989 Density Theorems for Reciprocity Equivalences. Thomas Carrere Palfrey Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Palfrey, Thomas Carrere, "Density Theorems for Reciprocity Equivalences." (1989). LSU Historical Dissertations and Theses. 4799. https://digitalcommons.lsu.edu/gradschool_disstheses/4799 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. -
The Mobius Function and Mobius Inversion
Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Number Theory Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 The Mobius Function and Mobius Inversion Carl Lienert Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_number Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, Number Theory Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Recommended Citation Lienert, Carl, "The Mobius Function and Mobius Inversion" (2020). Number Theory. 12. https://digitalcommons.ursinus.edu/triumphs_number/12 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Number Theory by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. The Möbius Function and Möbius Inversion Carl Lienert∗ January 16, 2021 August Ferdinand Möbius (1790–1868) is perhaps most well known for the one-sided Möbius strip and, in geometry and complex analysis, for the Möbius transformation. In number theory, Möbius’ name can be seen in the important technique of Möbius inversion, which utilizes the important Möbius function. In this PSP we’ll study the problem that led Möbius to consider and analyze the Möbius function. Then, we’ll see how other mathematicians, Dedekind, Laguerre, Mertens, and Bell, used the Möbius function to solve a different inversion problem.1 Finally, we’ll use Möbius inversion to solve a problem concerning Euler’s totient function. -
Prime Factorization, Zeta Function, Euler Product
Analytic Number Theory, undergrad, Courant Institute, Spring 2017 http://www.math.nyu.edu/faculty/goodman/teaching/NumberTheory2017/index.html Section 2, Euler products version 1.2 (latest revision February 8, 2017) 1 Introduction. This section serves two purposes. One is to cover the Euler product formula for the zeta function and prove the fact that X p−1 = 1 : (1) p The other is to develop skill and tricks that justify the calculations involved. The zeta function is the sum 1 X ζ(s) = n−s : (2) 1 We will show that the sum converges as long as s > 1. The Euler product formula is Y −1 ζ(s) = 1 − p−s : (3) p This formula expresses the fact that every positive integers has a unique rep- resentation as a product of primes. We will define the infinite product, prove that this one converges for s > 1, and prove that the infinite sum is equal to the infinite product if s > 1. The derivative of the zeta function is 1 X ζ0(s) = − log(n) n−s : (4) 1 This formula is derived by differentiating each term in (2), as you would do for a finite sum. We will prove that this calculation is valid for the zeta sum, for s > 1. We also can differentiate the product (3) using the Leibnitz rule as 1 though it were a finite product. In the following calculation, r is another prime: 8 9 X < d −1 X −1= ζ0(s) = 1 − p−s 1 − r−s ds p : r6=p ; 8 9 X <h −2i X −1= = − log(p)p−s 1 − p−s 1 − r−s p : r6=p ; ( ) X −1 = − log(p) p−s 1 − p−s ζ(s) p ( 1 !) X X ζ0(s) = − log(p) p−ks ζ(s) : (5) p 1 If we divide by ζ(s), the sum on the right is a sum over prime powers (numbers n that have a single p in their prime factorization). -
4 L-Functions
Further Number Theory G13FNT cw ’11 4 L-functions In this chapter, we will use analytic tools to study prime numbers. We first start by giving a new proof that there are infinitely many primes and explain what one can say about exactly “how many primes there are”. Then we will use the same tools to proof Dirichlet’s theorem on primes in arithmetic progressions. 4.1 Riemann’s zeta-function and its behaviour at s = 1 Definition. The Riemann zeta function ζ(s) is defined by X 1 1 1 1 1 ζ(s) = = + + + + ··· . ns 1s 2s 3s 4s n>1 The series converges (absolutely) for all s > 1. Remark. The series also converges for complex s provided that Re(s) > 1. 2 4 P 1 Example. From the last chapter, ζ(2) = π /6, ζ(4) = π /90. But ζ(1) is not defined since n diverges. However we can still describe the behaviour of ζ(s) as s & 1 (which is my notation for s → 1+, i.e. s > 1 and s → 1). Proposition 4.1. lim (s − 1) · ζ(s) = 1. s&1 −s R n+1 1 −s Proof. Summing the inequality (n + 1) < n xs dx < n for n > 1 gives Z ∞ 1 1 ζ(s) − 1 < s dx = < ζ(s) 1 x s − 1 and hence 1 < (s − 1)ζ(s) < s; now let s & 1. Corollary 4.2. log ζ(s) lim = 1. s&1 1 log s−1 Proof. Write log ζ(s) log(s − 1)ζ(s) 1 = 1 + 1 log s−1 log s−1 and let s & 1. -
Riemann Hypothesis and Random Walks: the Zeta Case
Riemann Hypothesis and Random Walks: the Zeta case Andr´e LeClaira Cornell University, Physics Department, Ithaca, NY 14850 Abstract In previous work it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for 1 its L-function is valid to the right of the critical line <(s) > 2 , and the Riemann Hypothesis for this class of L-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet L-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a 1-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely 10100-th zero to over 100 digits, far beyond what is currently known. arXiv:1601.00914v3 [math.NT] 23 May 2017 a [email protected] 1 I. INTRODUCTION There are many generalizations of Riemann's zeta function to other Dirichlet series, which are also believed to satisfy a Riemann Hypothesis. A common opinion, based largely on counterexamples, is that the L-functions for which the Riemann Hypothesis is true enjoy both an Euler product formula and a functional equation. However a direct connection between these properties and the Riemann Hypothesis has not been formulated in a precise manner. -
Jeff Connor IDEAL CONVERGENCE GENERATED by DOUBLE
DEMONSTRATIO MATHEMATICA Vol. 49 No 1 2016 Jeff Connor IDEAL CONVERGENCE GENERATED BY DOUBLE SUMMABILITY METHODS Communicated by J. Wesołowski Abstract. The main result of this note is that if I is an ideal generated by a regular double summability matrix summability method T that is the product of two nonnegative regular matrix methods for single sequences, then I-statistical convergence and convergence in I-density are equivalent. In particular, the method T generates a density µT with the additive property (AP) and hence, the additive property for null sets (APO). The densities used to generate statistical convergence, lacunary statistical convergence, and general de la Vallée-Poussin statistical convergence are generated by these types of double summability methods. If a matrix T generates a density with the additive property then T -statistical convergence, convergence in T -density and strong T -summabilty are equivalent for bounded sequences. An example is given to show that not every regular double summability matrix generates a density with additve property for null sets. 1. Introduction The notions of statistical convergence and convergence in density for sequences has been in the literature, under different guises, since the early part of the last century. The underlying generalization of sequential convergence embodied in the definition of convergence in density or statistical convergence has been used in the theory of Fourier analysis, ergodic theory, and number theory, usually in connection with bounded strong summability or convergence in density. Statistical convergence, as it has recently been investigated, was defined by Fast in 1951 [9], who provided an alternate proof of a result of Steinhaus [23]. -
Introduction to L-Functions: Dedekind Zeta Functions
Introduction to L-functions: Dedekind zeta functions Paul Voutier CIMPA-ICTP Research School, Nesin Mathematics Village June 2017 Dedekind zeta function Definition Let K be a number field. We define for Re(s) > 1 the Dedekind zeta function ζK (s) of K by the formula X −s ζK (s) = NK=Q(a) ; a where the sum is over all non-zero integral ideals, a, of OK . Euler product exists: Y −s −1 ζK (s) = 1 − NK=Q(p) ; p where the product extends over all prime ideals, p, of OK . Re(s) > 1 Proposition For any s = σ + it 2 C with σ > 1, ζK (s) converges absolutely. Proof: −n Y −s −1 Y 1 jζ (s)j = 1 − N (p) ≤ 1 − = ζ(σ)n; K K=Q pσ p p since there are at most n = [K : Q] many primes p lying above each rational prime p and NK=Q(p) ≥ p. A reminder of some algebraic number theory If [K : Q] = n, we have n embeddings of K into C. r1 embeddings into R and 2r2 embeddings into C, where n = r1 + 2r2. We will label these σ1; : : : ; σr1 ; σr1+1; σr1+1; : : : ; σr1+r2 ; σr1+r2 . If α1; : : : ; αn is a basis of OK , then 2 dK = (det (σi (αj ))) : Units in OK form a finitely-generated group of rank r = r1 + r2 − 1. Let u1;:::; ur be a set of generators. For any embedding σi , set Ni = 1 if it is real, and Ni = 2 if it is complex. Then RK = det (Ni log jσi (uj )j)1≤i;j≤r : wK is the number of roots of unity contained in K. -
Natural Density and the Quantifier'most'
Natural Density and the Quantifier “Most” Sel¸cuk Topal and Ahmet C¸evik Abstract. This paper proposes a formalization of the class of sentences quantified by most, which is also interpreted as proportion of or ma- jority of depending on the domain of discourse. We consider sentences of the form “Most A are B”, where A and B are plural nouns and the interpretations of A and B are infinite subsets of N. There are two widely used semantics for Most A are B: (i) C(A ∩ B) > C(A \ B) C(A) and (ii) C(A ∩ B) > , where C(X) denotes the cardinality of a 2 given finite set X. Although (i) is more descriptive than (ii), it also produces a considerable amount of insensitivity for certain sets. Since the quantifier most has a solid cardinal behaviour under the interpre- tation majority and has a slightly more statistical behaviour under the interpretation proportional of, we consider an alternative approach in deciding quantity-related statements regarding infinite sets. For this we introduce a new semantics using natural density for sentences in which interpretations of their nouns are infinite subsets of N, along with a list of the axiomatization of the concept of natural density. In other words, we take the standard definition of the semantics of most but define it as applying to finite approximations of infinite sets computed to the limit. Mathematics Subject Classification (2010). 03B65, 03C80, 11B05. arXiv:1901.10394v2 [math.LO] 14 Mar 2019 Keywords. Logic of natural languages; natural density; asymptotic den- sity; arithmetic progression; syllogistic; most; semantics; quantifiers; car- dinality. -
SMALL ISOSPECTRAL and NONISOMETRIC ORBIFOLDS of DIMENSION 2 and 3 Introduction. in 1966
SMALL ISOSPECTRAL AND NONISOMETRIC ORBIFOLDS OF DIMENSION 2 AND 3 BENJAMIN LINOWITZ AND JOHN VOIGHT ABSTRACT. Revisiting a construction due to Vigneras,´ we exhibit small pairs of orbifolds and man- ifolds of dimension 2 and 3 arising from arithmetic Fuchsian and Kleinian groups that are Laplace isospectral (in fact, representation equivalent) but nonisometric. Introduction. In 1966, Kac [48] famously posed the question: “Can one hear the shape of a drum?” In other words, if you know the frequencies at which a drum vibrates, can you determine its shape? Since this question was asked, hundreds of articles have been written on this general topic, and it remains a subject of considerable interest [41]. Let (M; g) be a connected, compact Riemannian manifold (with or without boundary). Asso- ciated to M is the Laplace operator ∆, defined by ∆(f) = − div(grad(f)) for f 2 L2(M; g) a square-integrable function on M. The eigenvalues of ∆ on the space L2(M; g) form an infinite, discrete sequence of nonnegative real numbers 0 = λ0 < λ1 ≤ λ2 ≤ ::: , called the spectrum of M. In the case that M is a planar domain, the eigenvalues in the spectrum of M are essentially the frequencies produced by a drum shaped like M and fixed at its boundary. Two Riemannian manifolds are said to be Laplace isospectral if they have the same spectra. Inverse spectral geom- etry asks the extent to which the geometry and topology of M are determined by its spectrum. For example, volume, dimension and scalar curvature can all be shown to be spectral invariants.