Chapter 2 the Physical Environment at the Site

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 the Physical Environment at the Site Proposal for the rearrangement of loose rocks and creation of a semi submerged beach in front of Shanti Maurice – A Nira Resort, St Felix November 2015 Chapter 2 The Physical Environment at the site The coastal zone is a delicate, dynamic balance between the powerful driving forces of the ocean such as cyclones waves, surges and tides as well as the reef-lagoon-beach ecosystem as highlighted in The Study on Coastal Erosion in Mauritius by Baird and Associates in 2003 (hereinafter Baird 2003). The coastal zone further, offers protection against these processes, as well as, producing sediments for the beaches. This chapter deals with the coastal conditions and the processes that are general for Mauritius and to the project site in particular. The climatological factors like winds, rainfall, tides, sea level rise and waves have been briefly addressed. An overview of the climatological factors and physical oceanographic processes that affect the coastline of Mauritius is given in this section and is based on recent studies and reports that were made especially under the Adaptation Fund Project for Riviere Des Galets and Mon Choisy, 2015 and also the Study of Coastal Erosion in 2003. Pertinent extracts from these reports are given below. 2.1. Climatological Factors General Overview Mauritius has a moderate tropical climate characterized by a summer season from around November to April and a winter season from May to October. The island is dominated by trade-winds from the east-southeast, generally reaching 20-30 km/h during the winter season. Much stronger winds – exceeding 250 km/h – have been recorded during tropical cyclones. Tropical storms are common in the Indian Ocean during summer (November – March) months, with a number of storms reaching cyclone intensity (Jury et al., 1999). Tropical cyclones generally form to the northeast of Mauritius, in the Intertropical Convergence Zone, between 5°S and 10°S. The frequency of tropical cyclones in the vicinity of Mauritius has been both related to El Niño – Southern Oscillation (ENSO) and quasi- biennial oscillation (QBO) (Jury, 1993; Jury et al., 1999). Rainfall patterns generally follow the tropical season with higher rainfall from December through April and less rainfall from May through November. Winds Long-term wind data comes from the National Centres for Environmental Prediction (NCEP) of the US Government’s National Oceanographic and Atmospheric Administration (NOAA). Thirty three years of wind speed and direction data were sourced from the NOAA’s global 0.5 by 0.5 degree reanalysis model and were interpolated to a latitude and longitude corresponding to Riviere des Galets. The wind climate is summarised by the wind rose shown below. November 2015 Page 8 of 48 Proposal for the rearrangement of loose rocks and creation of a semi submerged beach in front of Shanti Maurice – A Nira Resort, St Felix November 2015 Rose plots of long term (~33 year) hindcast wind data offshore from Riviere Des Galets, Southern Coast of Mauritius. 2.1.1. Rainfall St Felix lies mainly in a semi-dry region and rainfall patterns generally follow the tropical season with higher rainfall from December through April and less rainfall from May through November. Usually torrential rain would occur whenever a cyclone or very active cloud bands are in the vicinity. Table 2.1. shows the mean monthly rainfall near the site. The Rivière des Galets has its mouth some 2 km to the west of the project site while Rivière Savanne gain access to the sea at its river mouth at Souillac some 6 km to the east of the project site. The sea water in front of the site is minimally influenced with fresh runoff water from cyclone episodes and after heavy rain events. However, a small rivulet does have its exit to the sea at the St Felix public beach. 2.1.2. Sea-surface temperature Sea surface temperature varies from 28.1ºC (March) to 23.7 ºC (September). However, sea surface temperature, at times, rises up to 29 ºC in the summer months and can fall below 22 ºC during the winter months. MONTH TEMPERATURE HUMIDITY WIND SUNSHINE RAINFALL Mean LTM NO OF DAYS Highest NO OF DAYS Mean Highest Mean Lowest Wind Daily WITH Gust WITH Max Max Min Min Speed Hrs Mean % 1971- 1971- per Monthly 2000 Recorded 2000 Recorded day 1971- RAINFALL > RAINFALL > Km/h Km/h 2000 1 MM 5 MM January 29.8 35.9 23.0 17.7 81 11.4 219 7.7 239.7 236.6 16 8 February 29.5 34.4 23.1 17.4 83 9.5 209 7.1 198.7 266.6 16 10 March 29.1 33.4 22.7 15.9 83 9.5 169 6.9 212.9 203.1 17 8 April 28.2 32.8 21.8 15.0 83 9.5 153 6.5 194.1 211.5 17 8 May 26.8 30.6 20.2 13.3 81 11.4 69 6.6 203.2 153.4 14 6 June 25.2 30.4 18.7 11.5 78 11.4 105 6.1 182.1 95.2 14 5 July 24.2 27.7 18.1 11.0 77 13.3 87 5.5 170.9 100.2 16 5 August 24.2 28.8 17.8 11.0 78 15.2 89 5.9 181.4 87.9 15 5 September 25.1 29.1 18.0 11.7 77 13.3 82 6.7 200.8 59.6 10 3 October 26.4 29.9 19.2 11.0 77 11.4 69 7.6 236.3 60.1 9 3 November 28.0 32.6 20.4 12.2 78 11.4 92 8.8 265.4 76.9 10 4 December 29.2 33.8 21.9 16.1 80 11.4 221 8.4 259.7 171.8 12 6 Table 2.1.: The annual mean values for various climatological parameters, source: Mauritius Meteorological Services November 2015 Page 9 of 48 Proposal for the rearrangement of loose rocks and creation of a semi submerged beach in front of Shanti Maurice – A Nira Resort, St Felix November 2015 2.1.3. Atmospheric pressure The lowest atmospheric pressure occurs during the month of February which is one of the most active months of the cyclone season. Highest atmospheric pressure occurs in August when strong anticyclones influence weather over the region. 2.1.4. Waves Located in the south western Indian Ocean, Mauritius is exposed to swells created by westward moving low pressure systems between 30° S and 60° S, cyclone swells forming between 15 and 25° S, and localised wind swells caused by the persistent trade winds. A good and detailed description of the wave climate around Mauritius is given in Chapter 3 of Baird 2003. For the purpose of this present report, only the gist of information on waves from Baird 2003 which are pertinent to the site and which are important to the implementation of the various improvement works have been detailed out along with some basic information regarding waves and storm surges. Wind generated waves are one of the fundamental driving forces for the movement of sediments in the coastal environment and definition of the wave climatology is one of the starting points in any coastal analysis. Waves generated by wind are primarily a function of the wind speed, the duration of the wind and the distance over water which the wind blows, i.e. the fetch. The wind speed and direction are not constant and since the wind continues to generate new waves over the whole length of the fetch, waves of many heights, lengths and periods are generated, resulting in what is commonly known as ‘irregular waves’. To get a meaningful way of measuring these irregular waves, significant wave height is used. The significant wave height is defined as the average height of the highest one-third of all waves in a given series of waves. Despite the predominance of southeast trade winds in Mauritius, the major wave generating systems resulting in large wave conditions are due to the passage of cold fronts and their associated low pressure systems that pass to the south of the African Continent. Extratropical cyclones affecting Mauritius usually originate in the mid-latitudes of the Southern Indian Ocean between 30ºS and 60ºS. During the summer months, November to April, the situation is more complex: the oceanic anticyclone weakens and subdivides and a ridge of the Arabian anticyclone intermittently affects the north of the Mozambique Channel while the inter-tropical convergence zone extends its influence. The trade-wind circulation becomes less regular and convective instability develops almost daily in all regions. It is during this season that the depressions and tropical cyclones spawned in the southwest Indian Ocean can, if conditions are right, affect Mauritius. Tropical cyclones are generated in the southern equatorial belt of the Indian Ocean, generally travelling westward and southward. The cyclones often curve to the south and East prior to reaching the Island of Mauritius and the cyclone intensity typically diminishes with latitude. As a result of the above climatic influences, the waves affecting the coastal areas of Mauritius may be generated through several different meteorological phenomena. Given that Mauritius is an island and occupies a relatively isolated position in the Indian Ocean, the wave-generation fetches are exceptionally long from any direction. No part of the coastline is immune from direct impacts of any of the waves generated as detailed below. Local generated seas. Waves may be generated in the immediate vicinity of Mauritius by the southeast trade winds.
Recommended publications
  • Unique Aspects of the Vanilla Market MARKET + OUTLOOK MARKET + OUTLOOK
    MARKET MARKET OUTLOOK OUTLOOK Unique Aspects of the Vanilla Market MARKET + OUTLOOK MARKET + OUTLOOK + Daniel Aviles Commodity Information Analyst McKeany-Flavell Commodities. Ingredients. Intelligence. McKeany-Flavell © 2018 McKeany-Flavell Company, Inc. All rights reserved. Commodities. Ingredients. Intelligence. Distribution is prohibited without written permission from McKeany-Flavell. McKeany-Flavell Unique Aspects of the Vanilla Market Commodities. Ingredients. Intelligence. Unique Aspects of the Vanilla Market “Money is the best fertilizer” and “the cure for high prices is high prices” may sound like commodity clichés, but they are not mere truisms. Every market will eventually return to these rules, a lesson we advise our clients to remember. Yet there is always an exception: For vanilla, it often seems that the rules are reversed, and price shifts have counterintuitive effects. This ingredient is a challenge for all players, from growers through processors to end users, but understanding vanilla’s supply cycle and pricing dynamics may at least partially demystify this market. What sets the vanilla market apart: + Difficulty: Cultivation is extremely labor Vanilla fruit, pod, or bean with closeup of seeds intensive, and a high degree of expertise is needed to grow the plants and process the pods (beans). + Vulnerability: Production is significantly What Is Vanilla? concentrated in one origin, Madagascar, which has in the past crowded out A quick introduction: Vanilla is a flavor made from the pod-like competing origins. The natural food trend fruit of some members of the vanilla genus of the orchid family, has now made demand less elastic, and pricing may follow suit. the only orchid that yields an edible fruit commercially cultivated for food use; vanilla fruit is widely referred to as a “bean,” a + Price pressures: Early harvest is commercially viable and is encouraged convention that we follow here.
    [Show full text]
  • World Bank Document
    2017 Public Disclosure Authorized South West Indian Ocean Public Disclosure Authorized Risk Assessment and Financing Initiative (SWIO-RAFI) SUMMARY REPORT Public Disclosure Authorized Public Disclosure Authorized © 2017 The International Bank for Reconstruction and Development/The World Bank 1818 H Street NW Washington DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org All rights reserved This publication is a product of the staff of the International Bank for Reconstruction and Development/The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly. For permission to photocopy or reprint any part of this work, please send a request with complete information to the Copyright Clearance Center Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; telephone: 978-750-8400; fax: 978-750-4470; Internet: www.copyright.com. All other queries on rights and licenses, including subsidiary rights, should be addressed to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433.
    [Show full text]
  • Economic Damage and Spill-Overs from a Tropical Cyclone 2 Manfred Lenzen1, Arunima Malik1,2, Steven Kenway3, Peter Daniels4, Ka Leung Lam3, Arne Geschke1
    1 Economic damage and spill-overs from a tropical cyclone 2 Manfred Lenzen1, Arunima Malik1,2, Steven Kenway3, Peter Daniels4, Ka Leung Lam3, Arne Geschke1 3 1ISA, School of Physics A28, The University of Sydney, NSW, 2006, Australia. 4 2Discipline of Accounting, The University of Sydney Business School, The University of Sydney, NSW, 2006, Australia. 5 3School of Chemical Engineering, The University of Queensland, St Lucia, 4072, Australia. 6 4School of Environment, Griffith University, Brisbane, 4222, Australia. 7 Correspondence to: Arunima Malik ([email protected]) 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 29 Abstract – Tropical cyclones cause widespread damage in specific regions as a result of high winds, and flooding. Direct 30 impacts on commercial property and infrastructure can lead to production shortfalls. Further losses can occur if business 31 continuity is lost through disrupted supply of intermediate inputs from, or distribution to, other businesses. Given that 32 producers in modern economies are strongly interconnected, initially localised production shortfalls can ripple through 33 entire supply-chain networks and severely affect regional and wider national economies. In this paper, we use a 34 comprehensive, highly disaggregated, and recent multi-region input-output framework to analyse the negative impacts of 35 Tropical Cyclone Debbie which battered the north-eastern Australian coast in March 2017. In particular, we show how 36 industries and regions that were not directly affected by storm and flood damage suffered significant job and income losses. 37 Our results indicate that the disaster resulted in the direct loss of about 4802 full-time equivalent jobs and AU$ 1544 million 38 of value added, and an additional indirect loss of 3685 jobs and AU$ 659 million of value added.
    [Show full text]
  • Madagascar: Cyclone Enawo Overview
    Madagascar: Cyclone Enawo Situation Report: No. 1 March 9, 2017 This report is issued by the Bureau National de Gestion des Risque et des Catastrophes (BNGRC) and the Humanitarian Country Team in Madagascar. It covers the period from 7 to 8 March 2017. Cyclone Enawo is wreaking havoc across Madagascar: towns and cities flooded; houses, schools, hospitals and critical infrastructure destroyed; and thousands of people displaced. Power outages are widespread in affected areas. More than 760,000 people in nine regions are expected to be directly affected by the strongest cyclone to strike the island nation in 13 years. Conditions are comparable to Cyclone Gafilo in 2004, which left 250,000 Malagasies displaced and 100,000 homes damaged in its wake. Another recent major tropical storm, Cyclone Ivan, affected more than half a million people and displaced nearly 200,000 in 2008. According to the national meteorological authority, threat levels remain highest (Red Alert) in the following regions: Diana, Sofia, Savan Analanjirofo, Atsinanana, Alaotra Mangoro, Boeny, Betsinoka, and Ny Faritanin’ Antananarivo. Madagascar also suffers from severe and chronic drought, particularly in the south of country. More than 850,000 people are severely food insecure. Overview Intense Tropical Cyclone Enawo struck northeastern Madagascar on the morning of March 7, travelling at two to three hundred kilometers per hour. On March 8, Enawo weakened from an “intense” to a “moderate” tropical storm, with an average speed of 80km/hour with peaks of 112km/hour. As Enawo moves further inland, the Government’s disaster management agency (BNGRC), the United Nations and NGOs are evacuating affected populations, passing on life-saving information to affected communities and responding to growing humanitarian needs.
    [Show full text]
  • Cycle of a Tropical Cyclone
    La Cyclogenèse des systèmes dépressionnaires tropicaux Tropical cyclone formation You are here ! P. Caroff Operations Manager RSMC La Reunion LaLa cyclogénèsecyclogénèse desdes systèmessystèmes dépressionnairesdépressionnaires tropicauxtropicaux Tropical cyclone formation Cyclogenesis in the South-West Indian Ocean (15-20 January 2002) Cyclogénèse dans le Sud-Ouest de l’Océan Indien (15-20 janvier 2002) LaLa cyclogénèsecyclogénèse desdes systèmessystèmes dépressionnairesdépressionnaires tropicauxtropicaux Tropical cyclone formation Cyclogenesis in the South-West Indian Ocean (24-28 January 2000) Cyclogénèse dans le Sud-Ouest de l’Océan Indien (24-28 janvier 2000) LaLa cyclogénèsecyclogénèse desdes systèmessystèmes dépressionnairesdépressionnaires tropicauxtropicaux Tropical cyclone formation Cyclogenesis in the South-West Indian Ocean (24-28 January 2000) Cyclogénèse dans le Sud-Ouest de l’Océan Indien (24-28 janvier 2000) TC CONNIE LaLa cyclogénèsecyclogénèse desdes systèmessystèmes dépressionnairesdépressionnaires tropicauxtropicaux Cyclogenesis in the South-West 28/03/2014 Indian Ocean (28-30 April 2014) 0730 utc Cyclogénèse dans le Sud-Ouest de l’Océan Indien (28 - 30 avril 2014) LaLa cyclogénèsecyclogénèse desdes systèmessystèmes dépressionnairesdépressionnaires tropicauxtropicaux Cyclogenesis in the South-West 28/03/2014 Indian Ocean (28-30 March 2014) 0730 utc Cyclogénèse dans le Sud-Ouest de TC HELLEN l’Océan Indien (28 - 30 mars 2014) 30/03/2014 0615 utc LaLa cyclogénèsecyclogénèse desdes systèmessystèmes dépressionnairesdépressionnaires tropicauxtropicaux Hurricane Harvey in the Gulf of Mexico (23-24 August 2017) 23/08/2017 2356 utc Ouragan Harvey dans le Golfe du Mexique (23 - 24 août 2017) 24/08/2017 2158 utc 05/01/1996 06/01/1996 07/01/1996 08/01/1996 LesLes systèmes systèmes dépressionnairesdépressionnaires tropicauxtropicaux : : nomenclaturenomenclature des des classificationsclassifications et et dénominations dénominations utiliséesutilisées suivant suivant les les différentesdifférentes régions régions OMM.
    [Show full text]
  • Climate Impacts Already Felt by Small Islands; Governments Seek Resources to Adapt
    asdf Small IslandsBStakesi g United Nations PRESS RELEASE #5 Climate Impacts Already Felt by Small Islands; Governments Seek Resources to Adapt (New York, April 2004) – Rising sea levels combined with other extreme climatic events, such as more frequent hurricanes and new patterns of cyclones, are already causing major damage in many small island developing States (SIDS), and the worst seems yet to come. The International Meeting to Review the Barbados Programme of Action for the Sustainable Development of Small Island Developing States (Mauritius, 30 August - 4 September 2004) is expected to address the impact that climate change and sea-level rise are already having on small islands, and to recommend actions to adapt to these threats and prevent disasters. This includes proposals to reinforce the international community’s commitments to curtail greenhouse gas emissions, to strengthen islands’ early-warning anti-storm systems and to increase support to islands to adapt to climate change, as stressed at a recent SIDS ministerial forum in the Bahamas. The beginning of 2004 has brought difficult times, which have provided empirical evidence of impacts that are harbingers of expected effects of climate change. In January, Cyclone Heta slammed the tiny island of Niue (only 260 square kilometres or 104 square miles) with winds of up to 300 kilometres (190 miles) an hour, which devastated it. Inhabitants said that this was the worst cyclone in memory and testified that the storm pounded the island with 50-metre (154-foot) waves that washed inland. The damage to houses and infrastructure was recently estimated to be eight times the island’s annual gross domestic product.
    [Show full text]
  • MADAGASCAR: CYCLONE 15 March 2004
    MADAGASCAR: CYCLONE 15 March 2004 The Federation’s mission is to improve the lives of vulnerable people by mobilizing the power of humanity. It is the world’s largest humanitarian organization and its millions of volunteers are active in over 181 countries. In Brief This Information Bulletin (no. 03/2004) is being issued based on the needs described below reflecting the information available at this time. While the Federation initially indicated that an appeal would not be launched, information recently received from the affected areas show significant needs, and an Emergency Appeal is therefore under preparation, to be issued this week. Support in the form of non-food items will be needed for distribution to those affected in the southwest of the island. For further details please contact: • Malagasy Red Cross Society, Antananarivo; Email [email protected]; Phone 261 20 22 221 11; Fax 261 20 22 667 39 • Susanna Cunningham, Federation Focal Person, Nairobi; Email [email protected]; Phone 254 20 271 4255; Fax 254 20 271 8415 • Josse Gillijns, Federation Regional Officer, Geneva; Email [email protected]; Phone 41 22 730 42 24; Fax 41 22 733 03 95 All International Federation assistance seeks to adhere to the Code of Conduct and is committed to the Humanitarian Charter and Minimum Standards in Disaster Response in delivering assistance to the most vulnerable. For support to or for further information concerning Federation programmes or operations in this or other countries, or for a full description of the national society profile, please access the Federation’s website at http://www.ifrc.org For longer-term programmes, please refer to the Federation’s Annual Appeal.
    [Show full text]
  • Cartography of Risks and Vulnerability in Union of Comoros
    CARTOGRAPHY OF RISKS AND VULNÉRABILITY IN UNION OF COMOROS Djanfar MADJIDI National Disasters Management Organization Union of Comoros Contact: [email protected] Seychelles, 23th september 2016 HISTORICAL • Introduction • Like other countries of the world, The Union of Comoros had living a long history of great disasters and accidents which resulted lost of life and materiel damages. • The disasters are manifesting mainly by: • - Cyclones/ Tropical tempests; • - Rainstorms that bring floods, and landslide; • - Water sea mouvements; • - Fire(urban areas and forests); • - Epidemic deases; • - Air and maritim accidents; • - Social conflicts; • - Polotical crises… • The Comoros live also with higher level of piracy,tsunami…etc. HUMANITARIAN CONSÉQUENCES FOR APRIL 2012 FLOODS • 10 % of the population are directly affected ; • 1,618 personnes are displaced ; • 23.036 studants without scools ; • Upgrad of vulnerability for weak population; • HUMANITARIAN CONSÉQUENCES FOR APRIL 2012 FLOODS • Deficiency of potable water • Limited access for health treatement; • Upgrad hydric deases and epidemic risk; • Alimentary insécurity risk ; • Malnutrition on pregnant women and children; CONSEQUENCES IN INFRASTRUCTURES, • Pumping water station and adduction systèm are affected; CONSEQUENCES IN INFRASTRUCTURES, 22 km of road and bridges to build; LANDSLIDE AFFECTED THE ROAD CONSEQUENCES IN INFRASTRUCTURES, • 54 affected schools; • 567 habitations are affected and 118 completly distroyed; • 32% affected hospitals and the main equipments; CONSEQUENCES IN AGRICULTURE AND FARMER ANIMALS • Many animals died and Agriculture lands damaged. CYCLONES HISTORICAL IN UNION OF COMOROS Years évents The most important of tropic cyclones recorded in Comoros. 524 death and 75 1950 000 coconut palms uprooted. Catastrophic statement of accounts on Anjouan and Moheli Tropic cyclone on Grande Comore et particularly on the north of the island.
    [Show full text]
  • 1 Anthropogenic Influences on Major Tropical Cyclone Events 1 2
    1 Anthropogenic Influences on Major Tropical Cyclone Events 2 3 Christina M. Patricola1* and Michael F. Wehner2 4 5 1: Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 6 2: Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 7 *email: [email protected] 8 9 There is no consensus on whether climate change has yet impacted tropical cyclone (TC) 10 statistics, owing to large natural variability and a limited period of consistent observations. 11 In addition, projections of future TC activity are uncertain, as they often rely on coarse- 12 resolution climate models that parameterize convection and have difficulty directly 13 representing TCs. Here we investigated how historically destructive TCs could change if 14 similar events occurred in pre-industrial and future climates, using convection-permitting 15 regional climate model simulations. We found that climate change to date enhanced 16 average and extreme rainfall of Hurricanes Katrina, Irma, and Maria, but did not change 17 TC intensity. In addition, future anthropogenic warming robustly increases wind speed 18 and rainfall of intense TCs among 15 events sampled globally. Additional simulations 19 suggest convective parameterization introduces minimal uncertainty into the sign of 20 projected TC intensity and rainfall changes, supporting confidence in projections from 21 models with parameterized convection and TC-permitting resolution. 22 23 Tropical cyclones (TCs) are among the deadliest and most destructive natural disasters. 24 Hurricane Katrina holds the record for costliest U.S. natural disaster and caused at least 1,833 1 25 deaths and $160 Billion in damages (adjusted to 2017) along the Gulf Coast in August 20051.
    [Show full text]
  • A Report on the Super Cyclonic Storm “GONU” During 1-7 June, 2007
    GOVERNMENT OF INDIA INDIA METEOROLOGICAL DEPARTMENT IMD MET. MONOGRAPH No: CYCLONE WARNING DIVISION No. 08/2011 A Report on the Super Cyclonic Storm “GONU” during 1-7 June, 2007 Satellite imagery of „GONU‟ for 04 June, 2007 Total rainfall around the gulf of Oman between 31 May and 7 June, 2007. AJIT TYAGI, B.K.BANDYOPADHYAY, M.MOHAPATRA, SUMAN GOEL, NARESH KUMAR, A.B.MAZUMDAR, MEDHA KHOLE. CYCLONE WARNING DIVISION OFFICE OF THE DIRECTOR GENERAL OF METEOROLOGY INDIA METEOROLOGICAL DEPARTMENT NEW DELHI FEBRUARY-2011 A Report on the Super Cyclonic Storm “GONU” during 1-7 June, 2007 AJIT TYAGI, B.K.BANDYOPADHYAY, M.MOHAPATRA, SUMAN GOEL, NARESH KUMAR, MEDHA KHOLE. A.B.MAZUMDAR, CYCLONE WARNING DIVISION OFFICE OF THE DIRECTOR GENERAL OF METEOROLOGY INDIA METEOROLOGICAL DEPARTMENT NEW DELHI PREFACE First ever super cyclone "GONU" over the Arabian Sea (1-7 June 2007) crossed Oman coast near Muscat on 5 June as a very severe cyclonic storm. It then emerged into Gulf of Oman and had a second landfall over Iran on 6 June as a cyclonic storm. It was second landfalling cyclone over Iran after 1898. The system was mainly detected and tracked by satellite, as there was no radar along the Oman coast.. The intensity of the system remained unpredicted by most of the Numerical Weather Prediction (NWP) Models. It posed a challenge to the NWP and other conventional, synoptic and statistical methods to predict the intensity of such a super cyclone. Considering all the above mentioned characteristic features, a meteorological monograph has been brought out. Many features of the super cyclonic storm `GONU' like genesis, intensification movement, landfall and disastrous weather have been discussed.
    [Show full text]
  • Sea/Air Interaction
    15 Sea/Air Interaction Shigalla Mahongo Opposite page: Cyclone Favio entering the Mozambique Channel on 20 February 2007. © Nasa/Jeff Schmaltz/Goddard Space Flight Center. INTRODUCTioN About half the world’s oxygen is produced by phyto- plankton in the sea (Falkowski 2012), which are at the The atmosphere and the ocean form a coupled system, base of the marine food web. The phytoplankton, through constantly exchanging mass (in the form of water, gas, the photosynthesis process, also extract carbon dioxide spray, bubbles and particles) and energy at the interface (CO2), a greenhouse gas that contributes significantly to between the seawater and air. This energy exchange current global warming (Ciais and others, 2013). The occurs in the form of momentum (through wind stress) oceans therefore act as major sinks for atmospheric CO2. and heat. In other words, the atmosphere forces the ocean With the exception of the Indian Ocean, where the phy- through exchange of momentum, net surface heat flux toplankton levels have remained relatively stable since and freshwater flux. The exchanges at the sea/air inter- the 1950s, the levels in the other oceans have generally face are irregular, taking place at rates which are largely declined by about 40 per cent (Boyce and others, 2010). induced by the dynamics at the surface. The exchanges Whereas photosynthesis is one of the major biogeo- affect the biological, chemical and the physical properties chemical processes which take the CO2 from the atmos- of the ocean thus influencing its biogeochemical pro- phere to the ocean, there are other biogeochemical cesses, weather and climate.
    [Show full text]
  • (SWIO-RAFI): Component 1 - Hazard
    Southwest Indian Ocean Risk Assessment Financing Initiative (SWIO-RAFI): Component 1 - Hazard FINAL Report Submitted to the World Bank June 1st, 2016 SWIO RAFI Component 1 Report - FINAL Copyright 2016 AIR Worldwide Corporation. All rights reserved. Trademarks AIR Worldwide is a registered trademark in the European Union. Confidentiality AIR invests substantial resources in the development of its models, modeling methodologies and databases. This document contains proprietary and confidential information and is intended for the exclusive use of AIR clients who are subject to the restrictions of the confidentiality provisions set forth in license and other nondisclosure agreements. Contact Information If you have any questions regarding this document, contact: AIR Worldwide Corporation 388 Market Street, Suite 750 San Francisco, CA 94111 USA Tel: (415) 912-3111 Fax: (415) 912-3112 i SF15-1061 COMP1REP SWIO RAFI Component 1 Report - FINAL Table of Contents Executive Summary ............................................................................................................................................................ 1 1 Introduction ............................................................................................................................................................... 2 1.1 Limitations .............................................................................................................................................................. 3 2 Hazard Catalogs and Analysis ...............................................................................................................................
    [Show full text]