Font Family/Style Recognition

Total Page:16

File Type:pdf, Size:1020Kb

Font Family/Style Recognition bachelor’s thesis Font Family/Style Recognition Tereza Soukupová May 2014 Ing. Michal Bušta Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky ZADÁNÍ BAKALÁŘSKÉ PRÁCE Student: Tereza S o u k u p o v á Studijní program: Otevřená informatika (bakalářský) Obor: Informatika a počítačové vědy Název tématu: Odhadování třídy fontů v úloze rozpoznávání textu v obrázcích Pokyny pro vypracování: 1. Seznamte se se systémem TextSpotter pro detekci a rozpoznávání textu z obrázků vyvíjeným v Centru strojového vnímání KK FEL ČVUT. Zaměřte se zejména na OCR modul. 2. Seznamte se se state-of-the-art v odhadování fontu písma. 3. Definujte pojem “třída fontu” (použitelnou zejména pro OCR úlohu). 4. Navrhněte algoritmus pro odhadování třídy fontu. 5. Implementujte a otestujte jeho kvalitu. 6. Zvažte využití informace o třídě fontu pro zlepšení kvality OCR. Seznam odborné literatury: [1] Neumann L., Matas J.: Scene Text Localization and Recognition with Oriented Stroke Detection. ICCV 2013 (Sydney, Australia). [2] Neumann L.: Vyhledání a rozpoznání textu v obrazech reálných scén. Master thesis, ČVUT, 2010. [3] Al-Khaffaf H. S. M., Shafait F., Cutter M. P., Breuel T. M.: On the Performance of Decapod’s Digital Font Reconstruction. International Conference on Pattern Recognition November 2012, pp.649 – 652 (2012). Vedoucí bakalářské práce: Ing. Michal Bušta Platnost zadání: do konce letního semestru 2014/2015 L.S. doc. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc. vedoucí katedry děkan V Praze dne 10. 1. 2014 Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics BACHELOR PROJECT ASSIGNMENT Student: Tereza S o u k u p o v á Study programme: Open Informatics Specialisation: Computer and Information Science Title of Bachelor Project: Font Family/Style Recognition Guidelines: 1. Familiarize yourself with the TextSpotter [2] system for “text in the wild” detection and recognition developed at the Centre for Machine Perception at the Department of Cybernetics FEE CTU. Focus on the OCR module. 2. Familiarize yourself with the state-of-the-art in estimation of the Font Family/Style Recognition. 3. Define the “Class of the Font” (particularly useful for the OCR task). 4. Suggest an algorithm for the estimation of the class of the Font. 5. Implement it and test its quality. 6. Try to use the information about the class of the Font to improve the OCR quality. Bibliography/Sources: [1] Neumann L., Matas J.: Scene Text Localization and Recognition with Oriented Stroke Detection. ICCV 2013 (Sydney, Australia). [2] Neumann L.: Vyhledání a rozpoznání textu v obrazech reálných scén. Master thesis, ČVUT, 2010. [3] Al-Khaffaf H. S. M., Shafait F., Cutter M. P., Breuel T. M.: On the Performance of Decapod’s Digital Font Reconstruction. International Conference on Pattern Recognition November 2012, pp.649 – 652 (2012). Bachelor Project Supervisor: Ing. Michal Bušta Valid until: the end of the summer semester of academic year 2014/2015 L.S. doc. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc. Head of Department Dean Prague, January 10, 2014 Poděkování Chtěla bych poděkovat Ing. Michalu Buštovi za odborné vedení, trpělivost, ochotu a cenné rady, které mi v průběhu zpracování bakalářské práce věnoval. Děkuji také prof. Ing. Jiřímu Matasovi, Ph.D. za věcné připomínky. Prohlášení Prohlašuji, že jsem předloženou práci vypracovala samostatně, a že jsem uvedla veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací. vii Acknowledgement I would like to thank Ing. Michal Bušta for his guidance, patience, willingness and assistance during the writing of my thesis. I also thank prof. Ing. Jiří Matas, Ph.D. for his advice. Declaration I declare that I have completed this thesis independently and that I have listed all used information sources in accordance with Methodical instruction about ethical principles in the preparation of university theses. ix Abstrakt Práce se zabývá optickým rozpoznáváním fontů v obrazech reálných scén. Vychází z OCR systému TextSpotter, který je vyvíjen v Centru strojového vnímání na ČVUT v Praze. Systém vyhledává text v obraze, detekuje oblasti znaků, binarizuje je a ná- sledně se je snaží klasifikovat. OCR klasifikátor je naučen na množině obrázků písmen latinské abecedy napsané v množině trénovacích fontů. Některé znaky jsou ale rozpo- znány špatně nebo nejsou rozpoznány vůbec. Je to dáno tím, že v některých fontech vypadají podobně rozdílné znaky, např „g” může vypadat v jiném fontu jako „8”. Tato práce přináší vylepšení v tom, že rozpozná přibližný font daného textu, a následně na- učí klasifikátor pouze tímto fontem. Sníží se tak velikost trénovací množiny ajevíce pravděpodobné, že znak bude rozpoznán správně. Klíčová slova Rozpoznávání fontu; OFR; rozpoznávání textu; OCR x Abstract This work presents an algorithm for optical font recognition of a text in real-scene images. It is based on an OCR system TextSpotter developed at Czech Technical Uni- versity in Prague. This system locates areas with a text, detects connected components of characters, binarizes them, extracts features and tries to recognize characters. The OCR system trains its classifier on all initial fonts. Some characters are not well recognized or they stay unrecognized because in some different fonts mismatching char- acters look similar. The goal of this project is to recognize a font of the text and to train the classifier only on this font. The unrecognized characters are then classified again by the classifier with a reduced training set. It is thus more likely that they willbe classified correctly and the OCR quality increases. Keywords Optical Font Recognition; OFR; text detection; Optical Character Recognition; OCR xi Contents 1 Introduction1 1.1 Problem formulation.............................1 1.2 Definitions...................................3 2 State-of-the-art4 2.1 Global feature approaches..........................4 2.2 Local feature approaches...........................7 Our approach.............................8 3 OCR system TextSpotter9 3.1 Input......................................9 3.2 Processing...................................9 3.3 Exctrating features.............................. 10 3.4 OCR classifier................................. 10 3.4.1 K-nearest neighbor.......................... 10 3.4.2 Training................................ 11 3.4.3 Classification............................. 11 4 Clustering 12 Hierarchical clustering........................ 13 Implementation............................ 13 4.1 Clustering through all characters...................... 14 4.1.1 Distances between fonts....................... 14 The class of the font......................... 14 4.1.2 Clusters and their representatives.................. 15 Example with the character a .................... 15 4.2 Clustering per character........................... 18 4.2.1 Distances............................... 18 4.2.2 Clusters and their representatives.................. 18 5 Recognition algorithms 19 5.1 Font recognition............................... 19 5.1.1 Nearest neighbour font voting.................... 19 xii 5.1.2 Finding the shortest path in a multistage graph.......... 20 Dynamic programming approach.................. 23 5.2 Clustering through all characters...................... 26 5.2.1 Nearest neighbour cluster voting.................. 26 5.2.2 Finding the shortest path in a multistage graph.......... 26 5.3 Clustering per character........................... 28 The algorithm............................ 28 5.4 An utilization of font knowledge to improve the OCR.......... 29 Recognition pipeline......................... 30 6 Experiments 31 6.1 Font or cluster recognition.......................... 31 6.1.1 DATASET 1 – computer-generated images............ 31 6.1.2 DATASET 2 – real-scene images.................. 32 Example 1............................... 32 Example 2............................... 33 Example 3............................... 33 Example 4............................... 34 6.2 An utilization of font knowledge to improve the OCR quality...... 35 6.2.1 DATASET 1 – computer-generated images............ 35 6.2.2 DATASET 2 – all 132 real-scene images.............. 36 6.2.3 DATASET 2a – method FontNN.................. 37 6.2.4 DATASET 2b – method FontDynamic............... 37 6.2.5 DATASET 2c – method ClusterNN................. 37 6.2.6 DATASET 2d – method ClusterDynamic............. 38 6.2.7 DATASET 2e – method ClusterPerCharacter........... 38 6.2.8 Examples............................... 39 Examples with an improvement................... 39 Examples with no improvement................... 40 Examples where the methods have errors............. 42 7 Implementation 44 7.1 Programming language............................ 44 7.2 Used libraries................................. 44 xiii 7.3 The code................................... 44 8 Conclusion 45 8.1 Font or cluster recognition.......................... 45 8.2 An utilization of font knowledge to improve the OCR quality...... 45 Appendices A Appendix 47 A.1 The maximum distance between the letters within the cluster is 6.5... 48 A.2 The maximum distance between the letters within the cluster is 7.5... 49 A.3 The maximum distance between the letters within the cluster is 8.... 50 A.4 The maximum distance between the letters within the cluster is 8.5..
Recommended publications
  • Cloud Fonts in Microsoft Office
    APRIL 2019 Guide to Cloud Fonts in Microsoft® Office 365® Cloud fonts are available to Office 365 subscribers on all platforms and devices. Documents that use cloud fonts will render correctly in Office 2019. Embed cloud fonts for use with older versions of Office. Reference article from Microsoft: Cloud fonts in Office DESIGN TO PRESENT Terberg Design, LLC Index MICROSOFT OFFICE CLOUD FONTS A B C D E Legend: Good choice for theme body fonts F G H I J Okay choice for theme body fonts Includes serif typefaces, K L M N O non-lining figures, and those missing italic and/or bold styles P R S T U Present with most older versions of Office, embedding not required V W Symbol fonts Language-specific fonts MICROSOFT OFFICE CLOUD FONTS Abadi NEW ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 01234567890 Abadi Extra Light ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 01234567890 Note: No italic or bold styles provided. Agency FB MICROSOFT OFFICE CLOUD FONTS ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 01234567890 Agency FB Bold ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 01234567890 Note: No italic style provided Algerian MICROSOFT OFFICE CLOUD FONTS ABCDEFGHIJKLMNOPQRSTUVWXYZ 01234567890 Note: Uppercase only. No other styles provided. Arial MICROSOFT OFFICE CLOUD FONTS ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 01234567890 Arial Italic ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 01234567890 Arial Bold ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 01234567890 Arial Bold Italic ABCDEFGHIJKLMNOPQRSTUVWXYZ
    [Show full text]
  • 15 the Effect of Font Type on Screen Readability by People with Dyslexia
    The Effect of Font Type on Screen Readability by People with Dyslexia LUZ RELLO and RICARDO BAEZA-YATES, Web Research Group, DTIC, Universitat Pompeu Fabra, Barcelona, Spain Around 10% of the people have dyslexia, a neurological disability that impairs a person’s ability to read and write. There is evidence that the presentation of the text has a significant effect on a text’s accessibility for people with dyslexia. However, to the best of our knowledge, there are no experiments that objectively 15 measure the impact of the typeface (font) on screen reading performance. In this article, we present the first experiment that uses eye-tracking to measure the effect of typeface on reading speed. Using a mixed between-within subject design, 97 subjects (48 with dyslexia) read 12 texts with 12 different fonts. Font types have an impact on readability for people with and without dyslexia. For the tested fonts, sans serif , monospaced, and roman font styles significantly improved the reading performance over serif , proportional, and italic fonts. On the basis of our results, we recommend a set of more accessible fonts for people with and without dyslexia. Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces— Screen design, style guides; K.4.2 [Computers and Society]: Social Issues—Assistive technologies for per- sons with disabilities General Terms: Design, Experimentation, Human Factors Additional Key Words and Phrases: Dyslexia, learning disability, best practices, web accessibility, typeface, font, readability, legibility, eye-tracking ACM Reference Format: Luz Rello and Ricardo Baeza-Yates. 2016. The effect of font type on screen readability by people with Dyslexia.
    [Show full text]
  • Powerpoint 2007
    Office 2007 Microsoft Office Fluent User Interface ........................................................................................................................................................ 2 Key Components ......................................................................................................................................................................................... 2 The Office Button .................................................................................................................................................................................... 2 The Ribbon .............................................................................................................................................................................................. 3 Contextual Tabs ....................................................................................................................................................................................... 3 Galleries .................................................................................................................................................................................................. 3 Live Preview ........................................................................................................................................................................................... 3 Mini Toolbar ..........................................................................................................................................................................................
    [Show full text]
  • Hebrew Type Design in the Context of the Book Art Movement and New
    Philipp Messner Hebrew Type Design in the Context of the Book Art Movement and New Typography "New Book Art" ("Neue Buchkunst") was the motto under which efforts were made, in the spirit of the English Arts and Crafts Movement, toward the revival of book and type design in turn-of-the-twentieth­ century Germany. This revival movement perceived itself as a reaction to the country's accelerated industrialization, especially since the founding of the Reich in 1871. The replacement of traditional craft by increasingly industrial production lines effected a variety of everyday consumer products, including the manufacturing of books. According to contemporary commentators this led to deterioration in the material and aesthetic quality of books. Similarly to other industrially manufactured products around the turn of the century, an expectation emerged for books to have a contemporary, functional, and materially sound form. This demand encompassed all aspects of the book, including printing types. Consequently, visual artists were now engaged to design typefaces. Early examples were still heavily influenced by Art Nouveau, but after World War I there was a turn to historical forms with a bias toward handwritten scripts. This was influenced largely by the English calligrapher and type designer Edward Johnston, who taught at the Central School of Arts and Crafts in London. His calligraphic method, which he based on old handwriting forms, became famous in Germany, in part thanks to the work of his pupil and translator, Anna Simons. Type design issues thus received a notably traditional treatment, defined above all by intensive engagement with historical forms. This tendency largely defined the personal styles of Franzisca Baruch and Henri Friedlaender.
    [Show full text]
  • Suitcase Fusion 8 Getting Started
    Copyright © 2014–2018 Celartem, Inc., doing business as Extensis. This document and the software described in it are copyrighted with all rights reserved. This document or the software described may not be copied, in whole or part, without the written consent of Extensis, except in the normal use of the software, or to make a backup copy of the software. This exception does not allow copies to be made for others. Licensed under U.S. patents issued and pending. Celartem, Extensis, LizardTech, MrSID, NetPublish, Portfolio, Portfolio Flow, Portfolio NetPublish, Portfolio Server, Suitcase Fusion, Type Server, TurboSync, TeamSync, and Universal Type Server are registered trademarks of Celartem, Inc. The Celartem logo, Extensis logos, LizardTech logos, Extensis Portfolio, Font Sense, Font Vault, FontLink, QuickComp, QuickFind, QuickMatch, QuickType, Suitcase, Suitcase Attaché, Universal Type, Universal Type Client, and Universal Type Core are trademarks of Celartem, Inc. Adobe, Acrobat, After Effects, Creative Cloud, Creative Suite, Illustrator, InCopy, InDesign, Photoshop, PostScript, Typekit and XMP are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. Apache Tika, Apache Tomcat and Tomcat are trademarks of the Apache Software Foundation. Apple, Bonjour, the Bonjour logo, Finder, iBooks, iPhone, Mac, the Mac logo, Mac OS, OS X, Safari, and TrueType are trademarks of Apple Inc., registered in the U.S. and other countries. macOS is a trademark of Apple Inc. App Store is a service mark of Apple Inc. IOS is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license. Elasticsearch is a trademark of Elasticsearch BV, registered in the U.S.
    [Show full text]
  • 1 Warum Hassen Alle Comic Sans?
    Preprint von: Meletis, Dimitrios. 2020. Warum hassen alle Comic Sans? Metapragmatische Onlinediskurse zu einer typographischen Hassliebe. In Jannis Androutsopoulos/Florian Busch (eds.), Register des Graphischen: Variation, Praktiken, Reflexion, 253-284. Boston, Berlin: De Gruyter. DOI: 10.1515/9783110673241-010. Warum hassen alle Comic Sans? Metapragmatische Onlinediskurse zu einer typographischen Hassliebe Dimitrios Meletis Karl-Franzens-Universität Graz 1. Einleitung If you love it, you don’t know much about typography, and if you hate Com- ic Sans you don’t know very much about typography either, and you should probably get another hobby. Vincent Connare, Designer von Comic Sans1 Spätestens ab dem Zeitpunkt, als mit dem Aufkommen des PCs einer breiten Masse die Möglichkeit geboten wurde, Schriftprodukte mithilfe von vorinstallierten Schriftbear- beitungsprogrammen und darin angebotenen Schriftarten nach Belieben selbst zu gestal- ten, wurde – oftmals unbewusst – mit vielen (vor allem impliziten) Konventionen ge- brochen. Comic Sans kann in diesem Kontext als Paradebeispiel gelten: Die 1994 ent- worfene Type (in Folge simplifiziert: Schriftart, Schrift) wird im Internet vor allem auf- grund von Verwendungen in dafür als unpassend empfundenen Situationen von vielen leidenschaftlich ‚gehasst‘. So existiert(e) unter anderem ein Manifest, das ein Verbot der Schrift fordert(e) (bancomicsans.com).2 Personen, die die „Schauder-Schrift“ (Lischka 2008) „falsch“ verwenden, werden als Comic Sans Criminals bezeichnet und ihnen wird Hilfe angeboten,
    [Show full text]
  • Automated Malware Analysis Report For
    ID: 195729 Sample Name: hellofax_document_169111792.doc Cookbook: defaultwindowsofficecookbook.jbs Time: 15:35:30 Date: 12/12/2019 Version: 28.0.0 Lapis Lazuli Table of Contents Table of Contents 2 Analysis Report hellofax_document_169111792.doc 4 Overview 4 General Information 4 Detection 4 Confidence 5 Classification 5 Mitre Att&ck Matrix 6 Signature Overview 7 AV Detection: 7 Software Vulnerabilities: 7 Networking: 7 System Summary: 7 Hooking and other Techniques for Hiding and Protection: 7 Malware Analysis System Evasion: 8 Language, Device and Operating System Detection: 8 Malware Configuration 8 Behavior Graph 8 Simulations 8 Behavior and APIs 8 Antivirus, Machine Learning and Genetic Malware Detection 9 Initial Sample 9 Dropped Files 9 Unpacked PE Files 9 Domains 9 URLs 9 Yara Overview 9 Initial Sample 9 PCAP (Network Traffic) 9 Dropped Files 9 Memory Dumps 9 Unpacked PEs 9 Sigma Overview 9 System Summary: 9 Joe Sandbox View / Context 10 IPs 10 Domains 10 ASN 10 JA3 Fingerprints 10 Dropped Files 10 Screenshots 10 Thumbnails 10 Startup 11 Created / dropped Files 11 Domains and IPs 15 Contacted Domains 15 Contacted IPs 15 Static File Info 15 General 15 File Icon 16 Static OLE Info 16 General 16 OLE File "hellofax_document_169111792.doc" 16 Indicators 16 Summary 16 Document Summary 16 Streams with VBA 16 VBA File Name: ThisDocument.cls, Stream Size: 8684 16 General 17 Copyright Joe Security LLC 2019 Page 2 of 45 VBA Code Keywords 17 VBA Code 19 Streams 19 Stream Path: \x1CompObj, File Type: data, Stream Size: 114 19 General 19 Stream
    [Show full text]
  • Administración De Fuentes De Windows Guía De Mejores Prácticas Administración De Fuentes De Windows: Guía De Mejores Prácticas
    PRIMERA EDICIÓN ADMINISTRACIÓN DE FUENTES DE WINDOWS GUÍA DE MEJORES PRÁCTICAS ADMINISTRACIÓN DE FUENTES DE WINDOWS: GUÍA DE MEJORES PRÁCTICAS Contenido ¿Por qué necesita administrar sus fuentes? ....................................................................1 ¿A quiénes va dirigido este libro? ....................................................................................1 Notas sobre Windows .......................................................................................................................2 Convenciones utilizadas en esta Guía ............................................................................ 2 Mejores prácticas de la administración de fuentes ....................................................... 3 Utilice una aplicación de administración de fuentes .....................................................................4 Separe las fuentes de terceros de las fuentes del sistema ..............................................................4 Elabore un plan para agregar fuentes nuevas .................................................................................4 Actualice las fuentes obsoletas.........................................................................................................4 Mantenimiento de fuentes ...............................................................................................................4 Antes de seguir ...............................................................................................................4 Muestre las extensiones ....................................................................................................................5
    [Show full text]
  • Arab Children's Reading Preference for Different Online Fonts
    Arab Children’s Reading Preference for Different Online Fonts Asmaa Alsumait1, Asma Al-Osaimi2, and Hadlaa AlFedaghi2 1 Computer Engineering Dep., Kuwait University, Kuwait 2 Regional Center For Development of Educational Software, Kuwait [email protected], {alosaimi,hadlaa}@redsoft.org Abstract. E-learning education plays an important role in the educational proc- ess in the Arab region. There is more demand to provide Arab students with electronic resources for knowledge now than before. The readability of such electronic resources needs to be taken into consideration. Following design guidelines in the e-learning programs’ design process improves both the reading performance and satisfaction. However, English script design guidelines cannot be directly applied to Arabic script mainly because of difference in the letters occupation and writing direction. Thus, this paper aimed to build a set of design guidelines for Arabic e-learning programs designed for seven-to-nine years old children. An electronic story is designed to achieve this goal. It is used to gather children’s reading preferences, for example, font type/size combination, screen line length, and tutoring sound characters. Results indicated that Arab students preferred the use of Simplified Arabic with 14-point font size to ease and speed the reading process. Further, 2/3 screen line length helped children in reading faster. Finally, most of children preferred to listen to a female adult tutoring sound. Keywords: Child-Computer Interfaces, E-Learning, Font Type/Size, Human- Computer Interaction, Information Interfaces and Presentation, Line Length, Tutoring Sound. 1 Introduction Ministries of education in the Arab region are moving toward adopting e-learning methods in the educational process.
    [Show full text]
  • System Profile
    Steve Sample’s Power Mac G5 6/16/08 9:13 AM Hardware: Hardware Overview: Model Name: Power Mac G5 Model Identifier: PowerMac11,2 Processor Name: PowerPC G5 (1.1) Processor Speed: 2.3 GHz Number Of CPUs: 2 L2 Cache (per CPU): 1 MB Memory: 12 GB Bus Speed: 1.15 GHz Boot ROM Version: 5.2.7f1 Serial Number: G86032WBUUZ Network: Built-in Ethernet 1: Type: Ethernet Hardware: Ethernet BSD Device Name: en0 IPv4 Addresses: 192.168.1.3 IPv4: Addresses: 192.168.1.3 Configuration Method: DHCP Interface Name: en0 NetworkSignature: IPv4.Router=192.168.1.1;IPv4.RouterHardwareAddress=00:0f:b5:5b:8d:a4 Router: 192.168.1.1 Subnet Masks: 255.255.255.0 IPv6: Configuration Method: Automatic DNS: Server Addresses: 192.168.1.1 DHCP Server Responses: Domain Name Servers: 192.168.1.1 Lease Duration (seconds): 0 DHCP Message Type: 0x05 Routers: 192.168.1.1 Server Identifier: 192.168.1.1 Subnet Mask: 255.255.255.0 Proxies: Proxy Configuration Method: Manual Exclude Simple Hostnames: 0 FTP Passive Mode: Yes Auto Discovery Enabled: No Ethernet: MAC Address: 00:14:51:67:fa:04 Media Options: Full Duplex, flow-control Media Subtype: 100baseTX Built-in Ethernet 2: Type: Ethernet Hardware: Ethernet BSD Device Name: en1 IPv4 Addresses: 169.254.39.164 IPv4: Addresses: 169.254.39.164 Configuration Method: DHCP Interface Name: en1 Subnet Masks: 255.255.0.0 IPv6: Configuration Method: Automatic AppleTalk: Configuration Method: Node Default Zone: * Interface Name: en1 Network ID: 65460 Node ID: 139 Proxies: Proxy Configuration Method: Manual Exclude Simple Hostnames: 0 FTP Passive Mode:
    [Show full text]
  • Nunavut Utilities Technical Guide, Version 2.1, June 2, 2005 1 CONTENTS
    Nunavut Utilities Technical Guide Prepared by Multilingual E-Data Solutions For the Nunavut Department of Culture, Language, Elders and Youth Nunavut Utilities Technical Guide, Version 2.1, June 2, 2005 1 CONTENTS 1. Introduction................................................................................................................... 4 2. Syllabic Font Conversions............................................................................................ 4 2.1 Using Unicode as a Pivot Font.................................................................................. 5 2.2 Conversions to Unicode............................................................................................ 6 2.3 Conversions back to “Legacy” fonts......................................................................... 6 2.4 Special Processing Routines ................................................................................. 6 2.4.1 Placement of Long vowel markers .................................................................... 6 2.4.2 Extra Long vowel markers................................................................................. 7 2.4.3 Typing variations and collapsing characters...................................................... 7 3. Roman/Syllabic Transliteration Conversions ............................................................ 8 3.1 Introduction............................................................................................................... 8 3.2 Inuit Cultural Institute (ICI) Writing System...........................................................
    [Show full text]
  • Word 2010 Basics I
    Microsoft Word Fonts [email protected] Microsoft Word Fonts 1.0 hours Format Font ............................................................................................. 3 Font Dialog Box ........................................................................................ 4 Effects ................................................................................................ 4 Set as Default… .................................................................................. 4 Text Effects .............................................................................................. 5 Format Text Effects Pane ................................................................... 6 Typography .............................................................................................. 7 Advanced Font Features .......................................................................... 8 Drop Cap ................................................................................................. 8 Symbols .................................................................................................... 9 Class Exercise ......................................................................................... 10 Exercise 1: Simple Font Formatting ................................................. 10 Exercise 2: Advanced Options .......................................................... 12 Exercise 3: Text Effects, Symbols, Superscript, Subscript ................ 13 Exercise 4: More Formats ...............................................................
    [Show full text]