Environmental Impact and Management Plan for Alaknanda

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Impact and Management Plan for Alaknanda EXECUTIVE SUMMARY CISMHE CCIIISSMMHHEE EEnnvviirroonnmmeennttaall IImmppaacctt aanndd MMaannaaggeemmeenntt PPllaann ffoorr AAllaakknnaannddaa HH...EE... PPrroojjeecctt,,, UUttttaarraakkhhaanndd Prepared for : GMR Energy Limited, New Delhi CENTRE FOR INTER-DISCIPLINARY STUDIES OF MOUNTAIN & HILL ENVIRONMENT University of Delhi, Delhi EXECUTIVE SUMMARY CISMHE EXECUTIVE SUMMARY 1. IIINNTTRROODDUUCCTTIIIOONN Geographically Uttarakhand is situated between 28 43’45” to 31 8’10” N latitude and 77 35’5” to 81 2’25” E longitude. For administrative purpose Uttarakhand state is divided into 13 districts (Fig 1). According to the Census of India, 2001 the population of the state is 84,89,349, which is 0.8 per cent of the total population of India. People of all faiths – Hindu, Muslims, Christians, Sikhs and Bodhs – live in the state, though majority of population is of Hindu faith. The present project, Alaknanda Hydro-electric project (300 MW) is located in Joshimath tehsil of Chamoli district in Uttarakhand. The total population of Joshimath tehsil is 39,919 (Census, 2001). There are around 16 villages in the vicinity of the Alaknanda H.E. project (within 10 km radius from the project sites). These villages fall under six revenue villages, namely Khirao, Mana, Badrinath, Lambagar, Binayak Chatti and Pandukeshwar. Only Khirao is directly affected due to the different project activities . 1.1 Salient Features of Alaknanda H.E. Project The 300 MW Alaknanda H. E. project is proposed on Alaknanda River. Alaknanda H.E. Project is proposed to be a Run of the River scheme. The project propose to generate 300 MW of power and involves construction of a 18 m high diversion barrage across the Alaknanda river 3 km downstream of Badrinath town. The 2.87 km long headrace tunnel will be of a horseshoe shape and 4.3 m dia and an underground power house is proposed near Khirao Ganga (Fig. 2). The tail water will be discharged through an underground tail water tunnel upstream of tail of reservoir of under operation Vishnuprayag H. E. project. The salient features of the project are given in Table 1. Table 1. Salient features of Alaknanda H.E. project 1. LOCATION State Uttarakhand EXECUTIVE SUMMARY CISMHE District Chamoli River Alaknanda Location of Barrage site 3 km downstream of the Badrinath Shrine on the Alaknanda River 79 0 29.7’E, 30 0 43.4’ N Location of Power House 79 0 30.3’E, 30 0 41.2’ N 2. HYDROLOGY Catchment area at the Barrage Site 1015.93 sq km Snow Catchment 660 sq km Design flood (SPF) 1780 m 3/s PMF 2880 m 3/s 3. BARRAGE & RESERVOIR Type Gated Barrage FRL 2922.0 m (three units operating) Reservoir Area 2.27 ha MOL 2920.5 m (one unit operating) Average river bed level at axis 2905.0 m Width of barrage 40 m Sill Level 2907.0 m Design discharge 1780 m 3/s (SPF) Gates 4 No radial gates, 7m wide x 15.5 m high 4. INTAKE STRUCTURE Width of Intake 4 x 10m openings at the screens Orientation with respect to barrage axis 90 0 Regulating gates 2 Nos. 3.5 m wide x 3.5 m high Design discharge 68.5 m 3/s (including silt flushing discharge) 5. DESILTING ARRANGEMENT No. and size of desilting galleries 2 nos. 11 m wide x 11.4 m deep (settling zone) Length 250 m Particle size to be excluded 0.20 mm and above Flow through velocity 0.24 m/s 6. HEAD RACE TUNNEL Size and type 4.3 m dia horseshoe section Velocity 3.68 m/s EXECUTIVE SUMMARY CISMHE Length 2,886 m Design discharge 57.1 m 3/s Slope 1:98 7. SURGE SHAFT Type Underground, restricted orifice Diameter 15.0 m Height 46 m Orifice Diameter 4.2m Top level 2941.0 m Bottom level 2895.0 m Maximum upsurge 2936.0 m Minimum down surge 2906.8 m Adit at Top 5 m dia D-section 8. PRESSURE SHAFT Main penstock 775 m long x 3.6 to 3.0 m dia Branches 1.8 m dia (unit penstocks) 9. POWER HOUSE Type Underground Installed capacity 300 MW Size of Power house 85.0 m x 20.0 m x 39.82 m Gross head 621.8 m Net head 603.20 m Centre line of jet El.2300.2 10. TAILRACE Type 5 m dia D-section Length 1780 m No. & Size of unit duct 3 Nos., 3.5 m dia D-section Bed gradient 1:300 Draft tube gates 3.5 m wide x 3.5 m high Highest Flood Level 2283 m approx 11. TURBINE No. & Type 3 nos. Pelton, vertical axis Rated Power 100.0 MW Rated net head 603.20 m Max / Min net head 619.04 m/ 603.20 m EXECUTIVE SUMMARY CISMHE Rated discharge 19.1 m 3/s per unit Speed 300 rpm Specific speed 32.13 Wheel Pitch Diameter 3.33 m 12. MAIN INLET VALVE Type Spherical Valve Diameter 1.6 m Location Inside machine hall 13. GENERATOR Type Synchronous Numbers 3 Rated Capacity 100 MW Speed 300 rpm No. of Phases 3 Frequency 50 Hz Power Factor 0.9 Rated Terminal Voltage 11 kv Excitation System Thyristor excitation system 14. GENERATOR STEP UP TRANSFORMER Location Inside Transformer cavern No. 10 Rated Bank of 3 1- φ, 127.65 MVA Voltage Ratio 11/220/ √3kV Frequency 50 Hz Type of Cooling OFWF 15. TRANSMISSION LINES (220 kV) Type Double circuit Terminating Station Kauripass (Joshimath) Total Length 17 km 16. ESTIMATED COST (2006 PRICE LEVEL) Civil Works (including preliminary and 567.01 crores Miscellaneous items) Elec / Mech Works 442.70 crores Transmission Works 20.13 crores Interest during Construction 296.77 crores EXECUTIVE SUMMARY CISMHE Escalation 125.47 crores Total project cost 1,452.08 crores Cost per MW installed 4.84 crores / MW 17. POWER BENEFITS 90% dependable year 1117.0 GWh (Design energy) 50% dependable year 1278.2 GWh 18. ECONOMIC AND FINANCIAL ASPECTS Debt Equity Ratio 70:30 Interest on loan 10.25% Loan repayment period 12 years Return on equity 14% Sale rate of energy 19. CONSTRUCTION PERIOD 67 months including commissioning 2... PPHHYYSSIIIOOGGRRAAPPHHYY The physiography of a river basin refers to the sculptures on the land surface developed by various geomorphic processes which are controlled by the prevalent climate and the internal dynamism of the earth. The Alaknanda and Saraswati valleys are U-shaped in the initial stretches; a typical feature of glaciated valleys. There are ice pinnacles, rocky knobs, moraines, cirque glaciers, valley glaciers, talus cones in the catchment of Alaknanda river. Huge dumps of rock fragments at the base of hill slopes or valley side floors, known as scree fans, is one of the most common features observed above 4,000 m. Alaknanda river has two major tributaries, the Saraswati draining the Arwa valley and Dhauliganga coming from Niti Pass. Alaknanda river originates at the water divide between Satopanth and Bhagirath glaciers (near Vashundhara Falls), flows eastward and joins Saraswati river at Mana and then flows in a SE direction up to Joshimath where it meets Dhauliganga. After this confluence, it takes a swerve and starts flowing in the SW direction to meet Bhagirathi river at Devprayag. The drainage network of the Alaknanda watershed up to the proposed barrage site is shown in Fig. 3. River Sarswati is a major tributary of Alaknanda, which receives Arwa Nala, Nagthuni Gad and Anadeb EXECUTIVE SUMMARY CISMHE Gad from left bank. In the downstream of Saraswati confluence, the river Alaknanda is joined by Kanchan Ganga at 2970 m from left bank. The first right bank tributary is Rishi Ganga. It flows eastward and confluences with Alaknanda river on its right bank near Badrinath at 2,960 m near Bamni village. Two streams from Dhamling Dhar region joined Alaknanda at 3,020 and 2,950 m respectively on the right bank. The important large tributaries with substantial water discharge joining the Alaknanda river on left and right bank at 3.36 km and 4.7 km downstream of barrage axis are Ghrit Ganga and Khirao Ganga, respectively. Before confluencing with river Bhagirathi at Deoprayag, river Alaknanda is joined by major tributaries like rivers Birahi, Nandakini, Pindar (left bank tributaries), Balkila and Mandakini (right bank tributaries). The gradient of the river channel up to power house is 1:10. The gradient of entire course (31 km) of Saraswati river is 1:17. The tributaries joining the Saraswati river on its left bank have high gradient of the order of 1:3.5. The right bank tributaries have low gradient (1:16). The profile of the Rishi Ganga joining Alaknanda on its right bank has high gradient (1:5.8). In the catchment region of Alaknanda H.E. Project, very steep (50-70%) slope category covers only 2% of the entire catchment. Moderately steep slope (15-20%) category covers about 42% of the total catchment followed by steep slope (30-50%) category covering 29% (Fig. 4). Strongly sloping (8-15%) category has a substantial coverage of 16%. Moderately sloping (2-8%) and gently sloping categories together cover about 11% of the catchment. The gently sloping (0-2%) areas cover 5.3% of the catchment. The Digital Elevation Model (DEM) formed the basis for the generation of elevation-relief and aspect maps. As evident from the relief map major part (81.5%) of the catchment area lies in the elevational range 4,400 to 6,000 m of which 27.3% lies within 5,200-5,600 m. About 9.0% of the catchment lies within 4,000-4,400 m. Only small portion (0.6%) of the area lies above 6800 m.
Recommended publications
  • The Alaknanda Basin (Uttarakhand Himalaya): a Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain”
    Enhancing and Diversifying Livelihood Options ICSSR PDF A Final Report On “The Alaknanda Basin (Uttarakhand Himalaya): A Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain” Under the Scheme of General Fellowship Submitted to Indian Council of Social Science Research Aruna Asaf Ali Marg JNU Institutional Area New Delhi By Vishwambhar Prasad Sati, Ph. D. General Fellow, ICSSR, New Delhi Department of Geography HNB Garhwal University Srinagar Garhwal, Uttarakhand E-mail: [email protected] Vishwambhar Prasad Sati 1 Enhancing and Diversifying Livelihood Options ICSSR PDF ABBREVIATIONS • AEZ- Agri Export Zones • APEDA- Agriculture and Processed food products Development Authority • ARB- Alaknanda River Basin • BDF- Bhararisen Dairy Farm • CDPCUL- Chamoli District Dairy Production Cooperative Union Limited • FAO- Food and Agricultural Organization • FDA- Forest Development Agency • GBPIHED- Govind Ballabh Pant Institute of Himalayan Environment and Development • H and MP- Herbs and Medicinal Plants • HAPPRC- High Altitude Plant Physiology Center • HDR- Human Development Report • HDRI- Herbal Research and Development Institute • HMS- Himalayan Mountain System • ICAR- Indian Council of Agricultural Research • ICIMOD- International Center of Integrated Mountain and Development • ICSSR- Indian Council of Social Science Research LSI- Livelihood Sustainability Index • IDD- Iodine Deficiency Disorder • IMDP- Intensive Mini Dairy Project • JMS- Journal of Mountain Science • MPCA- Medicinal Plant
    [Show full text]
  • Recent and Past Floods in the Alaknanda Valley: Causes and Consequences
    COMMENTARY Recent and past floods in the Alaknanda valley: causes and consequences Naresh Rana, Sunil Singh, Y. P. Sundriyal and Navin Juyal Uttarakhand Himalaya in general and wide at the summit1,2. It was estimated (district surveyor of Garhwal), helped to Alaknanda and Bhagirathi valleys in par- that the lake would have taken at least a meticulously estimate the magnitude of ticular have experienced one of the worst year to fill. The dam would partially downstream inundation. An excellent forms of disaster in recent times (Figure breach only after the water began to top- telegraph system was installed between 1). Flash floods are common in the ple it, which would cause flash floods Birahi Ganga and Haridwar for real-time Himalaya, but the kind of destruction in the downstream till Haridwar. The monitoring and timely warning of the witnessed this time was unparalleled in untiring efforts of Pulford, the then flood. Around May 1894, pilgrim traffic recent history. Houses collapsed like a superintending engineer and his team, on the way to Kedarnath and Badrinath pack of cards and the roads and bridges particularly Pandit Hari Krishen Pant was diverted to the new pedestrian route swept away in the turbulent flood waters. Probably the worst causality of the cen- tury was the destruction of Kedarnath valley. According to the data published in various national dailies, nearly 4000 people were either killed or lost, 2232 houses were damaged, 1520 roads in dif- ferent parts of Garhwal were badly dam- aged and about 170 bridges have been washed away. According to economists, the tourism industry in Uttarakhand will suffer a loss of ~12,000 crore rupees, which is around 30% of the state’s GDP.
    [Show full text]
  • LIST of INDIAN CITIES on RIVERS (India)
    List of important cities on river (India) The following is a list of the cities in India through which major rivers flow. S.No. City River State 1 Gangakhed Godavari Maharashtra 2 Agra Yamuna Uttar Pradesh 3 Ahmedabad Sabarmati Gujarat 4 At the confluence of Ganga, Yamuna and Allahabad Uttar Pradesh Saraswati 5 Ayodhya Sarayu Uttar Pradesh 6 Badrinath Alaknanda Uttarakhand 7 Banki Mahanadi Odisha 8 Cuttack Mahanadi Odisha 9 Baranagar Ganges West Bengal 10 Brahmapur Rushikulya Odisha 11 Chhatrapur Rushikulya Odisha 12 Bhagalpur Ganges Bihar 13 Kolkata Hooghly West Bengal 14 Cuttack Mahanadi Odisha 15 New Delhi Yamuna Delhi 16 Dibrugarh Brahmaputra Assam 17 Deesa Banas Gujarat 18 Ferozpur Sutlej Punjab 19 Guwahati Brahmaputra Assam 20 Haridwar Ganges Uttarakhand 21 Hyderabad Musi Telangana 22 Jabalpur Narmada Madhya Pradesh 23 Kanpur Ganges Uttar Pradesh 24 Kota Chambal Rajasthan 25 Jammu Tawi Jammu & Kashmir 26 Jaunpur Gomti Uttar Pradesh 27 Patna Ganges Bihar 28 Rajahmundry Godavari Andhra Pradesh 29 Srinagar Jhelum Jammu & Kashmir 30 Surat Tapi Gujarat 31 Varanasi Ganges Uttar Pradesh 32 Vijayawada Krishna Andhra Pradesh 33 Vadodara Vishwamitri Gujarat 1 Source – Wikipedia S.No. City River State 34 Mathura Yamuna Uttar Pradesh 35 Modasa Mazum Gujarat 36 Mirzapur Ganga Uttar Pradesh 37 Morbi Machchu Gujarat 38 Auraiya Yamuna Uttar Pradesh 39 Etawah Yamuna Uttar Pradesh 40 Bangalore Vrishabhavathi Karnataka 41 Farrukhabad Ganges Uttar Pradesh 42 Rangpo Teesta Sikkim 43 Rajkot Aji Gujarat 44 Gaya Falgu (Neeranjana) Bihar 45 Fatehgarh Ganges
    [Show full text]
  • Floral and Faunal Diversity in Alaknanda River Mana to Devprayag
    Report Code: 033_GBP_IIT_ENB_DAT_11_Ver 1_Jun 2012 Floral and Faunal Diversity in Alaknanda River Mana to Devprayag GRBMP : Ganga River Basin Management Plan by Indian Institutes of Technology IIT IIT IIT IIT IIT IIT IIT Bombay Delhi Guwahati Kanpur Kharagpur Madras Roorkee Report Code: 033_GBP_IIT_ENB_DAT_11_Ver 1_Jun 2012 2 | P a g e Report Code: 033_GBP_IIT_ENB_DAT_11_Ver 1_Jun 2012 Preface In exercise of the powers conferred by sub-sections (1) and (3) of Section 3 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government has constituted National Ganga River Basin Authority (NGRBA) as a planning, financing, monitoring and coordinating authority for strengthening the collective efforts of the Central and State Government for effective abatement of pollution and conservation of the river Ganga. One of the important functions of the NGRBA is to prepare and implement a Ganga River Basin Management Plan (GRBMP). A Consortium of 7 Indian Institute of Technology (IIT) has been given the responsibility of preparing Ganga River Basin Management Plan (GRBMP) by the Ministry of Environment and Forests (MoEF), GOI, New Delhi. Memorandum of Agreement (MoA) has been signed between 7 IITs (Bombay, Delhi, Guwahati, Kanpur, Kharagpur, Madras and Roorkee) and MoEF for this purpose on July 6, 2010. This report is one of the many reports prepared by IITs to describe the strategy, information, methodology, analysis and suggestions and recommendations in developing Ganga River Basin Management Plan (GRBMP). The overall Frame Work for documentation of GRBMP and Indexing of Reports is presented on the inside cover page. There are two aspects to the development of GRBMP. Dedicated people spent hours discussing concerns, issues and potential solutions to problems.
    [Show full text]
  • Uttarakhand Flash Flood
    Uttarakhand Flash Flood drishtiias.com/printpdf/uttarakhand-flash-flood Why in News Recently, a glacial break in the Tapovan-Reni area of Chamoli District of Uttarakhand led to massive Flash Flood in Dhauli Ganga and Alaknanda Rivers, damaging houses and the nearby Rishiganga power project. In June 2013, flash floods in Uttarakhand wiped out settlements and took lives. Key Points Cause of Flash Flood in Uttarakhand: It occurred in river Rishi Ganga due to the falling of a portion of Nanda Devi glacier in the river which exponentially increased the volume of water. Rishiganga meets Dhauli Ganga near Raini. So Dhauli Ganga also got flooded. Major Power Projects Affected: Rishi Ganga Power Project: It is a privately owned 130MW project. Tapovan Vishnugad Hydropower Project on the Dhauliganga: It was a 520 MW run-of-river hydroelectric project being constructed on Dhauliganga River. Several other projects on the Alaknanda and Bhagirathi river basins in northwestern Uttarakhand have also been impacted by the flood. 1/4 Flash Floods: About: These are sudden surges in water levels generally during or following an intense spell of rain. These are highly localised events of short duration with a very high peak and usually have less than six hours between the occurrence of the rainfall and peak flood. The flood situation worsens in the presence of choked drainage lines or encroachments obstructing the natural flow of water. Causes: It may be caused by heavy rain associated with a severe thunderstorm, hurricane, tropical storm, or meltwater from ice or snow flowing over ice sheets or snowfields. Flash Floods can also occur due to Dam or Levee Breaks, and/or Mudslides (Debris Flow).
    [Show full text]
  • 'Glacial Burst' in Uttarakhand
    7 killed after ‘glacial burst’ in Uttarakhand Over 125 missing as hydel projects under construction on Rishiganga, Dhauliganga rivers are swept away SPECIAL CORRESPONDENT del project had an installed NEW DELHI capacity of 13.2 megawatts Seven persons were killed (MW), the 520 MW NTPC Ta- and over 125 reported mis- povan-Vishnugad project on sing after a “glacial burst” on the Dhauliganga was much Nanda Devi triggered an ava- larger. Both sites have been lanche and caused flash virtually washed away, an floods in Rishiganga and eyewitness told this new- Dhauliganga rivers in Cha- spaper. moli district of Uttarakhand Earlier in the day, Mr. Ra- on Sunday. wat said people along river- The number of missing banks were being evacuated. persons could rise as details Dams in Shrinagar and Rishi- were still being ascertained, kesh were emptied out, Mr. Uttarakhand Chief Minister Rawat said as the raging wa- T.S. Rawat said at a press ters made their way down- conference in Dehradun in stream. By late afternoon, the evening. Narrow escape: A worker being rescued from a tunnel at the the flow of the Alaknanda, of Videos of gushing waters Tapovan hydel project, which was washed away after the which the Dhauliganga is a and rising dust went viral on glacial burst in Uttarakhand on Sunday. * SPECIAL ARRANGEMENT tributary, had stabilised. social media as flood warn- Apart from the local pol- ings were issued in down- about the cause behind the povan tunnel of the NTPC ice and the Indo-Tibetan Bor- stream Uttar Pradesh for disaster,” the Chief Minister had to be halted due to a rise der Police (ITBP), four co- what was described as a “gla- told reporters.
    [Show full text]
  • Uttarakhand Emergency Assistance Project (UEAP)
    Initial Environment Examination Project Number: 47229-001 July 2016 IND: Uttarakhand Emergency Assistance Project (UEAP) Package: Construction of FRP huts in disaster affected district of Kumaon (District Bageshwar) Uttarakhand Submitted by Project implementation Unit –UEAP, Tourism (Kumaon), Nainital This initial environment examination report has been submitted to ADB by Project implementation Unit – UEAP, Tourism (Kumaon), Nainital and is made publicly available in accordance with ADB’s public communications policy (2011). It does not necessarily reflect the views of ADB. This initial environment examination report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. ADB Project Number: 3055-IND April 2016 IND: Uttarakhand Emergency Assistance Project Submitted by Project implementation Unit, UEAP, Kumaon Mandal Vikas Nigam limited, Nainital 1 This report has been submitted to ADB by the Project implementation Unit, UEAP, Kumaon Mandal Vikas Nigam, Nainital and is made publicly available in accordance with ADB’s public communications policy (2011). It does not necessarily reflect the views of ADB. Asian Development Bank 2 Initial Environmental Examination April 2016 INDIA: CONSTRUCTION OF FRP HUTS IN DISASTER AFFECTED DISTRICT OF KUMAON (DISTRICT BAGESHWAR) UTTARAKHAND Prepared by State Disaster Management Authority, Government of India, for the Asian Development Bank.
    [Show full text]
  • Longitudinal Distribution of the Fish Fauna in the River Ganga from Gangotri to Kanpur
    AL SCI UR EN 63 T C A E N F D O N U A N D D A E I Journal of Applied and Natural Science 5 (1): 63-68 (2013) T L I O P N P A JANS ANSF 2008 Longitudinal distribution of the fish fauna in the river Ganga from Gangotri to Kanpur Prakash Nautiyal*, Asheesh Shivam Mishra, K.R. Singh1 and Upendra Singh Aquatic Biodiversity Unit, Department of Zoology and Biotechnology, HNB Garhwal University Srinagar- 246174 (Uttarakhand), INDIA 1K.L. Degree College, Allahabad- 211002( UP), INDIA *Corresponding author. E-mail: [email protected] Received:October 1, 2012; Revised received: January 31, 2013; Accepted:February 25, 2013 Abstract: Fish fauna of the river Ganga from Gangotri to Kanpur consisted of 140 fish species from 9 orders and 25 families; 63 fish species from 6 orders and 12 families in the mountain section (MS), while 122 species from 9 orders and 25 families in the Plains section (PS) of Upper Ganga. Cypriniformes and Cyprinidae were most species rich order and family in both sections. Forty six fish species primarily Cypriniformes and Siluriformes are common to both sections, only 17 in MS and 76 in PS. Orders Tetradontiformes, Osteoglossiformes and Clupeiformes were present in PS only. The taxonomic richness in the MS was low compared to PS. Probably motility and physiological requirements in respect of tolerance for temperature restrict faunal elements. Keywords: Cyprinidae, Fish distribution, Gangetic plains, Himalaya, River continuum INTRODUCTION available on the longitudinal distribution of fish fauna in Distributional patterns of organisms are controlled by the Ganga river especially from mountain (Gangotri to dispersal mechanism, historical factors (connecting Haridwar) to upper plain section (Haridwar to Kanpur).
    [Show full text]
  • Inventory and Monitoring of Glacial Lakes/Water Bodies in the Himalayan Region of Indian River Basins
    Inventory and Monitoring of Glacial Lakes/Water Bodies in the Himalayan Region of Indian River Basins Submitted to Submitted by Climate Change and IAD Directorate Water Resources Division Central Water Commission RS & GIS Applications Area Ministry of Water Resources National Remote Sensing Centre New Delhi Indian Space Research Organisation Balanagar, Hyderabad, India ‐ 500 625 June 2011 i Document Control Sheet 1 Security Classification Restricted This document is for use by Central Water 2 Distribution Commission, Ministry of Water Resources, Govt. of India. (b) Revision 3 Report / Document version (a) Issue no. 1 0 & Date 4 Report / Document Type Technical report NRSC‐RS&GISAA‐WRG‐CWC‐Lakes‐May2011‐ 5 Document Control Number TR255 Final Report of "Inventory and Monitoring of 6 Title Glacial Lakes / Water Bodies in the Himalayan Region of Indian River Basins" Pages Figures Tables References 7 Particulars of collation 9+99 11 8 5 8 Author(s) K. Abdul Hakeem and E. Siva Sankar S/E 'SF', Water Resources Division, WRG, RS & 9 Affiliation of authors GIS‐AA P. Satyanarayana, E. Siva Sankar and K. Abdul 10 Project Team Hakeem Compiled by Reviewed by Approved / Controlled by 11 Scrutiny mechanism K. Abdul Head, WRD / DD (RS & GIS‐ Hakeem GD (WRG) AA) Water Resources Division, Water Resources 12 Originating unit Group, RS & GIS Applications Area Climate Change and IAD Directorate Sponsor(s) / Name and 13 Central Water Commission, New Delhi Address Govt. of India 14 Date of Initiation 29‐Jun‐10 15 Date of Publication 16‐Jun‐11 16 Abstract (with Keywords) : This document presents the details on inventory of glacial lakes and water bodies in the Himalayan region of Indian river basins using satellite remote sensing technique, including the data used and methodology followed in this study.
    [Show full text]
  • Impact of Dam on Channel Morphology of Alaknanda River in Srinagar Valley (Garhwal Himalaya)
    Himalayan J. Soc. Sci. & Humanities ISSN: 0975-9891 Vol. 14, (2019) 19-27 DOI: https://doi.org/10.51220/hjssh.v14i1.3 Impact of Dam on Channel Morphology of Alaknanda River in Srinagar Valley (Garhwal Himalaya) Sapna Semwal1 and D.D. Chauniyal2 1Department of Geography, DBS (PG) College, Dehara Dun 2Department of Geography, HNB Garhwal University Srinagar (Garhwal),Uttarakhand *Corresponding Author Email: [email protected] Received: 26.11.2019; Revised: 8.12.2019; Accepted: 28.12.2019 ©Society for Himalayan Action Research and Development Abstract: Rivers play a significant role in the human activities all over the world. Increasing demand of water for drinking & irrigation and hydroelectricity, numbers of impacts can be seen in the rivers environment. The present paper focuses on the impact of Supana Dam on the channel morphology of Alaknanda River in Srinagar valley Garhwal Himalaya. The field investigation approach has been adopted for the present study. The impact assessment has been carried out into three categories i.e. (i) Impact of dam on channel morphology, (ii) Impact of dam on human environment and (iii) Anthropogenic impact on channel Morphology. The results of the study show that after the construction of dam positive and negative impact have been assessed. Due to the blockage of water and sediment flow the entire riverine environment has been changed. Channel morphological features are well exposed for geomorphological study. Changing pattern of land and water relationship destroyed the previous ecosystem balance. Besides this, dam is supplying cheapest clean, efficient and reliable energy generated by hydro- electric power plant. Other impacts of dam are loss of fauna and flora, quality of drinking water supply and concentration of pollution in downstream.
    [Show full text]
  • India L M S Palni, Director, GBPIHED
    Lead Coordinator - India L M S Palni, Director, GBPIHED Nodal Person(s) – India R S Rawal, Scientist, GBPIHED Wildlife Institute of India (WII) G S Rawat, Scientist Uttarakhand Forest Department (UKFD) Nishant Verma, IFS Manoj Chandran, IFS Investigators GBPIHED Resource Persons K Kumar D S Rawat GBPIHED Ravindra Joshi S Sharma Balwant Rawat S C R Vishvakarma Lalit Giri G C S Negi Arun Jugran I D Bhatt Sandeep Rawat A K Sahani Lavkush Patel K Chandra Sekar Rajesh Joshi WII S Airi Amit Kotia Gajendra Singh Ishwari Rai WII Merwyn Fernandes B S Adhikari Pankaj Kumar G S Bhardwaj Rhea Ganguli S Sathyakumar Rupesh Bharathi Shazia Quasin V K Melkani V P Uniyal Umesh Tiwari CONTRIBUTORS Y P S Pangtey, Kumaun University, Nainital; D K Upreti, NBRI, Lucknow; S D Tiwari, Girls Degree College, Haldwani; Girija Pande, Kumaun University, Nainital; C S Negi & Kumkum Shah, Govt. P G College, Pithoragarh; Ruchi Pant and Ajay Rastogi, ECOSERVE, Majkhali; E Theophillous and Mallika Virdhi, Himprkrthi, Munsyari; G S Satyal, Govt. P G College Haldwani; Anil Bisht, Govt. P G College Narayan Nagar CONTENTS Preface i-ii Acknowledgements iii-iv 1. Task and the Approach 1-10 1.1 Background 1.2 Feasibility Study 1.3 The Approach 2. Description of Target Landscape 11-32 2.1 Background 2.2 Administrative 2.3 Physiography and Climate 2.4 River and Glaciers 2.5 Major Life zones 2.6 Human settlements 2.7 Connectivity and remoteness 2.8 Major Land Cover / Land use 2.9 Vulnerability 3. Land Use and Land Cover 33-40 3.1 Background 3.2 Land use 4.
    [Show full text]
  • Diversity of Aquatic Insects and Function of Fluvial Ecosystem Of
    Global Journal of Science Frontier Research: H Environment & Earth Science Volume 14 Issue 1 Version 1.0 Year 2014 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Diversity of Aquatic Insects and Function of Fluvial Ecosystem of Song River of Rajaji National Park, India By Nusrat Samweel & Tahir Nazir DIBNS Dehradun, India Abstract- Aquatic insect diversity of Rajaji National Park, India has been monitored for a period of twelve months. Some of the important hydrological attributes were also measured in continuity of one-month interval. Aquatic insects were sampled from two sites (S1 and S2) of the Song River of the Rajaji National Park. A significant difference in the density (t=2.86455, p<0.05) and diversity (t=5.23425, p<0.001) of aquatic insects was found due to differences in physicochemical setup of aquatic environment of these sites. It was also revealed that the nature, size and composition of bottom substrates have their significant impact on the diversity of benthic aquatic insects. The diversity of benthic aquatic insects ranged from 3.0270-4.4561 indicating the good quality of water. A high diversity (4.1085-4.4561) among aquatic insects was recorded in winter months when the water was almost clear with moderate temperature and water current, and high dissolved oxygen in the Song river of Rajaji National Park. Keywords: aquatic insects, monitoring, rajaji national park, physico-chemical parameters, song river, uttrakhand. GJSFR-H Classification : FOR Code: 070402 Diversity ofAquaticInsectsandFunction ofFluvialEcosystemofSong RiverofRajaji NationalPark,India Strictly as per the compliance and regulations of : © 2014.
    [Show full text]