Method for Producing Cadaverine Dicarboxylate and Its Use for the Production of Nylon

Total Page:16

File Type:pdf, Size:1020Kb

Method for Producing Cadaverine Dicarboxylate and Its Use for the Production of Nylon Europäisches Patentamt *EP001482055A1* (19) European Patent Office Office européen des brevets (11) EP 1 482 055 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C12P 13/02, C08G 69/28 01.12.2004 Bulletin 2004/49 (21) Application number: 04010711.2 (22) Date of filing: 05.05.2004 (84) Designated Contracting States: • Endo, Shuichi AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Kawasaki-shi Kanagawa (JP) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Mori, Yukiko Designated Extension States: Kawasaki-shi Kanagawa (JP) AL HR LT LV MK • Totsuka, Kazuhiko Kawasaki-shi Kanagawa (JP) (30) Priority: 26.05.2003 JP 2003147688 • Hirao, Yoshinori Kawasaki-shi Kanagawa (JP) (71) Applicant: Ajinomoto Co., Inc. Tokyo (JP) (74) Representative: Strehl Schübel-Hopf & Partner Maximilianstrasse 54 (72) Inventors: 80538 München (DE) • Nishi, Kiyohiko Kawasaki-shi Kanagawa (JP) (54) Method for producing cadaverine dicarboxylate and its use for the production of nylon (57) Cadaverine dicarboxylate is produced by per- of the solution at a level sufficient for the enzymatic de- forming an enzymatic decarboxylation reaction of a carboxylation reaction to occur, for example, 4.0 to 8.0. lysine solution while adding a dicarboxylic acid contain- ing 4 to 10 carbons to the lysine solution to maintain pH EP 1 482 055 A1 Printed by Jouve, 75001 PARIS (FR) EP 1 482 055 A1 Description BACKGROUND OF THE INVENTION 5 Field of the Invention [0001] The present invention relates to a method for producing cadaverine dicarboxylate. Cadaverine dicarboxylate can be used as a raw material for producing nylon. 10 Description of the Related Art [0002] Naphtha, a fossil material, is a major raw material in the production of plastics. Disposal of plastics which are not recycled has recently become a environmental concern due to the release of carbon dioxide when disposed of by burning, etc.. Accordingly, with the goal of preventing global warming and encouraging a recycling society, it is strongly 15 desirable to replace raw materials for producing plastics with those derived from biomass. [0003] Polylactic acid is known as a plastic produced using biomass as a raw material. A method for producing polylactic acid includes first extracting starch or sugar from a plant, then producing lactic acid by fermentation using the extracted starch or sugar as a carbon source, and then chemically polymerizing the resulting lactic acid. Polylactic acid is expected to be used in various industrial products, including container packages, garments, and others. How- 20 ever, since polylactic acid has a melting point of about 190°C, it is not suitable for high temperature uses. [0004] Plastics which have high heat resistance include nylon, particularly polyamide. An example of a widely-used nylon is nylon-66, which is produced by polymerizing hexamethylenediamine, which is a diamine containing 6 carbons, and adipic acid, which is a dicarboxylic acid containing 6 carbons, at a molar ratio of 1:1. Since nylon-66 has a melting point of 250°C or higher, it is a plastic material which is able to withstand high temperature conditions. 25 [0005] The aforementioned hexamethylenediamine is produced using benzene, propylene, or butadiene and can be obtained from the raw material naphtha. However, production methods from biomass are unknown. On the other hand, pentamethylenediamine containing 5 carbons, also known as cadaverine, is known to be produced from lysine, an amino acid, using lysine decarboxylase (hereinafter "LDC") (Enzyme Handbook, 1st ed., p. 636, Asakura Shoten). Therefore, if nylon is produced using a pentamethylenediamine containing 5 carbons as a raw material instead of 30 hexamethylenediamine containing 6 carbons, it is then possible to provide a plastic material produced using a raw material derived from biomass and usable under high temperature conditions. [0006] LDC is known to exist in bacteria such as Bacterium cadaveris (Soda K. et al., Biochem. Biophys. Res. Com., Vol. 34, pp.34-39, 1969) and Escherichia coli (E. coli) (Sabo D.L. et al., Biochemistry, Vol. 13, pp.662-670, 1974) and plants such as Lathyrus sativus (Ramakrishna S. et al., Phytochemistry, Vol. 15, pp.83-86, 1976). LDC can be extracted 35 from these organisms and used for the production of cadaverine. Furthermore, the sequence of the LDC gene (cadA) of E. coli is known (Watson N. et al., Journal of Bacteriology, Vol. 174, pp.530-540, 1992; Meng S.Y. et al. Journal of Bacteriology, Vol. 174, pp.2659-2669, 1992). Furthermore, a method of producing cadaverine by culturing a host in which enzymatic activity of LDC or the lysine-cadaverine antiporter is amplified using such an LDC gene or the like has been suggested (Japanese Patent Laid-open (Kokai) No. 2002-223770), and a method of producing cadaverine 40 by allowing LDC derived from a recombinant cell in which the intracellular activity of LDC is amplified to act on lysine has also been suggested (Japanese Patent Laid-open No. 2002-223771). [0007] However, if LDC is allowed to act on lysine, carbon dioxide is released by the decarboxylation reaction of LDC, and hence the pH is raised by the production of cadaverine during the reaction. Therefore, to prevent the rise of pH and maintain the optimal pH for the enzymatic reaction, it is necessary to perform the reaction in a buffer of a high 45 concentration, or successively add an acid to the reaction system to neutralize the alkalinity (Japanese Patent Laid- open (Kokai) Nos. 2002-223770 and 2002-223771). In general, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid or organic acids such as acetic acid are often used for neutralization of pH during an enzymatic reaction. When alkalinity is neutralized with these acids, the cadaverine which is obtained from the reaction mixture is in the form of a salt such as cadaverine hydrochloride, cadaverine sulfate, cadaverine phosphate and cadaverine 50 acetate. [0008] Known methods for producing nylons include condensation polymerization of a dicarboxylic acid dihalide and a diamine in the presence of a base. Alternatively, a method of heating a salt or a lower condensate, which has formed from a dicarboxylic acid and a diamine under melting conditions, to polycondense is known.(Ise, N. et al., Shinkobun- shikagakujoron, p.22, Kagakudojin, 1995) When cadaverine is obtained by the enzymatic reaction and then polymer- 55 ized with a dicarboxylic acid by either method, free cadaverine must be re-prepared from a salt of cadaverine. Therefore, the process becomes complicated and is no longer economical. [0009] Furthermore, a method for producing lysine by fermentation is known, and includes culturing a bacterium in a medium containing adipic acid, succinic acid, fumaric acid or a salt thereof as a main component, and maintained 2 EP 1 482 055 A1 at pH 7.5 to 8.2 with ammonium hydroxide (Japanese Patent Laid-open No. 49-126891). In this method, the bacterium is sub-cultured to allow proliferation thereof and maintain dynamic equilibrium of cells, and then the cells are cultured with changing a part of the medium conditions or culture conditions to perform fermentation with a shifted equilibrium of substance metabolism and thereby accumulate lysine in the medium at a high concentration. 5 SUMMARY OF THE INVENTION [0010] An object of the present invention is to provide a method for economically producing cadaverine as a diamine to be used as a raw material for production of nylon in a form easily and most efficiently used in the polymerization. 10 [0011] It is a further object of the present invention to provide a method for producing a cadaverine dicarboxylate comprising subjecting a lysine solution to an enzymatic decarboxylation reaction and maintaining the pH of said solution at a level sufficient for said reaction to occur by adding dicarboxylic acid to said solution. [0012] It is a further object of the present invention to provide the method as described above, wherein pH of the solution is maintained at about 4.0 to 8.0. 15 [0013] It is a further object of the present invention to provide the method as described above, wherein the dicarboxylic acid contains 4 to 10 carbons. [0014] It is a further object of the present invention to provide the method as described above, wherein the dicarboxylic acid is adipic acid. [0015] It is a further object of the present invention to provide the method as described above, wherein the enzymatic 20 decarboxylation reaction is performed using lysine decarboxylase, a cell producing lysine decarboxylase or a processed product of the cell producing lysine decarboxylase. [0016] It is a further object of the present invention to provide the method as described above, wherein the cell is modified to have increased lysine decarboxylase activity. [0017] It is a further object of the present invention to provide the method as described above, wherein the cell is 25 recombinant. [0018] It is still a further object of the present invention to provide the method as described above wherein the cell is modified to have increased copy number of a gene encoding lysine decarboxylase. [0019] It is a still further object of the present invention to provide the method as described above, wherein the cell is modified by modifying an expression regulatory sequence of a gene encoding lysine decarboxylase. 30 [0020] It is a still further object of the present invention to provide the method as described above, wherein the expression of the gene encoding lysine decarboxylase is enhanced. [0021] It is a still further object of the present invention to provide the method as described above, wherein the cell is an Escherichia coli cell. [0022] It is a still further object of the present invention to provide the method as described above, wherein the gene 35 encoding lysine decarboxylase is a cadA gene.
Recommended publications
  • Hexamethylenediamine (HMDA) from Fossil Vs. Bio-Based Routes: an Economic and Life Cycle Assessment Comparative Study
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015 Hexamethylenediamine (HMDA) from Fossil vs. Bio-Based Routes: an Economic and Life Cycle Assessment Comparative Study A. B. Dros,b O. Larue,b A. Reimond,b F. De Campoa and M. Pera-Titusa* a Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China. b Solvay (China) Co., Ltd., 3966 Jin Du Rd., Xin Zhuang Industrial Zone, Shanghai 201108, PR China. * Corresponding author. Tel.: +86 (0) 472445368, Fax: +86 (0) 472445399, E-mail: marc.pera-titus- [email protected] ELECTRONIC SUPPORTING INFORMATION FIGURE AND TABLE CAPTIONS Fig. S1. Speculative routes for the production of bio-based HMDA using molecules issued from biomass. Fig. S2. Flowsheet for the fossil-based route 1. Fig. S3. Flowsheet for the route Starch HFS. The bold number corresponds to the base-case value for steam consumption used in the LCA sensitivity study. The w/o HFS drying scenario value is also indicated. Fig. S4. Flowsheet for the bio-based route 2. Fig. S5. Flowsheet for the bio-based route 3. The bold numbers correspond to the base-case values used in the LCA sensitivity study. For HFS, the best- and worst case scenario values are also indicated. Fig. S6. Flowsheet for the bio-based route 4. Fig. S7. Evolution of market price of butadiene and HFCS42%. Data obtained from ref.18 and ref.21, respectively. Fig. S8. Impact score breakdown for ozone depletion (midpoint category 2) for HMDA production in France and Germany.
    [Show full text]
  • Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida Viswanathii
    Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Chemical Engineering Graduate Theses Summer 8-2018 Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida viswanathii Jennifer Ann Mobley Rose-Hulman Institute of Technology Follow this and additional works at: https://scholar.rose-hulman.edu/ chemical_engineering_grad_theses Recommended Citation Mobley, Jennifer Ann, "Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida viswanathii" (2018). Graduate Theses - Chemical Engineering. 11. https://scholar.rose-hulman.edu/chemical_engineering_grad_theses/11 This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate Theses - Chemical Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact weir1@rose- hulman.edu. Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida viswanathii A Thesis Submitted to the Faculty of Rose-Hulman Institute of Technology by Jennifer Ann Mobley In Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Engineering August 2018 © 2018 Jennifer Ann Mobley ABSTRACT Mobley, Jennifer Ann M.S.Ch.E. Rose-Hulman Institute of Technology August 2018 Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida viswanathii Thesis Advisor: Dr. Irene Reizman
    [Show full text]
  • Synthesis and Characterization of New Polyesters Based on Renewable Resources
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/23262 Official URL: https://doi.org/10.1016/j.indcrop.2012.07.027 To cite this version: Waig Fang, Sandrine and Satgé-De Caro, Pascale and Pennarun, Pierre- Yves and Vaca-Garcia, Carlos and Thiebaud-Roux, Sophie Synthesis and characterization of new polyesters based on renewable resources. (2013) Industrial Crops and Products, 43. 398-404. ISSN 0926-6690 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Synthesis and characterization of new polyesters based on renewable resources Sandrine Waig Fang a , b , Pascale De Caro a , b, Pierre-Yves Pennarun c, Carlos Vaca-Garcia a , b, Sophie Thiebaud-Roux a ,b,* a Universitéde Toulouse, !NP, LCA(Laboratoire de Chimie Agro-Industrielle),4 allée Emile Monso, F 31432 Toulouse, France b UMR1010 INRA/INP-ENSIACET, Toulouse, France c 915, Route de Moundas, FR-31600 Lamasquère, France ARTICLE INFO ABSTRACT A series ofnon-crosslinked biobased polyesters were prepared from pentaerythritol and aliphatic dicar­ Keywords: boxylic acids, including fatty acids grafted as side-chains to the backbone of the polymer. The strategy Bio-based polymers Fatty acids utilized tends to create linear polymers by protecting two of the hydroxyl groups in pentaerythritol Pentaerythritol by esterification with fatty acids before the polymerization reaction.
    [Show full text]
  • Hexamethylenediamine Cas N°: 124-09-4
    OECD SIDS HEXAMETHYLENEDIAMINE FOREWORD INTRODUCTION HEXAMETHYLENEDIAMINE CAS N°: 124-09-4 UNEP PUBLICATIONS Identifiers, Physical and Chemical properties 165 Substance End Point : IDENTIFIERS, PHYSICAL AND CHEMICAL PROPERTIES Chemical Name : 1,6-Hexanediamine Common Name : Hexamethylenediamine CAS Number : 124-09-4 RTECS Number : MO1180000 Synonyms 1,6-Diaminohexane .alpha.-.omega.-Hexanediamine Hexylenediamine 1,6-Hexylenediamine HMD HMDA Properties & Definitions Molecular Formula : C6H16N2 Molecular Weight : 116.24 Melting Point : 41C Boiling Point : 205C Flash Point : 0.9 - 7.6 volume % Vapour Pressure : 0.05 kPa (0.4 mmHg) at 25C CAL Octanol/Water Partition : log Pow = 0.02 Coefficient Water Solubility : 800 g/L at 15.6C Additives : None Impurities : None. Purity of industrial product: 100% General Comments : Flammability (solids/gases): 85C. Ignition temperature: 305C. Overall Evaluation SIDS INITIAL ASSESSMENT CURRENTLY OF LOW PRIORITY FOR FURTHER WORK Hexamethylendiamine (HMDA) is an isolated chemical intermediate which is used for the manufacture of polyamides. Information regarding uses, production levels, exposure, and emissions was available only from the DuPont Company in Canada and in the United States. Tasks involving the exposure to HMDA are of short duration; therefore, occupational exposure is expected to be limited. Air monitoring at plant sites has detected =< 0.07 ppm HMDA; personal monitoring values range from 0.01 to 3.7 ppm. It is also expected that consumer exposure is negligible since HMDA is generally incorporated into other products before reaching the consumer; however, consumer exposure will need to be reassessed when additional exposure data is received from other countries. Under environmental conditions, HMDA will exist in an ionic state (+2).
    [Show full text]
  • Download Author Version (PDF)
    Organic & Biomolecular Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/obc Page 1 of 26 Organic & Biomolecular Chemistry Comparison of alternative nucleophiles for Sortase A-mediated bioconjugation and application in neuronal cell labelling Samuel Baera, Julie Nigro a,b, Mariusz P. Madej a, Rebecca M. Nisbet a,b, Randy Suryadinata a, Gregory Coia a, Lisa P. T. Hong a, Timothy E. Adams a, Charlotte C. Williams *a†, Stewart D. Nuttall a,b†. Manuscript aCSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria, 3052, AUSTRALIA. bPreventative Health Flagship, 343 Royal Parade, Parkville, Victoria, 3052, AUSTRALIA. *Correspondence to: Charlotte C. Williams ([email protected] ) at CSIRO Materials Accepted Science and Engineering, 343 Royal Parade, Parkville, Victoria, 3052, AUSTRALIA; Ph: +61 3 9662 7100).
    [Show full text]
  • Glutaric Acid Production by Systems Metabolic Engineering of an L-Lysine–Overproducing Corynebacterium Glutamicum
    Glutaric acid production by systems metabolic engineering of an L-lysine–overproducing Corynebacterium glutamicum Taehee Hana, Gi Bae Kima, and Sang Yup Leea,b,c,1 aMetabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea; bBioInformatics Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea; and cBioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141, Daejeon, Republic of Korea Contributed by Sang Yup Lee, October 6, 2020 (sent for review August 18, 2020; reviewed by Tae Seok Moon and Blake A. Simmons) There is increasing industrial demand for five-carbon platform processes rely on nonrenewable and toxic starting materials, chemicals, particularly glutaric acid, a widely used building block however. Thus, various approaches have been taken to biologi- chemical for the synthesis of polyesters and polyamides. Here we cally produce glutaric acid from renewable resources (13–19). report the development of an efficient glutaric acid microbial pro- Naturally, glutaric acid is a metabolite of L-lysine catabolism in ducer by systems metabolic engineering of an L-lysine–overproducing Pseudomonas species, in which L-lysine is converted to glutaric Corynebacterium glutamicum BE strain. Based on our previous study, acid by the 5-aminovaleric acid (AVA) pathway (20, 21). We an optimal synthetic metabolic pathway comprising Pseudomonas previously reported the development of the first glutaric acid- putida L-lysine monooxygenase (davB) and 5-aminovaleramide amido- producing Escherichia coli by introducing this pathway compris- hydrolase (davA) genes and C.
    [Show full text]
  • ALIPHATIC DICARBOXYLIC ACIDS from OIL SHALE ORGANIC MATTER – HISTORIC REVIEW REIN VESKI(A)
    Oil Shale, 2019, Vol. 36, No. 1, pp. 76–95 ISSN 0208-189X doi: https://doi.org/10.3176/oil.2019.1.06 © 2019 Estonian Academy Publishers ALIPHATIC DICARBOXYLIC ACIDS FROM OIL SHALE ORGANIC MATTER ‒ HISTORIC REVIEW REIN VESKI(a)*, SIIM VESKI(b) (a) Peat Info Ltd, Sõpruse pst 233–48, 13420 Tallinn, Estonia (b) Department of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia Abstract. This paper gives a historic overview of the innovation activities in the former Soviet Union, including the Estonian SSR, in the direct chemical processing of organic matter concentrates of Estonian oil shale kukersite (kukersite) as well as other sapropelites. The overview sheds light on the laboratory experiments started in the 1950s and subsequent extensive, triple- shift work on a pilot scale on nitric acid, to produce individual dicarboxylic acids from succinic to sebacic acids, their dimethyl esters or mixtures in the 1980s. Keywords: dicarboxylic acids, nitric acid oxidation, plant growth stimulator, Estonian oil shale kukersite, Krasava oil shale, Budagovo sapropelite. 1. Introduction According to the National Development Plan for the Use of Oil Shale 2016– 2030 [1], the oil shale industry in Estonia will consume 28 or 9.1 million tons of oil shale in the years to come in a “rational manner”, which in today’s context means the production of power, oil and gas. This article discusses the reasonability to produce aliphatic dicarboxylic acids and plant growth stimulators from oil shale organic matter concentrates. The technology to produce said acids and plant growth stimulators was developed by Estonian researchers in the early 1950s, bearing in mind the economic interests and situation of the Soviet Union.
    [Show full text]
  • United States Patent Office Patented Feb
    3,235,600 United States Patent Office Patented Feb. 15, 1966 2 quality and color stability of the polyamide product re 3,235,600 Sulting from the polycondensation of hexamethylenedi REDUCTION OF DAMENOCYCLOHEXANE CON. CENTRATION IN CRUDE HEXAMETYLENED amine with dibasic carboxylic acids. The 1,2-diamino AMNE cyclohexane gives rise to salt solutions of hexamethylene Philip W. Evans, Pensacola, Fla., assignor to Monsanto diamine and dibasic carboxylic acids which have poor Company, a corporation of Delaware and variable color, and the polyamides prepared from No Drawing. Filed Nov. 28, 1962, Ser. No. 240,742 these Salt solutions not only have poor color but also are characterized by irregular tensile strength and nonuniform - 4 Claims. (C. 260-583) dyeing properties. This invention relates to the production of amines and Although one major cause for polyamide product more particularly, it relates to a process for the produc 10 quality, color, and dyeing problems has been ascertained tion of amines in a high degree of purity. and explained, the saisfactory removal on a commercial Hexamethylenediamine is now a well-known com Scale of the Small amounts of 1,2-diaminocyclohexane pound which may be prepared on a commercial scale present in manufactured crude hexamethylenediamine to most conveniently by catalytically hydrogenating adipo eliminate the cause presents a difficult problem. Accord nitrile in the presence of ammonia. A principal use of ing to present commercial practices, the 1,2-diaminocyclo hexamethylenediamine involves condensing
    [Show full text]
  • Transformation of Dicarboxylic Acids by Three Airborne Fungi
    This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in 'Environmental Science & Technology', copyright © American Chemical Society after peer review. To access the final edited and published work https://www.sciencedirect.com/science/article/pii/S0048969707010972 doi: 10.1016/j.scitotenv.2007.10.035 Microbial and “de novo” transformation of dicarboxylic acids by three airborne fungi Valérie Côté, Gregor Kos, Roya Mortazavi, Parisa A. Ariya Abstract Micro-organisms and organic compounds of biogenic or anthropogenic origins are important constituents of atmospheric aerosols, which are involved in atmospheric processes and climate change. In order to investigate the role of fungi and their metabolisation activity, we collected airborne fungi using a biosampler in an urban location of Montreal, Quebec, Canada (45° 28′ N, 73° 45′ E). After isolation on Sabouraud dextrose agar, we exposed isolated colonies to dicarboxylic acids (C2–C7), a major group of organic aerosols and monitored their growth. Depending on the acid, total fungi numbers varied from 35 (oxalic acid) to 180 CFU/mL (glutaric acid). Transformation kinetics of malonic acid, presumably the most abundant dicarboxylic acid, at concentrations of 0.25 and 1.00 mM for isolated airborne fungi belonging to the genera Aspergillus, Penicillium, Eupenicillium, and Thysanophora with the fastest transformation rate are presented. The initial concentration was halved within 4.5 and 11.4 days. Other collected fungi did not show a significant degradation and the malonic acid concentration remained unchanged (0.25 and 1.00 mM) within 20 days. Degradation of acid with formation of metabolites was followed using high performance liquid chromatography-ultraviolet detection (HPLC/UV) and gas chromatography–mass spectrometry (GC/MS), as well as monitoring of 13C labelled malonic acid degradation with solid-state nuclear magnetic resonance spectroscopy (NMR).
    [Show full text]
  • Catalyzed Synthesis of Zinc Clays by Prebiotic Central Metabolites
    bioRxiv preprint doi: https://doi.org/10.1101/075176; this version posted September 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Catalyzed Synthesis of Zinc Clays by Prebiotic Central Metabolites Ruixin Zhoua, Kaustuv Basub, Hyman Hartmanc, Christopher J. Matochad, S. Kelly Searsb, Hojatollah Valib,e, and Marcelo I. Guzman*,a *Corresponding Author: [email protected] aDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506, USA; bFacility for Electron Microscopy Research, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada; cEarth, Atmosphere, and Planetary Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; dDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA; eDepartment of Anatomy & Cell Biology, 3640 University Street, Montreal H3A 0C7, Canada The authors declare no competing financial interest. Number of text pages: 20 Number of Figures: 9 Number of Tables: 0 bioRxiv preprint doi: https://doi.org/10.1101/075176; this version posted September 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract How primordial metabolic networks such as the reverse tricarboxylic acid (rTCA) cycle and clay mineral catalysts coevolved remains a mystery in the puzzle to understand the origin of life.
    [Show full text]
  • Fatty Acid Oxidation
    FATTY ACID OXIDATION 1 FATTY ACIDS A fatty acid contains a long hydrocarbon chain and a terminal carboxylate group. The hydrocarbon chain may be saturated (with no double bond) or may be unsaturated (containing double bond). Fatty acids can be obtained from- Diet Adipolysis De novo synthesis 2 FUNCTIONS OF FATTY ACIDS Fatty acids have four major physiological roles. 1)Fatty acids are building blocks of phospholipids and glycolipids. 2)Many proteins are modified by the covalent attachment of fatty acids, which target them to membrane locations 3)Fatty acids are fuel molecules. They are stored as triacylglycerols. Fatty acids mobilized from triacylglycerols are oxidized to meet the energy needs of a cell or organism. 4)Fatty acid derivatives serve as hormones and intracellular messengers e.g. steroids, sex hormones and prostaglandins. 3 TRIGLYCERIDES Triglycerides are a highly concentrated stores of energy because they are reduced and anhydrous. The yield from the complete oxidation of fatty acids is about 9 kcal g-1 (38 kJ g-1) Triacylglycerols are nonpolar, and are stored in a nearly anhydrous form, whereas much more polar proteins and carbohydrates are more highly 4 TRIGLYCERIDES V/S GLYCOGEN A gram of nearly anhydrous fat stores more than six times as much energy as a gram of hydrated glycogen, which is likely the reason that triacylglycerols rather than glycogen were selected in evolution as the major energy reservoir. The glycogen and glucose stores provide enough energy to sustain biological function for about 24 hours, whereas the Triacylglycerol stores allow survival for several weeks. 5 PROVISION OF DIETARY FATTY ACIDS Most lipids are ingested in the form of triacylglycerols, that must be degraded to fatty acids for absorption across the intestinal epithelium.
    [Show full text]
  • Role of Cadaverine and Piperidine in the Formation of N-Nitrosopiperidine in Heated Cured Meat
    ROLE OF CADAVERINE AND PIPERIDINE IN THE FORMATION OF N-NITROSOPIPERIDINE IN HEATED CURED MEAT Drabik-Markiewicz G.1, 2, De Mey E. 1, Impens S. 1, Kowalska T. 2, Vander Heyden Y. 3 and Paelinck H.1* 1Research Group for Technology and Quality of Animal Products, Catholic University College Gent, Technology Campus Gent, Department of Chemistry and Biochemistry, 1 Gebroeders Desmetstraat, 9000 Gent, Belgium 2University of Silesia, Institute of Chemistry, 9 Szkolna Street, 40-006 Katowice, Poland 3Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium *Corresponding author (e-mail: [email protected]) Abstract — N-nitrosamines are carcinogenic compounds, which formation in meat products depends from different factors e.g., temperature, storage time, precursors and/or added sodium nitrite. Sodium nitrite is important for meat processing as curing agent. The aim of this study was to determine the role of cadaverine and piperidine on the formation of N-nitrosamines in heated cured meat products. Such experimental products were processed with different amounts of sodium nitrite ( 0 mg kg -1, 120 mg kg -1, 480 mg kg -1), 1000 mg kg -1 of cadaverine or 10 mg kg -1 of piperidine, and heated at 85°C, 120°C, 160°C or 220°C. Experimental evidence was produced using gas chromatography in combination with Thermal Energy Analyzer (GC-TEA). The obtained analytical results were statistically evaluated by means of the Univariate Analysis of Variance (ANOVA) approach. In the current study only N-nitrosodimethylamine (NDMA) and N-nitrosopiperidine (NPIP) were detected.
    [Show full text]