United States Patent Office Patented Feb

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Feb 3,235,600 United States Patent Office Patented Feb. 15, 1966 2 quality and color stability of the polyamide product re 3,235,600 Sulting from the polycondensation of hexamethylenedi REDUCTION OF DAMENOCYCLOHEXANE CON. CENTRATION IN CRUDE HEXAMETYLENED amine with dibasic carboxylic acids. The 1,2-diamino AMNE cyclohexane gives rise to salt solutions of hexamethylene Philip W. Evans, Pensacola, Fla., assignor to Monsanto diamine and dibasic carboxylic acids which have poor Company, a corporation of Delaware and variable color, and the polyamides prepared from No Drawing. Filed Nov. 28, 1962, Ser. No. 240,742 these Salt solutions not only have poor color but also are characterized by irregular tensile strength and nonuniform - 4 Claims. (C. 260-583) dyeing properties. This invention relates to the production of amines and Although one major cause for polyamide product more particularly, it relates to a process for the produc 10 quality, color, and dyeing problems has been ascertained tion of amines in a high degree of purity. and explained, the saisfactory removal on a commercial Hexamethylenediamine is now a well-known com Scale of the Small amounts of 1,2-diaminocyclohexane pound which may be prepared on a commercial scale present in manufactured crude hexamethylenediamine to most conveniently by catalytically hydrogenating adipo eliminate the cause presents a difficult problem. Accord nitrile in the presence of ammonia. A principal use of ing to present commercial practices, the 1,2-diaminocyclo hexamethylenediamine involves condensing it with di hexane is removed from the hexamethylenediamine by basic acids to produce polyamides, and in manufacturing fractional distillation; however, because of the proximity these polyamides, important advantages are obtained by of the boiling points of 1,2-diaminocyclohexane and hexa reacting the diamine in a first step with an equivalent 20 methylenediamine, a fractional distillation process de amount of dibasic carboxylic acid to form a salt using a signed to separate these compounds must of necessity be Solvent Such as water, methanol or ethanol in accord one which is capable of separating constituents whose ance with procedures well known in the art. This salt volatilities are in the same order of magnitude. Distilla thus prepared is subsequently converted in a second step tion processes that meet this requirement are known to to the polyamide condensation product. 25 be not too efficient and to be extremely expensive to Although there are a number of methods for the prepa operate. Moreover, to effect the desired removal of the ration of hexamethylenediamine which are known and 1,2-diaminocyclohexane by fractional distillation, there used in industry, none of these methods result in the pro are attending losses in the prime product, hexamethylene duction of hexamethylenediamine which is free from diamine, and the apparatus to perform the distillations products of side reactions and the like. Consequently, 30 is expensive to install and in most instances, presents a further refinement of the crude hexamethylenediamine major bottleneck to increased output from continuous produced is necessary generally to obtain a product which processes for the production of refined hexamethylenedi exhibits the high degree of purity necessary when the amine. hexamethylenediamine is to be used in industrial proc It is, therefore, an object of this invention to provide esses which culminate in the production of commercially an improved hexamethylenediamine composition and to saleable articles. This is especially true, for example, in provide a process for preparing this composition. the production of polyamides wherein hexamethylenedi Another object of this invention is to provide a process amine is reacted with adipic acid to produce polyhexa for the preparation of highly purified hexamethylenedi methylene adipamide which is used in many end products. amine. Utilization of poorly refined hexamethylenediamine in 40 A further object is to provide a process for the catalytic the production of polyhexamethylene adipamide causes hydrogenation of adiponitrile to hexamethylenediamine a restriction of the molecular weight, results in a polymer wherein the production of the by-product, 1,2-diamino having bad color characteristics and poor dyeability, and cyclohexane, is suppressed. affects various other physical and chemical properties of These and other objects of this invention will be ap the polymer or products made therefrom. For example, 45 parent from the description hereinafter. in the textile field where polyhexamethylene adipamide In accordance with this invention, it has been dis is used widely for the production of filaments and fibers, covered that the above and other objects are accomplished the use of poorly refined hexamethylenediamine results in by catalytically hydrogenating a nitrile under controlled Weak filaments and fibers, as well as ones having poor conditions of temperature and pressure in the presence coller characteristics which do not meet the stringent tex of ammonia and at least one of the group of compounds tile standards. comprising organic and inorganic carbonates, organic and One process currently in wide use throughout industry inorganic carbamates, and carbon dioxide. for the production of hexamethylenediamine is the hydro In a particular preferred embodiment of the invention, genation of adiponitrile in the presence of a catalyst such a mixture of adiponitrile, ammonia, hydrogen, and at as cobalt. This process is generally operated on a con least one of the group of compounds comprising organic tinuous basis by passing hydrogen and adiponitrile over and inorganic carbonates, organic and inorganic carba or through a catalyst under conditions of elevated pres mates, and carbon dioxide is passed over or through a sure and temperature. Liquid ammonia is added to the hydrogenation catalyst under conditions of elevated tem process to absorb exothermic heat of reaction and to perature and pressure, whereby crude hexamethylenedi limit the formation of unwanted by-products. After the 60 amine containing a suppressed quantity of the hydrogena crude product is formed, unwanted by-products may be tion by-product, 1,2-diaminocyclohexane, is produced. removed by passing the crude product through a series of The nitrile which is employed may be derived from any distillation stills or by chemical treatments or combina suitable source and when adiponitrile is used it may be tions of these methods. obtained from the reaction of adipic acid with ammonia, It is well known in the art that the catalytic hydrogena the reaction of dichlorobutane with hydrogen cyanide, the tion of adiponitrile under commercially attractive condi hydrogenation of dicyanobutene, or other known means tions results in the formation of very small amounts of for the preparation thereof and should be of the degree the compound 1,2-diaminocyclohexane along with the de of purity well known in the art. sired product, hexamethylenediamine, and that the pres The hydrogenation of the nitrile to the amine may ence of this cyclic compound, even in very minute quan be effected by using various hydrogenation catalysts such tities, has a drastic and critically adverse effect on the as nickel, cobalt, copper, zinc, platinum, palladium, rubid 3,285,600 3 4. ium, ruthenium, and the like; and these elements, either of depending upon the hydrogenation reactants and the in the form of free metals or in the form of compounds desired conditions of temperature and pressure for the Such as the oxides or salts, may be employed, if desired, hydrogenation. The hydrogenation reactants, the am in conjunction with known promoters and/or supports. monia, and the deleterious by-product suppressant may For the hydrogenation of adiponitrile to hexamethyl be fed separately to the catalyst or catalysts for contact enediamine, cobalt catalysts and in particular catalysts ing or any two or more of the components may be mixed comprising cobalt oxide are preferred. With each other prior to their contacting the catalyst. These above mentioned catalytic materials are used In the example of the hydrogenation of adiponitrile to preferably in a finely divided form and may be deposited hexamethylenediamine, is has been found advantageous on a porous Supporting means such as pumice, kieselguhr, 10 to mix the hexamethylenediamine carbonate or amino alumina gel and silica gel. Catalyst powders are pre capronitrile carbamate or combinations of these with pared conveniently for use in the hydrogenation process the adiponitrile or the ammonia or combinations of these by compressing the catalyst into pellets or brickets of suit prior to the contacting of the resultant mixture with the able size. Stabilized catalysts containing a substantial pro hydrogen and the catalyst or catalysts. Water may be portion of oxide, catalysts comprising the carbonate, ox 5 present in one or more of the components of the hydro ide or hydroxide of the hydrogenating metal deposited genation feed stream to the catalyst or catalysts with on an inert porous support, and catalysts in which the hy Out affecting the beneficial results obtained from the del drogenating metal is combined with a non-reducible oxide eterious by-product suppressant compound. are preferably reduced in a stream of hydrogen-contain The following examples are intended to illustrate the ing gas prior to exposure to the reaction compounds. 20 present invention more fully but are not to be construed The temperature for the
Recommended publications
  • Hexamethylenediamine (HMDA) from Fossil Vs. Bio-Based Routes: an Economic and Life Cycle Assessment Comparative Study
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015 Hexamethylenediamine (HMDA) from Fossil vs. Bio-Based Routes: an Economic and Life Cycle Assessment Comparative Study A. B. Dros,b O. Larue,b A. Reimond,b F. De Campoa and M. Pera-Titusa* a Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China. b Solvay (China) Co., Ltd., 3966 Jin Du Rd., Xin Zhuang Industrial Zone, Shanghai 201108, PR China. * Corresponding author. Tel.: +86 (0) 472445368, Fax: +86 (0) 472445399, E-mail: marc.pera-titus- [email protected] ELECTRONIC SUPPORTING INFORMATION FIGURE AND TABLE CAPTIONS Fig. S1. Speculative routes for the production of bio-based HMDA using molecules issued from biomass. Fig. S2. Flowsheet for the fossil-based route 1. Fig. S3. Flowsheet for the route Starch HFS. The bold number corresponds to the base-case value for steam consumption used in the LCA sensitivity study. The w/o HFS drying scenario value is also indicated. Fig. S4. Flowsheet for the bio-based route 2. Fig. S5. Flowsheet for the bio-based route 3. The bold numbers correspond to the base-case values used in the LCA sensitivity study. For HFS, the best- and worst case scenario values are also indicated. Fig. S6. Flowsheet for the bio-based route 4. Fig. S7. Evolution of market price of butadiene and HFCS42%. Data obtained from ref.18 and ref.21, respectively. Fig. S8. Impact score breakdown for ozone depletion (midpoint category 2) for HMDA production in France and Germany.
    [Show full text]
  • Hexamethylenediamine Cas N°: 124-09-4
    OECD SIDS HEXAMETHYLENEDIAMINE FOREWORD INTRODUCTION HEXAMETHYLENEDIAMINE CAS N°: 124-09-4 UNEP PUBLICATIONS Identifiers, Physical and Chemical properties 165 Substance End Point : IDENTIFIERS, PHYSICAL AND CHEMICAL PROPERTIES Chemical Name : 1,6-Hexanediamine Common Name : Hexamethylenediamine CAS Number : 124-09-4 RTECS Number : MO1180000 Synonyms 1,6-Diaminohexane .alpha.-.omega.-Hexanediamine Hexylenediamine 1,6-Hexylenediamine HMD HMDA Properties & Definitions Molecular Formula : C6H16N2 Molecular Weight : 116.24 Melting Point : 41C Boiling Point : 205C Flash Point : 0.9 - 7.6 volume % Vapour Pressure : 0.05 kPa (0.4 mmHg) at 25C CAL Octanol/Water Partition : log Pow = 0.02 Coefficient Water Solubility : 800 g/L at 15.6C Additives : None Impurities : None. Purity of industrial product: 100% General Comments : Flammability (solids/gases): 85C. Ignition temperature: 305C. Overall Evaluation SIDS INITIAL ASSESSMENT CURRENTLY OF LOW PRIORITY FOR FURTHER WORK Hexamethylendiamine (HMDA) is an isolated chemical intermediate which is used for the manufacture of polyamides. Information regarding uses, production levels, exposure, and emissions was available only from the DuPont Company in Canada and in the United States. Tasks involving the exposure to HMDA are of short duration; therefore, occupational exposure is expected to be limited. Air monitoring at plant sites has detected =< 0.07 ppm HMDA; personal monitoring values range from 0.01 to 3.7 ppm. It is also expected that consumer exposure is negligible since HMDA is generally incorporated into other products before reaching the consumer; however, consumer exposure will need to be reassessed when additional exposure data is received from other countries. Under environmental conditions, HMDA will exist in an ionic state (+2).
    [Show full text]
  • Table of Contents
    UNIVERSITY OF MISSOURI-KANSAS CITY CHEMICAL MANAGEMENT PLAN Revised May 2016 UMKC CHEMICAL MANAGEMENT PLAN This document constitutes the Chemical Management Plan (CMP) for the University of Missouri-Kansas City (UMKC). It was developed by the Environmental Health and Safety Department (EHS), to ensure the safe and proper use of hazardous and non- hazardous chemicals and to comply with applicable governmental regulations addressing the disposal of these chemicals. In addition, it was developed to foster waste minimization, and to provide the faculty and the staff with a management program to reduce the potential for accidents involving hazardous chemicals and/or wastes. Elements of the CMP include: a. a procedure for identifying potential or actual hazardous chemicals or wastes b. a procedure for periodic reexamination of those hazardous chemicals or wastes identified by the procedure in (a.) above as well as a systematic method for identification and evaluation of any new potential or actual hazardous chemicals or wastes c. procedures for labeling, and inventorying hazardous chemicals or wastes d. a procedure for identification and training of personnel directly responsible for ensuring that (a.), (b.), and (c.) are implemented e. a procedure for monitoring, recording, and reporting compliance with the CMP f. a procedure by which information generated by the CMP is provided to the persons performing waste analyses Each element is addressed as part of the complete CMP in the following paragraphs. 4 Table of Contents 1 Definitions 7 2 Identification
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • View Table of Contents (PDF)
    PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California 94025 Abstract Process Economics Program Report No. 1D ISOCYANATES (July 1983) In this report, SRI reviews the technology for making commercial and experimental nonaromatic isocyanates. The commercial isocyanates include hexamethylene diisocyanate, hydrogenated MDI, isophorone diisocyanate, dimer diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, and trimethylhexamethylenediisocyanate. The experimental nonaromatic isocyanates that we reviewed include 1,6,11- undecane triisocyanate, lysine-ethylester triisocyanate, trans- cyclohexane diisocyanate, and tetramethylxylylenediisocyanate. We evaluated eight phosgenation processes and one nonphosgenation process. We also evaluated two processes which manufacture respec- tively an adduct of hexamethylene diisocyanate and a blocked isophorone diisocyanate. PEP'82 YRC/CN Report No. 1D ISOCYANATES SUPPLEMENT D by YU-REN CHIN wlth contributions by CHIEN NIEH c0 I July 1983 aa A private report by the m PROCESS ECONOMICS PROGRAM Menlo Park, California 94025 For detailed marketing data and information, the reader is referred to one of the SRI programs specializing in marketing research. The CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS Program covers major hjdrocarbons and their derivatives on a worldwide basis. In addition, the SRI DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers
    [Show full text]
  • (Rqs) for EPCRA Section 302(A)(2) Extremely Hazardous Substances
    § 355.50 40 CFR Ch. I (7–1–01 Edition) of this paragraph, a transportation-re­ with the requirements of § 355.40 shall lated release means a release during be subject to civil penalties of up to transportation, or storage incident to $25,000 for each day during which the transportation if the stored substance violation continues, in accordance with is moving under active shipping papers section 325(b)(2) of the Act. In the case and has not reached the ultimate con­ of a second or subsequent violation, signee. any such person may be subject to civil [52 FR 13395, Apr. 22, 1987, as amended at 54 penalties of up to $75,000 for each day FR 22543, May 24, 1989; 55 FR 30188, July 24, the violation continues, in accordance 1990; 63 FR 13475, Mar. 19, 1998; 64 FR 13115, with section 325(b)(2) of the Act. Mar. 17, 1999] (c) Criminal penalties. Any person who knowingly and willfully fails to pro- § 355.50 Penalties. vide notice in accordance with § 355.40 (a) Civil penalties. Any person who shall, upon conviction, be fined not fails to comply with the requirements more than $25,000 or imprisoned for not of § 355.40 shall be subject to civil pen­ more than two (2) years, or both (or, in alties of up to $25,000 for each violation the case of a second or subsequent con­ in accordance with section 325(b)(1) of viction, shall be fined not more than the Act. $50,000 or imprisoned for not more than (b) Civil penalties for continuing viola­ five (5) years, or both) in accordance tions.
    [Show full text]
  • Chemistry 304B Spring 1999 Lecture 24 1 Exam: Monday Evening, 7:30
    Chemistry 304B Spring 1999 Lecture 24 1 Exam: Monday evening, 7:30-10 pm, McCosh 50 Open book, etc. Review sessions: Today: 5-6 pm Rm 124 Frick Sunday: 8-9:30 pm Rm 324 Frick Monday lecture 9 am, Rm 120 Frick NOTE: Extra copies of the handouts, problem sets, and lecture notes are in the Resource Center, Rm 323 Frick. Let me know if they run out. Polymerization of Bifunctional Acyl Derivatives: Homopolymer: O O O O O Y X Y Y Y Y Alternating Copolymer: O Y X + X Y dielectrophile O dinucleophile O O Y Y Y Y Y O O Example: A Polyester Copolymer Dacron, Mylar O O O OMe + HO OH O + H2O O O MeO O ethylene n Dimethyl terephthalate glycol O OMe + H2N NH2 MeO O O O H H N N N n NH2 MeO H O O Example: Polyamide 2 a. homopolymer of a -amino acids O O H R O H R O N N NH2 NH HO HO N N 2 R R O H R O H R O R H O R H O Strong H-bonding between H N N N chains determines the structure 2 N N OH (fibers, helical, etc) e.g. R H O R H O R O H R O H R O N N HO N N NH2 R O H R O H R The polymer of a -amino acids is called a polypeptide; this amide bond is a peptide bond. Large natural polypeptides are proteins Alternating copolymer: O NH2 + H2N Cl Cl hexamethylenediamine adipoyl chloride O O H O H2N N OH N N H O H O nylon 66 O H O H2N N OH N N H O H O O H O H2N N OH N N H O H O Note: 3 H O caprolactam 2 N O catalyst H O H O H2N N O N H H O nylon 6 Mechanism? NYLON Synthesis: adipoyl chloride in hexane (non-polar, non-nucleophilic, lighter than water) 1,6-diaminohexane in water O O Cl Cl Cl Cl O O Hexane POLYMER + HCl H2N H2N NH2 NH2 H2O Reaction at the interface of the two immiscible solutions gives a layer of polymer.
    [Show full text]
  • An Industrial Process for the Production of Nylon 6 6 Through the Step-Growth Reaction of Adipic Acid and Hexamethylenediamine
    University of Arkansas, Fayetteville ScholarWorks@UARK Chemical Engineering Undergraduate Honors Chemical Engineering Theses 5-2017 An industrial process for the production of nylon 6 6 through the step-growth reaction of adipic acid and hexamethylenediamine David Wallace Jacobson University of Arkansas Follow this and additional works at: http://scholarworks.uark.edu/cheguht Part of the Polymer Science Commons Recommended Citation Jacobson, David Wallace, "An industrial process for the production of nylon 6 6 through the step-growth reaction of adipic acid and hexamethylenediamine" (2017). Chemical Engineering Undergraduate Honors Theses. 104. http://scholarworks.uark.edu/cheguht/104 This Thesis is brought to you for free and open access by the Chemical Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Chemical Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An industrial process for the production of nylon 6 6 through the step-growth reaction of adipic acid and hexamethylenediamine Authors: David Jacobson, University of Arkansas Department of Chemical Engineering Date of Submittal: 3/3/2017 1 Section 3: Table of Contents Contents Section 1: Letter of Transmittal ................................................................................................................ * Section 2: Title Page ...................................................................................................................................
    [Show full text]
  • HEXAMETHYLENEDIAMINE ADIPATE (1:1) (Cas 3323-53-3) MSDS
    Click http://www.guidechem.com/cas-332/3323-53-3.html for suppliers of this product HEXAMETHYLENEDIAMINE ADIPATE (1:1) (cas 3323-53-3) MSDS : Adipic acid, compd. with 1,6-hexanediamine (11) MSDS CAS : 3323-53-3 SYNONYMS : * Adipan hexamethylendiaminu * Adipic aicd, compd. with 1,6-hexanediamine * Hexamethylenediamine adipate (1:1) * Hexamethylenediamine monoadipate * Hexamethylenediammonium adipate * Hexanedioic acid, compd. with 1,6-hexanediamine (1:1) * Nylon 66 salt Catalog of Chemical Suppliers, Buyers, Custom Synthesis Companies And Equipment Manufacturers [ Adipic acid, compd. with 1,6-hexanediamine (11) 3323-53-3 ] *** CHEMICAL IDENTIFICATION *** RTECS NUMBER : AV1940000 CHEMICAL NAME : Adipic acid, compd. with 1,6-hexanediamine (1:1) CAS REGISTRY NUMBER : 3323-53-3 LAST UPDATED : 199701 DATA ITEMS CITED : 3 MOLECULAR FORMULA : C6-H16-N2.C6-H10-O4 MOLECULAR WEIGHT : 262.40 SYNONYMS/TRADE NAMES : * Adipan hexamethylendiaminu * Adipic aicd, compd. with 1,6-hexanediamine * Hexamethylenediamine adipate (1:1) * Hexamethylenediamine monoadipate * Hexamethylenediammonium adipate * Hexanedioic acid, compd. with 1,6-hexanediamine (1:1) * Nylon 66 salt *** HEALTH HAZARD DATA *** ** ACUTE TOXICITY DATA ** TYPE OF TEST : LD50 - Lethal dose, 50 percent kill ROUTE OF EXPOSURE : Oral SPECIES OBSERVED : Rodent - rat DOSE/DURATION : 5900 mg/kg TOXIC EFFECTS : Details of toxic effects not reported other than lethal dose value REFERENCE : 85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,444,1986 TYPE OF TEST : LD50 - Lethal dose, 50 percent kill ROUTE OF EXPOSURE : Oral SPECIES OBSERVED : Rodent - mouse DOSE/DURATION : 1610 mg/kg TOXIC EFFECTS : Details of toxic effects not reported other than lethal dose value REFERENCE : 85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,444,1986 *** STATUS IN U.S.
    [Show full text]
  • Natural and Synthetic Polymers: the Preparation of Nylon 3
    Natural and Synthetic Polymers: The Preparation of Nylon 3 OBJECTIVES 1. To learn some distinctions between natural and synthetic polymers. 2. To examine the monomers of two common fibers. 3. To become familiar with some of the physical and chemical properties of two common polymers. 4. To prepare the important polymer nylon. PRELABORATORY QUESTIONS 1. Explain why the nylons are called polyamides. 2. Draw the structures of adipic acid and its acid chloride. 3. Write equations for the reactions of benzoic acid and of benzoyl chloride, the acid chloride of benzoic acid, with n-propylamine to give an amide. Name the amide. In today's experiment, why will you synthesize nylon from an acid chloride rather than from a carboxylic acid? 4. Draw the structure of cellulose. Identify the acetal bonds, and circle monomer units. 5. On what basis is cellulose classified as a condensation polymer? 6. Write an equation for the hydrolysis of the following acetal in acidic solution. 7. A segment of a polymer molecule is shown below. Draw the structure of the monomer from which the polymer was synthesized. Is this an addition or a condensation polymer? DISCUSSION Nylon and cellulose are common polymers which make numerous contributions to our everyday lives. Nylon is a synthetic polymer. Cellulose occurs abundantly in nature as the main structural material of most plant tissues. Cotton is nearly pure cellulose. Both nylon and cotton are used in fabrics for clothing. Solid items such as gears, combs, and knobs are molded from nylon. Cellulose is converted into cellulose acetates, rayon, and other important fibers and films.
    [Show full text]
  • New York City Department of Environmental Protection Community Right-To-Know: List of Hazardous Substances
    New York City Department of Environmental Protection Community Right-to-Know: List of Hazardous Substances Updated: 12/2015 Definitions SARA = The federal Superfund Amendments and Reauthorization Act (enacted in 1986). Title III of SARA, known as the Emergency Planning and Community Right-to-Act, sets requirements for hazardous chemicals, improves the public’s access to information on chemical hazards in their community, and establishes reporting responsibilities for facilities that store, use, and/or release hazardous chemicals. RQ = Reportable Quantity. An amount entered in this column indicates the substance may be reportable under §304 of SARA Title III. Amount is in pounds, a "K" represents 1,000 pounds. An asterisk following the Reporting Quantity (i.e. 5000*) will indicate that reporting of releases is not required if the diameter of the pieces of the solid metal released is equal to or exceeds 100 micrometers (0.004 inches). TPQ = Threshold Planning Quantity. An amount entered in this column reads in pounds and indicates the substance is an Extremely Hazardous Substance (EHS), and may require reporting under sections 302, 304 & 312 of SARA Title III. A TPQ with a slash (/) indicates a "split" TPQ. The number to the left of the slash is the substance's TPQ only if the substance is present in the form of a fine powder (particle size less than 100 microns), molten or in solution, or reacts with water (NFPA rating = 2, 3 or 4). The TPQ is 10,000 lb if the substance is present in other forms. A star (*) in the 313 column= The substance is reportable under §313 of SARA Title III.
    [Show full text]
  • Hydrogenation of Adiponitrile to Hexamethylenediamine Over Raney Ni and Co Catalysts
    applied sciences Article Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts Younghyun Lee 1, Sung Woo Lee 2, Hyung Ju Kim 2, Yong Tae Kim 2 , Kun-Yi Andrew Lin 3 and Jechan Lee 1,4,* 1 Department of Environmental Engineering, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea; [email protected] 2 C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea; [email protected] (S.W.L.); [email protected] (H.J.K.); [email protected] (Y.T.K.) 3 Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 402, Taiwan; [email protected] 4 Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea * Correspondence: [email protected] Received: 13 October 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: Hexamethylenediamine (HMDA), a chemical for producing nylon, was produced on Raney Ni and Raney Co catalysts via the hydrogenation of adiponitrile (ADN). HMDA was hydrogenated from ADN via 6-aminohexanenitrile (AHN). For the two catalysts, the effects of five different reaction parameters (reaction temperature, H2 pressure, catalyst loading, and ADN/HMDA ratio in the reactant) on the hydrogenation of ADN were investigated. Similar general trends demonstrating the dependence of ADN hydrogenation on the reaction conditions for both catalysts were observed: higher temperature (60–80 ◦C) and H2 pressure, as well as lower ADN/catalyst and ADN/HMDA ratios, led to higher HMDA yields.
    [Show full text]