Land Use, Risk and Elephant Ecology in Laikipia District, Kenya

Total Page:16

File Type:pdf, Size:1020Kb

Land Use, Risk and Elephant Ecology in Laikipia District, Kenya Coexistence in a land use mosaic? Land use, risk and elephant ecology in Laikipia District, Kenya This dissertation is submitted to the University of Cambridge for the degree of Doctor of Philosophy Max Graham King’s College November 2006 PREFACE This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text and acknowledgements. No part of this dissertation has been submitted for a degree or diploma or other qualification at any other University. The text does not exceed 80,000 words. Abstract This thesis is about the patterns, determinants and consequences of human-elephant interaction in Laikipia District in northern Kenya. Laikipia is located outside of formally protected areas, supports a range of land use types and harbours Kenya’s second largest elephant population comprised of over 3,000 animals. I use interdisciplinary methods and multiple scales of spatial analysis to examine elephant distribution, persistence and interactions with people in this human landscape. At a course scale, results from several data sources show that elephants occur across almost 50% of Laikipia District and, intriguingly, are relatively evenly distributed across locations under cultivation, settlement and livestock production. At a finer scale, however, results from over a 100 km of ground transects, show that the relative abundance of elephants varies in relation to specific forms of human activity, in particular the risk of mortality presented by human occupants to elephants. Elephant use of areas where they are not tolerated by local people, such as smallholder farms, is determined by human population density and distance from daytime refuges. Elephant use of smallholder farms increases with the proportion of land under smallholder production within an elephant range. Male elephants use areas where human occupants are elephant-intolerant, and/or present a threat of mortality, more than female elephants. Elephants use cover of darkness to exploit areas where they are not tolerated by local people. In addition, I show that elephants increase their speed of travel through such areas. I argue that these findings, together with some preliminary evidence for aggregation in response to risk, suggest that elephants demonstrate behavioural plasticity in response to risk and are resilient to human induced landscape change, to some degree. Contact with elephants among local people in Laikipia varies with patterns of resource use by different households. Negative attitudes towards elephants were, however, not shaped by the likelihood of contact with elephants but rather by negative experiences involving elephants, such as crop-raiding, and/or knowledge of incidents in which elephants had either injured or killed local people. A district-wide electrified fence is currently being constructed in Laikipia to mitigate human-elephant conflict, in particular the damage to crops and human fatalities caused by elephants. While electrified fences can impede elephant movement if well maintained and ‘enforced’, they are also beset with maintenance problems. In addition, electrified fences may reinforce perceptions of who owns elephants, which is shown to be a determinant of negative attitudes towards elephants in this study. Electrified fences may also contribute to the emergence of a perceived ‘elephant problem’ in Laikipia, with declines in woodland and some wildlife species. Therefore, other options for the mitigation of human-elephant conflict should be explored, alongside electrified fences. In this thesis, I discuss these other options, including affordable community-based elephant deterrents, land-use planning and the promotion of conservation-based benefit streams to local people that live with elephants. A combination of these methods could assist with the future conservation and management of elephants in Laikipia and beyond. Acknowledgements Thanks to Bill Adams and Phyllis Lee for making this journey possible and for sticking with me when I veered off the main road and into the woods! Their continued input, constructive debate and encouragement gave me focus when I most needed it. Thank you. I thank the Office of the President of the Republic of Kenya and the Kenya Wildlife Service for granting me permission to carry out this study. I am grateful to the landowners of Laikipia and the Laikipia Wildlife Forum for accommodating my research. Boniface Kiteme, the Director of the Centre for Training and Research in ASAL Development, in Nanyuki provided me with an office, administrative support and a political shield throughout my fieldwork. Thanks also to the rest of the CETRAD team for putting up with my incessant questions and impromptu muddy visits, especially Simon Mumuli, Boniface Mworia and Jacinta Muchugu. Human-elephant conflict data were collected by a team of hardworking ‘elephant scouts’, David Wanjau, Stephen Macharia, Onesmus Wambugu, Richard Ndirangu, Joseph Wahome, Thomas Kuntai, Samuel Tema, Peter Kiyaa, Issac Matunge, Charles Kinywa, Musa Chepkerio and Simon Waweru. Elephant scouts collected valuable data among angry people and angry elephants, no easy task. Amon Lekea, Paul Kariuki and Tobias Ochieng assisted with supervision of elephant scouts in the field. Lucy Chepkochei and Carol Muriuki assisted with entering piles of scout data into an access database. Supervision of scouts would not have been possible without the generous provision of a motorbike by the Laikipia Wildlife Forum. Benedikt Notter, a Swiss volunteer with CETRAD, provided invaluable advice with the GIS based analysis presented in chapter six and the use of ArcGIS software, more generally. For the questionnaire survey and informal interviews, Amon Lekea, Samuel Tema, Francis Ngilisho, Steven Macharia and Carol Muriuki assisted in data collection. Paul Kariuki, Carol Muriuki and Lucy Chepkochei assisted with entering questionnaires into SPSS and transcribing interviews. For the transect surveys, I would like to acknowledge the help of Justine Cordingley, Julia Latham, Richard Thimbleby and Tobias Ochieng, all of whom volunteered to assist me with counting dung in tough terrain under a hot sun. Laban Odouri, from the Department of Resource Surveys and Remote Sensing, helped with the identification of plant species in the field. I am indebted to Iain Douglas-Hamilton of Save the Elephants for the enormous support he provided with the design and implementation of the GPS tracking component of this thesis and for his ideas and enthusiasm, generally. David Daballen, Daniel Lentipo, Ian Craig, Richard Moller, Michael Dyer, Claus Mortenson, Zahoor Kashmiri, Phil Mathews, Simon Everett and Alan Binks provided me with logistical support during elephant collaring operations. David Gachuche gave much needed technical support with elephant tracking software. Henry and Jessica Henley and Michael and Nicky Dyer provided me with a home from home and emotional sustenance during my fieldwork in Kenya. Anne Powys helped me to forget I had a home from which I had come from altogether! It is her love and patience, given unconditionally and sometimes over the most difficult of times, that has been the single greatest source of support to me while writing this thesis. Thank you AP. This study was financed primarily through an ESRC-NERC interdisciplinary studentship. Ancillary support for fieldwork was provided by the Smuts Memorial Fund and King’s College. The elephant scout programme was financed with generous support from CETRAD through a Swiss Government ESAPP grant. In 2004 Save the Elephants provided me with a living allowance and financed the GPS tracking component of my fieldwork through grants from the US Fish and Wildlife Service and the Safaricom Foundation. The British Institute of East Africa provided logistical support for the transect survey and a grant for procuring aerial survey data. Last but not least I would like to thank my family for enduring my physical and mental absence with patience, support and love. Table of Contents Chapter 1. Introduction………………………………………………………………… 1 1.1. Introduction………………………………………………………………………….. 2 1.2. Research questions…………………………………………………………………... 5 1.2.1. Question 1…………………………………………………………….. 5 1.2.2. Question 2……………………………………………………………... 5 1.2.3. Question 3……………………………………………………………... 6 1.3 Introduction to Laikipia……………………………………………………………… 7 1.3.1. Geography…………………………………………………………….. 7 1.3.2. History………………………………………………………………...11 1.4 Thesis structure…………………………………………………………………...… 18 1.4.1. The challenge of complexity………………………………………… 18 1.4.2. Ecological patterns and land use…………………………………….. 21 1.4.3. Human livelihoods, land management and perceptions of elephants.. 24 Chapter 2. Human-elephant conflict and the persistence of large mammals……... 27 2.1. Introduction………………………………………………………………………… 28 2.2. Elephants and ivory………………………………………………………………… 29 2.3. Land use change, people and elephant populations………………………………... 32 2.3.1. The ‘elephant problem’……………………………………………… 33 2.3.2. People and elephants in competition………………………………… 35 2.4. Eggs and baskets: habitat fragmentation and wildlife persistence…………………. 36 2.4.1. Metapopulations……………………………………………………... 38 2.4.2. Wildlife corridors……………………………………………………. 40 2.4.3. Nature fights back: Resilience among large mammals……………… 42 2.4.4. Big movers: Elephant movement across time and space……………. 44 2.5. Human-wildlife conflict……………………………………………………………. 46 2.5.1. Measuring vulnerability……………………………………………... 47
Recommended publications
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • Antimicrobial and Antioxidant Efficacy of Acokanthera Oblongifolia Hochst
    OPEN ACCESS International Journal of Pharmacology ISSN 1811-7775 DOI: 10.3923/ijp.2017.1086.1091 Research Article Antimicrobial and Antioxidant Efficacy of Acokanthera oblongifolia Hochst. (Apocynaceae) 1Wilfred Otang-Mbeng and 2Anthony Jide Afolayan 1School of Biology and Environmental Sciences, Faculty of Natural Sciences and Agriculture, University of Mpumalanga, Mbombela Campus, P/bag X11283, 1200 Nelspruit, Mpumalanga, South Africa 2Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Private Bag X1314, 5700 Alice, South Africa Abstract Background and Objective: Acokanthera oblongifolia is an evergreen medicinal shrub used for snakebites, itches, wounds and internal worms and the relief of itchy conditions and other skin disorders by the Mpondo and Xhosa tribes in South Africa. The objective of this study was to investigate the efficacy of the plant extracts against selected pathogens that cause human skin disorders and evaluation of the antioxidant capability for validation of folk uses of the plant. Materials and Methods: The agar diffusion and micro-dilution methods were used to determine the antimicrobial activities of the extracts against selected bacteria and fungi. The data were subjected to one way analysis of variance (ANOVA) and Duncan’s Multiple Range Test (DMRT) was used to determine significant differences (p<0.05) among treatment means. Results: The highest antibacterial activity (inhibition zone diameter >19 mm) was obtained with the acetone extract against Pseudomonas aeruginosa, Shigella sonnei, Shigella flexneri, Bacillus cereus, Streptococcus pyogens and Bacillus subtilis; by the ethanol extract against B. cereus. None of the extracts was active against the tested fungi, apart from the acetone extract which showed strong inhibitory activity against Candida glabrata.
    [Show full text]
  • A Revised Classification of the Apocynaceae S.L
    THE BOTANICAL REVIEW VOL. 66 JANUARY-MARCH2000 NO. 1 A Revised Classification of the Apocynaceae s.l. MARY E. ENDRESS Institute of Systematic Botany University of Zurich 8008 Zurich, Switzerland AND PETER V. BRUYNS Bolus Herbarium University of Cape Town Rondebosch 7700, South Africa I. AbstractYZusammen fassung .............................................. 2 II. Introduction .......................................................... 2 III. Discussion ............................................................ 3 A. Infrafamilial Classification of the Apocynaceae s.str ....................... 3 B. Recognition of the Family Periplocaceae ................................ 8 C. Infrafamilial Classification of the Asclepiadaceae s.str ..................... 15 1. Recognition of the Secamonoideae .................................. 15 2. Relationships within the Asclepiadoideae ............................. 17 D. Coronas within the Apocynaceae s.l.: Homologies and Interpretations ........ 22 IV. Conclusion: The Apocynaceae s.1 .......................................... 27 V. Taxonomic Treatment .................................................. 31 A. Key to the Subfamilies of the Apocynaceae s.1 ............................ 31 1. Rauvolfioideae Kostel ............................................. 32 a. Alstonieae G. Don ............................................. 33 b. Vinceae Duby ................................................. 34 c. Willughbeeae A. DC ............................................ 34 d. Tabernaemontaneae G. Don ....................................
    [Show full text]
  • Essential Oil and Its Antimicrobial Activity from Ethiopian Acokanthera
    https://doi.org/10.33805/2576.8484.159 Volume 3 Issue 1 | PDF 159 | Pages 3 Volume 1 . Issue 1 | PDF 101 | Page 1 of x Edelweiss Applied Science and Technology Research Article ISSN: 2576-8484 Essential Oil and Its Antimicrobial Activity from Ethiopian Acokanthera schimperia Wondwosen A Matebie1,2, Wanchang Zhang1, Shuo Zhang1 and Guangbo Xie1* Affiliation: 1School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China 2Department of Chemical Engineering, Hawassa University Institute of Technology, Hawassa, Ethiopia *Corresponding author: Xie G, University of Electronic Science and Technology of China, Sichuan, China, Tel: +8613882096798, E-mail: [email protected] Citation: Matebie AW, Zhang W, Zhang S and Guangbo Xie. Essential oil and its antimicrobial activity from ethiopian Acokanthera schimperia (2019) Edelweiss Appli Sci Tech 3: 1-3 Received: Nov 01, 2018 Accepted: Dec 15, 2018 Published: Jan 01, 2019 Copyright: © 2018 Matebie AW et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: Acokanthera schimperia is a medicinal plant, which has been used by traditional healers as a curing agent in Ethiopia. Objective: The constituents of the essential oil, which was extracted from the leaves of A. schimperia, were investigated, and its antibacterial and antifungal activities were studied. Materials and Methods: The essential oil was extracted by an ordinary steam distillation process, and its chemical constituents were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS).
    [Show full text]
  • Antioxidant Activities and Phenolic Contents of the Methanol Extracts Of
    BMC Complementary and Alternative Medicine BioMed Central Research article Open Access Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera Adeolu A Adedapo*†1, Florence O Jimoh†2, Anthony J Afolayan†2 and Patrick J Masika†3 Address: 1Department of Veterinary Physiology, Biochemistry and Pharmacology, University of Ibadan, Ibadan, Nigeria, 2Department of Botany, University of Fort Hare, Alice 5700, South Africa and 3ARDRI, University of Fort Hare, Alice 5700, South Africa Email: Adeolu A Adedapo* - [email protected]; Florence O Jimoh - [email protected]; Anthony J Afolayan - [email protected]; Patrick J Masika - [email protected] * Corresponding author †Equal contributors Published: 25 September 2008 Received: 30 May 2008 Accepted: 25 September 2008 BMC Complementary and Alternative Medicine 2008, 8:54 doi:10.1186/1472-6882-8-54 This article is available from: http://www.biomedcentral.com/1472-6882/8/54 © 2008 Adedapo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Acokanthera oppositifolia Lam (family: Apocynaceae) is a shrub or small tree with white latex, and the leaves of this plant are used in the form of a snuff to treat headaches and in infusions for abdominal pains and convulsions and septicaemia. Adenia gummifera Harv of the family Passifloraceae is a distinctive woody climber whose infusions are used as emetics and are said to help with some forms of depression.
    [Show full text]
  • Carissa Bispinosa (L.) Desf
    WAGENINGEN UNIVERSITY PAPERS 2001-1 Series of revisions of Apocynaceae Carissa L. by AJ.M. Leeuwenberg & F.J.H. van Dilst Series of revisions of Apocynaceae L Key to Apocynaceae in continental Africa by AJ.M. Leeuwenberg Biosvstematies Group. National Herbarium of the Netherlands, Wageningen branch, Wageningen University Gen. Foulkesweg 37, 6703 BL Wageningen, the Netherlands Date of publication: 28-09-2001 BACKHUYS PUBLISHERS 2001 EDITORIAL MESSAGE WAgeningen University Papers is the new title of Wageningen Agricultural University Papers, which series was published from 1988 upto 1999 (the last issue was 1999-4: Monopetalanthus exit, by J.J. Wieringa). In the year 2000 no issues were produced. Predeces­ sors of the journal were the Agricultural University Wageningen Papers (1984-1988) and the Mededelingen van de Landbouwhoge- school (te) Wageningen (1918-1983). The publication, a series of irregularly published monographs (some­ times reviews or theses) mainly in the English language (with occasional French language issues), is a medium for larger-sized papers of Wageningen University staff members and their collabo­ rators, working in the fields of plant- and animal sciences. Until 1996 the series was funded centrally by the University, but because of financial considerations this policy has been abandoned. Since then, funding has been rather haphazard. The series has always been used as an official exchange medium for the Central Library of the University, which policy has also been abandoned. The exchange list has been reduced, and in the future the WAUP will be offered for exchange with library partners only on the basis of counter- performance. The Editorial Board is looking for ways to continue the publication of WAUP.
    [Show full text]
  • Assessment of the Protective Properties of Acokanthera Oblongifolia Plant Extract on Mild Steel in Saline Solution
    International Journal of Pharmacy Practice and Pharmaceutical Sciences , Vol. (2), Issue (1), 2020 ASSESSMENT OF THE PROTECTIVE PROPERTIES OF ACOKANTHERA OBLONGIFOLIA PLANT EXTRACT ON MILD STEEL IN SALINE SOLUTION Einas Bin Sultan1, khawla Areef1,Manar Abazeid1, Muftah Shushni1 ,Elarbi Khalil2, Fathi M Sherif3 Email:[email protected] 1Department ofPharmacognosy,Faculty of Pharmacy, University of Tripoli, Tripoli, Libya. 2Department of Materials and Metallurgical Engineering,Faculty of Engineering, University of Tripoli, Tripoli, Libya. 3Department of Pharmacology, faculty of Pharmacy, University of Tripoli, Tripoli, Libya ABSTRACT: Several plant extracts have recently been reported as inhibitors for metallic materials in corrosive media. Thus, the corrosion inhibition of mild steel in a 3.5% NaCl solution in the presence of different concentrations of Acokanthera oblongifolia extract at a temperature range of 30 to 60 ⁰Cand for various immersion time was studied using weight loss method. The results showed that Acokanthera oblongifolia plant extract exhibit good corrosion inhibition efficiency. The inhibition efficiency of Acokanthera oblongifoliaextract increases with an increase in inhibitors concentration and through immersion periods but decreases with an increase in the temperature. The inhibitory effect could be due to the presence of some phytochemical compounds in the plantwhich is adsorbed on the surface of the mild steel. KEYWORDS: Mild steel, Acokanthera oblongifolia extract, weight loss, corrosion inhibition, adsorption. 1. INTRODUCTION Much research in recent years has been interested in studying the effect of natural plant-sourced products on metals corrosion as green inhibitors, and have confirmed that they have good corrosion inhibition efficacy[1 to 29].This interest in this aspect of the research was the result of the desire to obtain inhibitors that are environmentally friendly, non-toxic and available in large quantities also to avoid the highly toxic effect of some synthetic inhibitors on both environment and human beings.
    [Show full text]
  • WRA Species Report
    Family: Apocynaceae Taxon: Acokanthera schimperi (A. DC.) Benth. & Hook. f. ex Schweinf. Synonym: Acokanthera ouabaio Cathel. ex L. Lewin Common Name: arrow-poison-tree Carissa schimperi A. DC. (basionym) common-poisonbush Questionaire : current 20090513 Assessor: Patti Clifford Designation: EVALUATE Status: Assessor Approved Data Entry Person: Patti Clifford WRA Score 6 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 n 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,749,544 B2 Asiedu Et Al
    US0077.49544B2 (12) United States Patent (10) Patent No.: US 7,749,544 B2 Asiedu et al. (45) Date of Patent: Jul. 6, 2010 (54) COMPOSITION FORTREATING AIDS AND (56) References Cited ASSOCATED CONDITIONS OTHER PUBLICATIONS (76) Inventors: William Asiedu, H/N B 183/19 Bintu Area, PMB Ministries, Accra (GH): Calderon et al. (Phytotherapy Research (1997), vol. 11, pp. 606 s s s 608).* Rede hist No. 1ntu Ojewole (International Journal of Crude Drug Research (1984), vol. s s ; : 22, No. 3, pp. 121-143).* Manny Ennin, H/N B 183/19 Bintu Ginsberg and Spigelman (Nature Medicine (2007), vol. 13, No.3, pp. Area, PMB Ministries, Accra (GH): 290–294).* Michael Nsiah Doudu, H/N B 183/19 Engler and Prantl, Die Naturlichen. Pflanzenfamilien, 1897, p. 349. Bintu Area, PMB Ministries, Accra Breteler, F.J. “Novitates Gabonenses 47. Another new Dichapetalum (GH); Charles Antwi Boateng, H/N B (Dichapetalaceae) from Gabon' Adansonia, 2003; 25(2):223-227. 183/19 Bintu Area, PMB Ministries, Fedkam Boyometal. "Aromatic plants of tropical central Africa. Part Accra (GH); Kwasi Appiah-Kubi, H/N XLIII: volatile components from Uvariastrum pierreanum Engl. B 183/19 B int Area. PMB MinistriCS (Engl. & Diels) growing in Cameroon' Flavour and Fragrance Jour Accra (GH); Seth Opoku Ware, H/N B nal, 2003; 18:269-298. 183/19 Bintu Area, PMB Ministries, * cited by examiner Accra (GH); Debrah Boateng, H/N B 183/19 Bintu Area, PMB Ministries, Primary Examiner Susan C Hoffman Accra (GH); Kofi Ampim, 2 Kakramadu (74) Attorney, Agent, or Firm—Frommer Lawrence & Haug Ling, P.O.
    [Show full text]
  • Botanical Garden Collection Plan 2019 OBJECTIVE: Identify What The
    Botanical Garden Collection Plan 2019 OBJECTIVE: Identify what the botanical garden plant collection should contain to satisfy our central mission of conservation, research, and education. Cultivate the collections with the aim to create Oklahoma’s premiere botanical collection. STRATEGY: Develop the botanical collection documents (i.e. a collections management policy, a collections management plan, and a collections management manual etc.). These documents will guide and give structure to the botanical collection. Cultivate and mobilize the horticulture staff to follow the collections management plan. TACTICS: Document, catalog, and place signage on the existing collection specimens. Collect new specimens per the acquisition list for each individual collection to strengthen the collection and to create an educational experience for our guests using the botanical gardens. CONSERVATION . Support the Zoo’s conservation mission through the development of a diverse plant collection plan that focuses on saving rare and endangered plant species and fragile ecosystems. March 2019. Emphasize our most endangered plant family, the Cactaceae, by identifying a plant conservation action regarding it and connecting it to the cactus collection. April 2019. Develop plant conservation signage to support the botanical collections and animal habitats. May 2019. RESEARCH . Research and develop an Oklahoma native plant flora. Collaborate with local university to develop a research program that benefits the OKC Zoo’s botanical collections program. Find graduate students that will benefit from using the botanical collection for studies/experiments. COLLECTIONS . Develop the proposed plant collections below: 1 . Oklahoma Native Plant Collection: . What does it mean to be a native plant? What are the benefits of using native plants in your garden? -Drought tolerance, supports native wildlife, reduces garden maintenance.
    [Show full text]
  • Pdf of Article
    ORIGINAL ARTICLE Rec. Nat. Prod. 13:3 (2019) 182-188 Triterpenoids from Acokanthera schimperi in Ethiopia Wondwonsen A. Matebie 1,2, Wanchang Zhang 1, Shuo Zhang 1 and Guangbo Xie 1* 1School of Life Science and Technology; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China 2Department of Chemical Engineering, Hawassa University Institute of Technology, Hawassa P.O.Box 05, Ethiopia (Received July 11, 2018; Revised August 21, 2018; Accepted September 18, 2018) Abstract: The studies on the leaves of Acokanthera schimperi, a traditional herb of Ethiopia, afforded eight triterpenoids, including a new triterpenoid ester, lupan-20-ol-3()-yl 3-hydroxyoctadecanoate (1), along with seven known triterpenoids, lupeol (2), 28-nor-urs-12-ene-3,17-diol (3), ursolic aldehyde (4), 3-hydroxy- oleana-11,13(18)-dien-28-oic acid (5), alagidiol (6), oleanolic acid (7) and ursolic acid lactone (8). Their structures were determined by spectroscopic methods including 2D NMR techniques and X-ray diffraction analysis. Keywords: Acokanthera schimperi; triterpenoids; Ethiopian medicinal plants; spectroscopic analyses; X-ray diffraction. © 2018 ACG Publications. All rights reserved. 1. Introduction Acokanthera schimperi (A. DC.) Schweinf, belonging to the family Apocynaceae, was called "Merenz" locally. It is a well-known East African arrow poison plant and found from Eritrea south to Tanzania and west to Uganda, Rwanda and eastern DR Congo. It is also found in southern Yemen. [1,2]. In Ethiopia, the leaves and bark of A. schimperi were applied to the skin to treat skin disorders, and an infusion of its leaves was gargled to treat tonsillitis [2].
    [Show full text]
  • Apocynaceae and Asclepiadaceae Evaluated with Rbcl Data
    --.Plant Systematics P1. Syst. Evol. 202:153-175 (1996) and Evolution © Springer-Verlag 1996 Printed in Austria The familial and subfamilial relationships of Apocynaceae and Asclepiadaceae evaluated with rbcL data BENGT SENNBLAD and BIRGITTABREMER Received July 18, 1995; in revised version January 15, 1996 Key words: Gentianales, Apocynaceae, Asclepiadaceae. - Phylogeny, rbcL, parsimony, familial classification, subfamilial classification. Abstract" Sequence data for the rbcL gene from twenty-four taxa of the families Apocy- naceae and Asclepiadaceae were cladistically analysed in order to evaluate the existing familial and subfamilial classification. The taxa sampled represent all described subfami- lies and a majority of the described tribes. The cladistic analysis shows that the Asclepi- adaceae are nested within the Apocynaceae. An amalgamation of the two families is therefore recommended. The subfamilial classification is also in need of revision: the sub- families Plumerioideae and Apocynoideae of the current classifications are paraphyletic, as are many of the tribes. Potential subfamily candidates and characters traditionally used in the classification are discussed. The Apocynaceae and Asclepiadaceae are two relatively large families (in total approximately 5000 species) in the order Gentianales (Asteridae). The current cir- cumscription of the Gentianales was made by WAOENITZ(1959, revised 1992), who included the families Gentianaceae, Rubiaceae (excluded by CRONQUIST 1981), Apocynaceae, Asclepiadaceae, and Loganiaceae (sometimes divided into several families, CRONQUIST 1981, DAHLGREN 1983, TAKHTAJAN 1987, STRUWE & al. 1994). Other families are sometimes also included (see CRONQU~ST 1981, DAHLGREN 1983, TAKHTAJAN 1987, THORNE 1992, NICHOLAS & BAIJNATH 1994). Recent molecular stud- ies (DowNIE & PALMER 1992, OLMSTEAD& al. 1993), however, support the circum- scription proposed by WA~ENITZ.
    [Show full text]