What We Know and What We Do Not Know About Dragon Trees?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indoor Plants Or Houseplants
Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins. -
Diet of Draco Spilopterus from Ilocos Norte Province and Laguna Province, Philippines
SEAVR 2018: 074‐075 ISSN: 2424‐8525 Date of publication: 30 September 2018 Hosted online by ecologyasia.com Diet of Draco spilopterus from Ilocos Norte Province and Laguna Province, Philippines Michael A. TABUG, Levy V. NECESITO, David Emmanuel M. GENERAL & Arvin C. DIESMOS [email protected] (Tabug), [email protected] (Necesito), [email protected] (General), [email protected] (Diesmos) Observers: Michael A. Tabug, Levy V. Necesito. Photographs by: Michael A. Tabug, Levy V. Necesito. Subjects identified by: Michael A. Tabug, David Emmanuel M. General, Arvin C. Diesmos. Location: Ilocos Norte Metro Watershed and Forest Reserve, Pasuquin, Ilocos Norte Province, Philippines (18.37167°N, 120.64682°E); and Mount Banahaw in Barangay Bukal, Municipality of Majayjay, Laguna Province, Philippines (14.12292°N, 121.469°E). Habitat: Trunks of mango, lanzone (langsat), and coconut trees. Date and time: 12‐15 June 2017, 09:00‐ 16:30 hrs; 14‐17 September 2017, 08:15‐16:00 hrs. Identity of subject: Philippine Spotted Flying Lizard, Draco spilopterus (Reptilia: Squamata: Agamidae). Description of record: We collected samples of Draco spilopterus (Fig. 1U) on July and September 2017 at Ilocos Norte Metro Watershed and Forest Reserve, Pasuquin, Ilocos Norte Province (18.37167°N, 120.64682°E) under the Philippine Wildlife Gratuitous Permit #265 issued by the Philippine Department of Environment and Natural Resources; and at Mount Banahaw in Barangay Bukal, Municipality of Majayjay, Laguna Province (14.12292°N, 121.469°E) under the research permit of the National Museum of the Philippines with the approval of the Municipal Environment and Natural Resources. Collected specimens were immersed in dissolved chloretone to anaesthetize (McDiarmid et al., 2011) and to halt digestion. -
Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities
molecules Review Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities Zaw Min Thu 1,* , Ko Ko Myo 1, Hnin Thanda Aung 2, Chabaco Armijos 3,* and Giovanni Vidari 4,* 1 Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar; [email protected] 2 Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar; [email protected] 3 Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador 4 Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Iraq * Correspondence: [email protected] (Z.M.T.); [email protected] (C.A.); [email protected] (G.V.) Received: 18 May 2020; Accepted: 2 June 2020; Published: 3 June 2020 Abstract: The genera Dracaena and Sansevieria (Asparagaceae, Nolinoideae) are still poorly resolved phylogenetically. Plants of these genera are commonly distributed in Africa, China, Southeast Asia, and America. Most of them are cultivated for ornamental and medicinal purposes and are used in various traditional medicines due to the wide range of ethnopharmacological properties. Extensive in vivo and in vitro tests have been carried out to prove the ethnopharmacological claims and other bioactivities. These investigations have been accompanied by the isolation and identification of hundreds of phytochemical constituents. The most characteristic metabolites are steroids, flavonoids, stilbenes, and saponins; many of them exhibit potent analgesic, anti-inflammatory, antimicrobial, antioxidant, antiproliferative, and cytotoxic activities. This review highlights the structures and bioactivities of flavonoids and stilbenoids isolated from Dracaena and Sansevieria. Keywords: Dracaena; Sansevieria; biological/pharmacological activities; flavonoids; stilbenoids 1. Introduction The taxonomic boundaries of the dracaenoid genera Dracaena and Sansevieria have long been debated. -
Thomas Tew and Pirate Settlements of the Indo - Atlantic Trade World, 1645 -1730 1 Kevin Mcdonald Department of History University of California, Santa Cruz
‘A Man of Courage and Activity’: Thomas Tew and Pirate Settlements of the Indo - Atlantic Trade World, 1645 -1730 1 Kevin McDonald Department of History University of California, Santa Cruz “The sea is everything it is said to be: it provides unity, transport , the means of exchange and intercourse, if man is prepared to make an effort and pay a price.” – Fernand Braudel In the summer of 1694, Thomas Tew, an infamous Anglo -American pirate, was observed riding comfortably in the open coach of New York’s only six -horse carriage with Benjamin Fletcher, the colonel -governor of the colony. 2 Throughout the far -flung English empire, especially during the seventeenth century, associations between colonial administrators and pirates were de rig ueur, and in this regard , New York was similar to many of her sister colonies. In the developing Atlantic world, pirates were often commissioned as privateers and functioned both as a first line of defense against seaborne attack from imperial foes and as essential economic contributors in the oft -depressed colonies. In the latter half of the seventeenth century, moreover, colonial pirates and privateers became important transcultural brokers in the Indian Ocean region, spanning the globe to form an Indo-Atlantic trade network be tween North America and Madagascar. More than mere “pirates,” as they have traditionally been designated, these were early modern transcultural frontiersmen: in the process of shifting their theater of operations from the Caribbean to the rich trading grounds of the Indian Ocean world, 1 An earlier version of this paper was presented at the “Counter -Currents and Mainstreams in World History” conference at UCLA on December 6-7, 2003, organized by Richard von Glahn for the World History Workshop, a University of California Multi -Campus Research Unit. -
Plants-Derived Biomolecules As Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences Against Coronaviruses
plants Review Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses Arif Jamal Siddiqui 1,* , Corina Danciu 2,*, Syed Amir Ashraf 3 , Afrasim Moin 4 , Ritu Singh 5 , Mousa Alreshidi 1, Mitesh Patel 6 , Sadaf Jahan 7 , Sanjeev Kumar 8, Mulfi I. M. Alkhinjar 9, Riadh Badraoui 1,10,11 , Mejdi Snoussi 1,12 and Mohd Adnan 1 1 Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (M.A.); [email protected] (R.B.); [email protected] (M.S.); [email protected] (M.A.) 2 Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania 3 Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 4 Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 5 Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India; [email protected] 6 Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India; [email protected] 7 Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia; [email protected] 8 Department of Environmental Sciences, Central University of Jharkhand, -
The 20 February 2010 Madeira Flash-Floods
Nat. Hazards Earth Syst. Sci., 12, 715–730, 2012 www.nat-hazards-earth-syst-sci.net/12/715/2012/ Natural Hazards doi:10.5194/nhess-12-715-2012 and Earth © Author(s) 2012. CC Attribution 3.0 License. System Sciences The 20 February 2010 Madeira flash-floods: synoptic analysis and extreme rainfall assessment M. Fragoso1, R. M. Trigo2, J. G. Pinto3, S. Lopes1,4, A. Lopes1, S. Ulbrich3, and C. Magro4 1IGOT, University of Lisbon, Portugal 2IDL, Faculty of Sciences, University of Lisbon, Portugal 3Institute for Geophysics and Meteorology, University of Cologne, Germany 4Laboratorio´ Regional de Engenharia Civil, R.A. Madeira, Portugal Correspondence to: M. Fragoso ([email protected]) Received: 9 May 2011 – Revised: 26 September 2011 – Accepted: 31 January 2012 – Published: 23 March 2012 Abstract. This study aims to characterise the rainfall ex- island of Madeira is quite densely populated, particularly in ceptionality and the meteorological context of the 20 Febru- its southern coast, with circa 267 000 inhabitants in 2011 ary 2010 flash-floods in Madeira (Portugal). Daily and census, with 150 000 (approximately 40 %) living in the Fun- hourly precipitation records from the available rain-gauge chal district, one of the earliest tourism hot spots in Europe, station networks are evaluated in order to reconstitute the currently with approximately 30 000 hotel beds. In 2009, the temporal evolution of the rainstorm, as its geographic inci- archipelago received 1 million guests; this corresponds to an dence, contributing to understand the flash-flood dynamics income of more than 255 Million Euro (INE-Instituto Na- and the type and spatial distribution of the associated im- cional de Estat´ıstica, http://www.ine.pt). -
Journal of Chromatography a Flavylium Chromophores As Species Markers for Dragon's Blood Resins from Dracaena and Daemonorops
Journal of Chromatography A, 1209 (2008) 153–161 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Flavylium chromophores as species markers for dragon’s blood resins from Dracaena and Daemonorops trees Micaela M. Sousa a,b , Maria J. Melo a,b,∗ , A. Jorge Parola b , J. Sérgio Seixas de Melo c , Fernando Catarino d , Fernando Pina b, Frances E.M. Cook e, Monique S.J. Simmonds e, João A. Lopes f a Department of Conservation and Restoration, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Monte da Caparica, Portugal b REQUIMTE, CQFB, Chemistry Department, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Monte da Caparica, Portugal c Department of Chemistry, University of Coimbra, P3004-535 Coimbra, Portugal d Botanical Garden, University of Lisbon, Lisbon, Portugal e Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK f REQUIMTE, Servic¸ o de Química-Física, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal article info abstract Article history: A simple and rapid liquid chromatographic method with diode-array UV–vis spectrophotometric detec- Received 20 May 2008 tion has been developed for the authentication of dragon’s blood resins from Dracaena and Daemonorops Received in revised form 28 August 2008 trees. Using this method it was discovered that the flavylium chromophores, which contribute to the red Accepted 3 September 2008 colour of these resins, differ among the species and could be used as markers to differentiate among Available online 7 September 2008 species. A study of parameters, such as time of extraction, proportion of MeOH and pH, was undertaken to optimise the extraction of the flavyliums. -
Observations of Pallas's Long-Tongued Bat, Glossophaga Soricina
Copyright© nov 2017- fev 2018 do(s) autor(es). Publicado pela ESFA [on line] http://www.naturezaonline.com.br Silva SSP, Guedes PG, Fagundes TMC e Silva AF. Observations of Pallas’s long-tongued bat, Glossophaga soricina (Pallas, 1766) (Chiroptera, Glossopha- ginae), visiting Dracaena reflexa Lam (Aspargaceae) flowers in an urban area of Rio de Janeiro (Brazil) Natureza online 15 (3): 007-013 Submetido em: 13/12/2016 Revisado em: 21/02/2017 Aceito em: 28/06/2017 Observations of Pallas’s long-tongued bat, Glossophaga soricina (Pallas, 1766) (Chiroptera, Glossophaginae), visiting Dracaena reflexa Lam (Aspargaceae) flowers in an urban area of Rio de Janeiro (Brazil) Observações do morcego beija-flor, Glossophaga soricina (Pallas, 1766) (Chiroptera, Glossophaginae), visitando flores de Dracaena reflexa Lam (Aspargaceae) numa área urbana do Rio de Janeiro (Brasil) Shirley Seixas Pereira da Silva1*, Patrícia Gonçalves Guedes1,3, Tatiana Maria Costa Fagundes2 e Ademar Ferreira da Silva2 1 Instituto Resgatando o Verde, Rua Tirol, 536, sala 609, Jacarepaguá, Rio de Janeiro, RJ, 22750-009. 2 Fundação Téc- nico-Educacional Souza Marques, Rio de Janeiro, RJ. 3 Departamento de Vertebrados, Museu Nacional - UFRJ, Rio de Janeiro, RJ. * Autor para correspondência: [email protected] Resumo O Gênero Dracaena reúne 40 espécies de ár- morcegos visitantes das flores, foram estendidas re- vores e arbustos, nativos da África, Madagascar, Ilhas des de neblina próximas aos vegetais em floração. Maurício, sul da Ásia e América Central. Dracaena Isto resultou na captura de oito espécimes de Glosso- reflexa Lam é uma espécie exótica arbórea nativa de phaga soricina (Pallas, 1766). Esses Glossophaginae Madagascar e ilhas próximas, com aproximadamente abordaram as flores por meio de breves voos, quando quatro a seis metros de altura, amplamente utilizada no tocaram os órgãos reprodutivos das flores com a por- paisagismo urbano e decoração de interiores. -
Dragon's Blood Profile • Norman Farnsworth Tribute • History Of
HerbalGram 92 • November 2011 – January 2012 History of Adulterants • Norman Farnsworth Tribute • Dragon's Blood Profile • Medicinal Plant Fabrics • Soy Reduces Blood Pressure Reduces • Soy Fabrics • Medicinal Plant Blood Profile • Dragon's Tribute 2011 – January HerbalGram 92 • November 2012 History • Norman Farnsworth of Adulterants Dragon's Blood Profile • Norman Farnsworth Tribute • History of Adulterants • Cannabis Genome Medical Plant Fabric Dyeing • Soy Reduces Blood Pressure • Cocoa and Heart Disease The Journal of the American Botanical Council Number 92 | November 2011 – January 2012 US/CAN $6.95 www.herbalgram.org www.herbalgram.org www.herbalgram.org 2011 HerbalGram 92 | 1 Herb Pharm’s Botanical Education Garden PRESERVING THE INTEGRITY OF NATURE'S CHEMISTRY The Art & Science of Herbal Extraction At Herb Pharm we continue to revere and follow the centuries-old, time-proven wisdom of traditional herbal medicine, but we also integrate that wisdom with the herbal sciences and technology of the 21st Century. We produce our herbal extracts in our new, FDA-audited, GMP- compliant herb processing facility which is located just two miles from our certified-organic herb farm. This assures prompt delivery of HPTLC chromatograph show- freshly-harvested herbs directly from the fields, or recently dried herbs ing biochemical consistency of 6 directly from the farm’s drying loft. Here we also receive other organic batches of St. John’s Wort extracts and wildcrafted herbs from various parts of the USA and world. In producing our herbal extracts we use precision scientific instru- ments to analyze each herb’s many chemical compounds. However, You’ll find Herb Pharm we do not focus entirely on the herb’s so-called “active compound(s)” at most health food stores and, instead, treat each herb and its chemical compounds as an integrated whole. -
The Vascular System of Monocotyledonous Stems Author(S): Martin H
The Vascular System of Monocotyledonous Stems Author(s): Martin H. Zimmermann and P. B. Tomlinson Source: Botanical Gazette, Vol. 133, No. 2 (Jun., 1972), pp. 141-155 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2473813 . Accessed: 30/08/2011 15:50 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org 1972] McCONNELL& STRUCKMEYER ALAR AND BORON-DEFICIENTTAGETES 141 tomato, turnip and cotton to variations in boron nutri- Further investigationson the relation of photoperiodto tion. II. Anatomical responses. BOT.GAZ. 118:53-71. the boron requirementsof plants. BOT.GAZ. 109:237-249. REED, D. J., T. C. MOORE, and J. D. ANDERSON. 1965. Plant WATANABE,R., W. CHORNEY,J. SKOK,and S. H. WENDER growth retardant B-995: a possible mode of action. 1964. Effect of boron deficiency on polyphenol produc- Science 148: 1469-1471. tion in the sunflower.Phytochemistry 3:391-393. SKOK, J. 1957. Relationships of boron nutrition to radio- ZEEVAART,J. A. D. 1966. Inhibition of stem growth and sensitivity of sunflower plants. -
Massonia Amoena (Asparagaceae, Scilloideae), a Striking New Species from the Eastern Cape, South Africa
Phytotaxa 181 (3): 121–137 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.181.3.1 Massonia amoena (Asparagaceae, Scilloideae), a striking new species from the Eastern Cape, South Africa MARIO MARTÍNEZ-AZORÍN1,2, MICHAEL PINTER1, GERFRIED DEUTSCH1, ANDREAS BRUDERMANN1, ANTHONY P. DOLD3, MANUEL B. CRESPO2, MARTIN PFOSSER4 & WOLFGANG WETSCHNIG1* 1Institute of Plant Sciences, NAWI Graz, Karl-Franzens-University Graz, Holteigasse 6, A-8010 Graz, Austria; e-mail: wolfgang.wet- [email protected] 2CIBIO (Instituto Universitario de la Biodiversidad), Universidad de Alicante, P. O. Box 99, E-03080 Alicante, Spain. 3Selmar Schonland Herbarium, Department of Botany, Rhodes University, Grahamstown 6140 South Africa. 4Biocenter Linz, J.-W.-Klein-Str. 73, A-4040 Linz, Austria. *author for correspondence Abstract As part of an ongoing study towards a taxonomic revision of the genus Massonia Houtt., a new species, Massonia amoena Mart.-Azorín, M.Pinter & Wetschnig, is here described from the Eastern Cape Province of South Africa. This new species is characterized by the leaves bearing heterogeneous circular to elongate pustules and the strongly reflexed perigone seg- ments at anthesis. It is at first sight related to Massonia jasminiflora Burch. ex Baker, M. wittebergensis U.Müll.-Doblies & D.Müll.-Doblies and M. saniensis Wetschnig, Mart.-Azorín & M.Pinter, but differs in vegetative and floral characters, as well as in its allopatric distribution. A complete morphological description of the new species and data on biology, habitat, and distribution are presented. Key words: flora, Hyacinthaceae, Massonieae, Southern Africa, taxonomy Introduction Hyacinthaceae sensu APG (2003) includes ca. -
Ornamental Garden Plants of the Guianas, Part 3
; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.