This Article Appeared in a Journal Published by Elsevier. the Attached

Total Page:16

File Type:pdf, Size:1020Kb

This Article Appeared in a Journal Published by Elsevier. the Attached This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Veterinary Parasitology 163 (2009) 264–280 Contents lists available at ScienceDirect Veterinary Parasitology journal homepage: www.elsevier.com/locate/vetpar Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis Santiago Mas-Coma *, Maria Adela Valero, Maria Dolores Bargues Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andre´s Estelle´s s/n, 46100 Burjassot, Valencia, Spain ARTICLE INFO ABSTRACT Keywords: The capacity of climatic conditions to modulate the extent and intensity of parasitism is well Climate change known since long ago. Concerning helminths, among the numerous environmental Trematodiases modifications giving rise to changes in infections, climate variables appear as those Fascioliasis showing a greater influence, so that climate change may be expected to have an important Schistosomiasis Cercarial dermatitis impact on the diseases they cause. However, the confirmation of the impact of climate change on helminthiases has been reached very recently. Only shortly before, helminthiases were still noted as infectious diseases scarcely affected by climatechange, when compared to diseases caused by microorganisms in general (viruses, bacteriae, protozoans). The aim of the present paper is to review the impact of climate change on helminthiases transmitted by snails, invertebrates which are pronouncedly affected by meteorological factors, by focusing on trematodiases. First, the knowledge on the effects of climate change on trematodiases in general is reviewed, including aspects such as influence of temperature on cercarial output, cercarial production variability in trematode species, influences of magnitude of cercarial production and snail host size, cercarial quality, duration of cercarial production increase and host mortality, influence of latitude, and global-warming-induced impact of trematodes. Secondly, important zoonotic diseases such as fascioliasis, schistosomiasis and cercarial dermatitis are analysed from the point of view of their relationships with meteorological factors. Emphasis is given to data which indicate that climate change influences the characteristics of these trematodiases in concrete areas where these diseases are emerging in recent years. The present review shows that trematodes, similarly as other helminths presenting larval stages living freely in the environment and/or larval stages parasitic in invertebrates easily affected by climate change as arthropods and molluscs as intermediate hosts, may be largely more susceptible to climate change impact than those helminths in whose life cycle such phases are absent or reduced to a minimum. Although helminths also appear to be affected by climate change, their main difference with microparasites lies on the usually longer life cycles of helminths, with longer generation times, slower population growth rates and longer time period needed for the response in the definitive host to become evident. Consequently, after a pronounced climate change in a local area, modifications in helminth populations need more time to be obvious or detectable than modifications in microparasite populations. Similarly, the relation of changes in a helminthiasis with climatic factor changes, as extreme events elapsed relatively long time ago, may be overlooked if not concretely searched for. All indicates that this phenomenon has been the reason for previous analyses to conclude that helminthiases do not constitute priority targets in climate change impact studies. ß 2009 Elsevier B.V. All rights reserved. * Corresponding author. Tel.: +34 96 3544905; fax: +34 96 3544769. E-mail address: [email protected] (S. Mas-Coma). 0304-4017/$ – see front matter ß 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.vetpar.2009.03.024 Author's personal copy S. Mas-Coma et al. / Veterinary Parasitology 163 (2009) 264–280 265 Contents 1. Introduction . 265 2. Expected environmental changes and their effects on disease transmission . 266 2.1. Changes in key climate parameters. 266 2.2. Effects of climate changes on infectious diseases . 266 3. Climate change and helminthiases . 268 4. Effects of climate change on trematodiases . 268 4.1. Influence of temperature on cercarial output . 268 4.2. Cercarial production variability in trematodes . 269 4.3. Influences of magnitude of cercarial production, cercarial size and snail host size . 269 4.4. Cercarial quality . 270 4.5. Duration of cercarial production increase and host mortality . 270 4.6. Influence of latitude . 270 4.7. Global-warming-induced impact of trematodes . 270 5. Fascioliasis . 271 5.1. Environment, transmission and geographical distribution . 271 5.2. Climatics and fascioliasis forecast indices . 271 5.3. Remote sensing and geographic information systems . 272 5.4. Effects of climate change and global warming on fascioliasis . 272 6. Schistosomiasis . 273 6.1. Meteorological factors, snail hosts and transmission . 273 6.2. Modelling and mapping . 274 6.3. Climate change and schistosomiasis control. 274 7. Cercarial dermatitis . 275 7.1. Cold climate lakes and transmision. 275 7.2. Climate change and increase of summer outbreaks . 275 8. Concluding remarks. 276 Acknowledgements . 276 References . 277 1. Introduction (McCarthy et al., 2001). As early as 1990, the Intergovern- mental Panel on Climate Change (IPCC) had warned that Climate change and global warming are now accepted the climate change could affect the prevalence of vector- facts. Changes in air and sea surface temperatures, as well borne parasitic diseases (Houghton et al., 1990). as changes in precipitation, sea level, and ocean salinity The potential importance of parasites and pathogens as and circulation patterns, are predicted for the future. mediators of host population dynamics under changing Natural ecosystems will be impacted in one way or another climatic conditions in general and global warming in by these environmental changes. Climatic factors affect particular has been recently reviewed (Harvell et al., several ecological processes at different levels, from the 2002; Mouritsen and Poulin, 2002a). Any influence of performance of individual organisms, to the dynamics of climate on parasitism is potentially important for natural populations and community interactions, up to the communities and ecosystems. Many recent studies have distribution of species, because of the link between emphasized the causal relationship between climate change changes in ecosystem properties and functions with and parasitic diseases, whether emerging (new infections) large-scale climate fluctuations (Poulin and Mouritsen, or re-emerging (diseases rapidly increasing in either local 2006). The ecological consequences of climate change in prevalence and intensities or expanding their geographical terrestrial and marine ecosystems are expected to be distribution) (Harvell et al., 1999, 2002; Patz et al., 2000; determined by complex cascading effects arising from Marcogliese, 2001; Lafferty et al., 2004). In recent years, the modified trophic interactions and competitive relation- problem of emerging diseases has been a significant concern ships. The synergistic effect of climate change and (Molyneux, 2007). There is also evidence that climate can act parasitism on host population dynamics and community to synchronize cycles of host population abundance by structure has recently been emphasized (Mouritsen et al., directly affecting the survival and transmission of parasite 2005). infective stages (Cattadori et al., 2005). Thus, the many The capacity of climatic conditions to modulate the direct and indirect effects of temperature and other climatic extent and intensity of parasitism is well known since long variables on parasite transmission are bound to have ago. The development and transmission rates of parasitic community-wide impacts. For the interest of both human organisms are particularly sensitive to weather conditions. and domestic animal health, as well as of the preservation of The current climate change (global warming) will affect natural communities and ecosystems, it becomes crucial to the distribution and survival rate of parasite vectors and understand how parasites may respond to the climatic intermediate hosts and also directly influence the repro- changes expected in next decades, according to results duction and maturation rate of parasites carried by them obtained with forecasting climatic models. Author's personal copy 266 S. Mas-Coma et al. / Veterinary Parasitology 163 (2009) 264–280 Unfortunately, climate change overlaps other anthro- will occur. The regional distribution of this warming pogenic and environmental modifications (included in the shows the greatest amount of warming to be expected broad term of ‘global change’) which are able to give rise
Recommended publications
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Hitch-Hiking Parasite: a Dark Horse May Be the Real Rider
    International Journal for Parasitology 31 (2001) 1417–1420 www.parasitology-online.com Research note Hitch-hiking parasite: a dark horse may be the real rider Kim N. Mouritsen* Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark Received 3 April 2001; received in revised form 22 May 2001; accepted 22 May 2001 Abstract Many parasites engaged in complex life cycles manipulate their hosts in a way that facilitates transmission between hosts. Recently, a new category of parasites (hitch-hikers) has been identified that seem to exploit the manipulating effort of other parasites with similar life cycle by preferentially infecting hosts already manipulated. Thomas et al. (Evolution 51 (1997) 1316) showed that the digenean trematodes Micro- phallus papillorobustus (the manipulator) and Maritrema subdolum (the hitch-hiker) were positively associated in field samples of gammarid amphipods (the intermediate host), and that the behaviour of Maritrema subdolum rendered it more likely to infect manipulated amphipods than those uninfected by M. papillorobustus. Here I provide experimental evidence demonstrating that M. subdolum is unlikely to be a hitch- hiker in the mentioned system, whereas the lucky candidate rather is the closely related but little known species, Microphallidae sp. no. 15 (Parassitologia 22 (1980) 1). As opposed to the latter species, Maritrema subdolum does not express the appropriate cercarial behaviour for hitch-hiking. q 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved. Keywords: Microphallid trematodes; Transmission strategy; Cercarial behaviour; Maritrema subdolum; Microphallidae sp. no. 15 Parasites with complex life cycles (e.g.
    [Show full text]
  • Molecular Detection of Human Parasitic Pathogens
    MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS EDITED BY DONGYOU LIU Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120608 International Standard Book Number-13: 978-1-4398-1243-3 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Digenea, Microphallidae) and Relative Merits of Two-Host Microphallid Life Cycles
    Parasitology Research (2018) 117:1051–1068 https://doi.org/10.1007/s00436-018-5782-1 ORIGINAL PAPER Microphallus ochotensis sp. nov. (Digenea, Microphallidae) and relative merits of two-host microphallid life cycles Kirill V. Galaktionov1,2 & Isabel Blasco-Costa3 Received: 21 July 2017 /Accepted: 23 January 2018 /Published online: 3 February 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract A new digenean species, Microphallus ochotensis sp. nov., was described from the intestine of Pacific eiders (Somateria mollissima v-nigrum) from the north of the Sea of Okhotsk. It differs from other microphallids in the structure of the metraterm, which consists of two distinct parts: a sac with spicule-like structures and a short muscular duct opening into the genital atrium. Mi. ochotensis forms a monophyletic clade together with other congeneric species in phylograms derived from the 28S and ITS2 rRNA gene. Its dixenous life cycle was elucidated with the use of the same molecular markers. Encysted metacercariae infective for birds develop inside sporocysts in the first intermediate host, an intertidal mollusc Falsicingula kurilensis. The morphology of metacercariae and adults was described with an emphasis on the structure of terminal genitalia. Considering that Falsicingula occurs at the Pacific coast of North America and that the Pacific eider is capable of trans-continental flights, the distribution of Mi. ochotensis might span the Pacific coast of Alaska and Canada. The range of its final hosts may presumably include other benthos- feeding marine ducks as well as shorebirds. We suggest that a broad occurrence of two-host life cycles in microphallids is associated with parasitism in birds migrating along sea coasts.
    [Show full text]
  • Chapter Bibliography
    VU Research Portal Pacific oysters and parasites Goedknegt, M.A. 2017 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Goedknegt, M. A. (2017). Pacific oysters and parasites: Species invasions and their impact on parasite-host interactions. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 02. Oct. 2021 Bibliography Bibliography A Abrams, P. A. (1995) Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities. The American Naturalist 146:112-134. Aguirre-Macedo, M. L., Kennedy, C. R. (1999) Diversity of metazoan parasites of the introduced oyster species Crassostrea gigas in the Exe estuary. Journal of the Marine Biological Association of the UK 79:57-63. Aguirre-Macedo, M. L., Vidal-Martinez, V.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UNIVERSITY OF CALIFORNIA Santa Barbara Social organization in trematode parasitic flatworms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Ana Elisa Garcia Vedrenne Committee in charge: Professor Armand M. Kuris, Chair Professor Kathleen R. Foltz Professor Ryan F. Hechinger Professor Todd H. Oakley March 2018 The dissertation of Ana Elisa Garcia Vedrenne is approved. _____________________________________ Ryan F. Hechinger _____________________________________ Kathleen R. Foltz _____________________________________ Todd H. Oakley _____________________________________ Armand M. Kuris, Committee Chair March 2018 ii Social organization in trematode parasitic flatworms Copyright © 2018 by Ana Elisa Garcia Vedrenne iii Acknowledgements As I wrap up my PhD and reflect on all the people that have been involved in this process, I am happy to see that the list goes on and on. I hope I’ve expressed my gratitude adequately along the way– I find it easier to express these feeling with a big hug than with awkward words. Nonetheless, the time has come to put these acknowledgements in writing. Gracias, gracias, gracias! I would first like to thank everyone on my committee. I’ve been lucky to have a committee that gave me freedom to roam free while always being there to help when I got stuck. Armand Kuris, thank you for being the advisor that says yes to adventures, for always having your door open, and for encouraging me to speak my mind. Thanks for letting Gaby and me join your lab years ago and inviting us back as PhD students. Kathy Foltz, it is impossible to think of a better role model: caring, patient, generous and incredibly smart.
    [Show full text]
  • Climate Change, Parasitism and the Structure of Intertidal Ecosystems
    Journal of Helminthology (2006) 80, 183–191 DOI: 10.1079/JOH2006341 Climate change, parasitism and the structure of intertidal ecosystems R. Poulin1* and K.N. Mouritsen2 1Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand: 2Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark Abstract Evidence is accumulating rapidly showing that temperature and other climatic variables are driving many ecological processes. At the same time, recent research has highlighted the role of parasitism in the dynamics of animal populations and the structure of animal communities. Here, the likely interactions between climate change and parasitism are discussed in the context of intertidal ecosystems. Firstly, using the soft-sediment intertidal communities of Otago Harbour, New Zealand, as a case study, parasites are shown to be ubiquitous components of intertidal communities, found in practically all major animal species in the system. With the help of specific examples from Otago Harbour, it is demonstrated that parasites can regulate host population density, influence the diversity of the entire benthic community, and affect the structure of the intertidal food web. Secondly, we document the extreme sensitivity of cercarial production in parasitic trematodes to increases in temperature, and discuss how global warming could lead to enhanced trematode infections. Thirdly, the results of a simulation model are used to argue that parasite- mediated local extinctions of intertidal animals are a likely outcome of global warming. Specifically, the model predicts that following a temperature increase of less than 48C, populations of the amphipod Corophium volutator, a hugely abundant tube-building amphipod on the mudflats of the Danish Wadden Sea, are likely to crash repeatedly due to mortality induced by microphallid trematodes.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Social organization in trematode parasitic flatworms Permalink https://escholarship.org/uc/item/2xg9s6xt Author Garcia Vedrenne, Ana Elisa Publication Date 2018 Supplemental Material https://escholarship.org/uc/item/2xg9s6xt#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara Social organization in trematode parasitic flatworms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Ana Elisa Garcia Vedrenne Committee in charge: Professor Armand M. Kuris, Chair Professor Kathleen R. Foltz Professor Ryan F. Hechinger Professor Todd H. Oakley March 2018 The dissertation of Ana Elisa Garcia Vedrenne is approved. _____________________________________ Ryan F. Hechinger _____________________________________ Kathleen R. Foltz _____________________________________ Todd H. Oakley _____________________________________ Armand M. Kuris, Committee Chair March 2018 ii Social organization in trematode parasitic flatworms Copyright © 2018 by Ana Elisa Garcia Vedrenne iii Acknowledgements As I wrap up my PhD and reflect on all the people that have been involved in this process, I am happy to see that the list goes on and on. I hope I’ve expressed my gratitude adequately along the way– I find it easier to express these feeling with a big hug than with awkward words. Nonetheless, the time has come to put these acknowledgements in writing. Gracias, gracias, gracias! I would first like to thank everyone on my committee. I’ve been lucky to have a committee that gave me freedom to roam free while always being there to help when I got stuck.
    [Show full text]
  • Spined Echinostoma Spp.: a Historical Review
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 58, No. 4: 343-371, August 2020 ▣ INVITED REVIEW https://doi.org/10.3347/kjp.2020.58.4.343 Taxonomy of Echinostoma revolutum and 37-Collar- Spined Echinostoma spp.: A Historical Review 1,2, 1 1 1 3 Jong-Yil Chai * Jaeeun Cho , Taehee Chang , Bong-Kwang Jung , Woon-Mok Sohn 1Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea; 2Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea; 3Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea Abstract: Echinostoma flukes armed with 37 collar spines on their head collar are called as 37-collar-spined Echinostoma spp. (group) or ‘Echinostoma revolutum group’. At least 56 nominal species have been described in this group. However, many of them were morphologically close to and difficult to distinguish from the other, thus synonymized with the others. However, some of the synonymies were disagreed by other researchers, and taxonomic debates have been continued. Fortunately, recent development of molecular techniques, in particular, sequencing of the mitochondrial (nad1 and cox1) and nuclear genes (ITS region; ITS1-5.8S-ITS2), has enabled us to obtain highly useful data on phylogenetic relationships of these 37-collar-spined Echinostoma spp. Thus, 16 different species are currently acknowledged to be valid worldwide, which include E. revolutum, E. bolschewense, E. caproni, E. cinetorchis, E. deserticum, E. lindoense, E. luisreyi, E. me- kongi, E. miyagawai, E. nasincovae, E. novaezealandense, E.
    [Show full text]
  • Trematodes in a Cyathura Carinata Population from a Temperate Intertidal Estuary: Infection Patterns and Impact on Host
    J. Mar. Biol. Ass. U.K. (2004), 84,4647/1^8 Printed in the United Kingdom Trematodes in a Cyathura carinata population from a temperate intertidal estuary: infection patterns and impact on host P O O K. Thomas Jensen* ,SusanaM.Ferreira andMiguelA.Pardal *Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, O DK-8200 Aarhus N, Denmark. IMARöInstitute of Marine Research, Department of Zoology, University of Coimbra, P 3004-517 Coimbra, Portugal. Corresponding author, e-mail: [email protected]. A study was initiated to identify trematode patterns in Cyathura from two key sites in the Mondego Estuary: a Zostera-bed and a sand£at. The two subpopulations of Cyathura di¡er, as the annual recruitment success is much higher and more regular on the sand£at than on the Zostera-bed. Counting and sizing of trematode cysts inside the body of preserved Cyathura specimens enabled a description of trematode patterns in space and time. Further identi¢cation of trematodes was based on DNA studies of unpreserved cysts as well as on identi¢cation of parasites in co-occurring mud snails. Two trematode species dominated in Cyathura: Maritrema subdolum (cysts around 190 mm) and a hitherto unknown Levinseniella species (cysts around 340 mm), the latter being the most frequent one. Generally, the prevalence of both species peaked during winter months, when migratory water birds occur in the estuary. Cyathura from the Zostera bed harboured more infections per specimen than those from the sand £at. A much higher density of mud snails 52 mm (which can be host to microphallids) and a low abundance of Cyathura are thought to be the main reasons for this pattern.
    [Show full text]
  • Selfing and Outcrossing in a Parasitic Hermaphrodite Helminth (Trematoda, Echinostomatidae)
    Heredity 77 (1996 1—8 Received 7 April 1995 Selfing and outcrossing in a parasitic hermaphrodite helminth (Trematoda, Echinostomatidae) SANDRINE TROUVE, FRANOIS RENAUDtI PATRICK DURAND & JOSEPH JOURDANE* Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, Laboratoire de Biologie Animale, CNRS URA 698, Université de Perpignan, Avenue de Villeneuve, 66860 Perpignan Cedex and fLaboratoire de Parasitologie Comparée, CNRS URA 698, USTL Montpe/lier II, Place E. Batailon, 34095 Montpe/lier Cedex 05, France Echinostomesare simultaneous hermaphrodite trematodes, parasitizing the intestine of verte- brates. They are able to self- and cross-inseminate. Using electrophoretic markers specific for three geographical isolates (strains) of Echinostoma caproni, we studied the outcrossing rate from a 'progeny-array analysis' by comparing the mother genotype with those of its progeny. In a simultaneous infection of a single mouse with two individuals of two different strains, each individual exhibits an unrestricted mating pattern involving both self- and cross-fertilization. The association in mice of two adults of the same strain and one adult of another strain shows a marked mate preference between individuals of the same isolate. From mice coinfected with one parent of the three isolates, each parent was shown to be capable of giving and receiving sperm to and from at least two different partners. Mating system polymorphism in our parasitic model is thus discussed in the context of the theories usually advanced. Keywords:assortativemating,
    [Show full text]
  • Effects of Salinity on Multiplication and Transmission of an Intertidal Trematode Parasite
    Mar Biol (2011) 158:995–1003 DOI 10.1007/s00227-011-1625-7 ORIGINAL PAPER Effects of salinity on multiplication and transmission of an intertidal trematode parasite Fengyang Lei • Robert Poulin Received: 9 November 2010 / Accepted: 6 January 2011 / Published online: 20 January 2011 Ó Springer-Verlag 2011 Abstract Salinity levels vary spatially in coastal areas, Introduction depending on proximity to freshwater sources, and may also be slowly decreasing as a result of anthropogenic Intertidal areas are subject to rapid and sharp environ- climatic changes. The impact of salinity on host–parasite mental changes due to the daily exposure to air and water interactions is potentially a key regulator of transmission caused by tides. Salinity levels, though roughly constant in processes in intertidal areas, where trematodes are extre- the open ocean, are highly variable in intertidal habitats, in mely common parasites of invertebrates and vertebrates. both space and time. They can range from 2 to 3 psu due to We investigated experimentally the effects of long-term freshwater input from precipitation, rivers and surface exposure to decreased salinity levels on output of infective runoff, up to 60 psu following evaporation from shallow stages (cercariae) and their transmission success in the pools at low tide (Adam 1993; Berger and Kharazova trematode Philophthalmus sp. This parasite uses the snail 1997). On longer time scales, predicted climate change Zeacumantus subcarinatus as intermediate host, in which it may lead to altered precipitation regimes and rising sea asexually produces cercariae. After leaving the snail, levels following the thawing of freshwater ice stores at the cercariae encyst externally on hard substrates to await poles, both of which are likely to affect the salinity levels accidental ingestion by shorebirds, which serve as defini- experienced by intertidal organisms (IPCC 2007).
    [Show full text]