Trematodes in a Cyathura Carinata Population from a Temperate Intertidal Estuary: Infection Patterns and Impact on Host
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Twenty Thousand Parasites Under The
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles. -
Hitch-Hiking Parasite: a Dark Horse May Be the Real Rider
International Journal for Parasitology 31 (2001) 1417–1420 www.parasitology-online.com Research note Hitch-hiking parasite: a dark horse may be the real rider Kim N. Mouritsen* Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark Received 3 April 2001; received in revised form 22 May 2001; accepted 22 May 2001 Abstract Many parasites engaged in complex life cycles manipulate their hosts in a way that facilitates transmission between hosts. Recently, a new category of parasites (hitch-hikers) has been identified that seem to exploit the manipulating effort of other parasites with similar life cycle by preferentially infecting hosts already manipulated. Thomas et al. (Evolution 51 (1997) 1316) showed that the digenean trematodes Micro- phallus papillorobustus (the manipulator) and Maritrema subdolum (the hitch-hiker) were positively associated in field samples of gammarid amphipods (the intermediate host), and that the behaviour of Maritrema subdolum rendered it more likely to infect manipulated amphipods than those uninfected by M. papillorobustus. Here I provide experimental evidence demonstrating that M. subdolum is unlikely to be a hitch- hiker in the mentioned system, whereas the lucky candidate rather is the closely related but little known species, Microphallidae sp. no. 15 (Parassitologia 22 (1980) 1). As opposed to the latter species, Maritrema subdolum does not express the appropriate cercarial behaviour for hitch-hiking. q 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved. Keywords: Microphallid trematodes; Transmission strategy; Cercarial behaviour; Maritrema subdolum; Microphallidae sp. no. 15 Parasites with complex life cycles (e.g. -
Digenea, Microphallidae) and Relative Merits of Two-Host Microphallid Life Cycles
Parasitology Research (2018) 117:1051–1068 https://doi.org/10.1007/s00436-018-5782-1 ORIGINAL PAPER Microphallus ochotensis sp. nov. (Digenea, Microphallidae) and relative merits of two-host microphallid life cycles Kirill V. Galaktionov1,2 & Isabel Blasco-Costa3 Received: 21 July 2017 /Accepted: 23 January 2018 /Published online: 3 February 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract A new digenean species, Microphallus ochotensis sp. nov., was described from the intestine of Pacific eiders (Somateria mollissima v-nigrum) from the north of the Sea of Okhotsk. It differs from other microphallids in the structure of the metraterm, which consists of two distinct parts: a sac with spicule-like structures and a short muscular duct opening into the genital atrium. Mi. ochotensis forms a monophyletic clade together with other congeneric species in phylograms derived from the 28S and ITS2 rRNA gene. Its dixenous life cycle was elucidated with the use of the same molecular markers. Encysted metacercariae infective for birds develop inside sporocysts in the first intermediate host, an intertidal mollusc Falsicingula kurilensis. The morphology of metacercariae and adults was described with an emphasis on the structure of terminal genitalia. Considering that Falsicingula occurs at the Pacific coast of North America and that the Pacific eider is capable of trans-continental flights, the distribution of Mi. ochotensis might span the Pacific coast of Alaska and Canada. The range of its final hosts may presumably include other benthos- feeding marine ducks as well as shorebirds. We suggest that a broad occurrence of two-host life cycles in microphallids is associated with parasitism in birds migrating along sea coasts. -
Chapter Bibliography
VU Research Portal Pacific oysters and parasites Goedknegt, M.A. 2017 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Goedknegt, M. A. (2017). Pacific oysters and parasites: Species invasions and their impact on parasite-host interactions. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 02. Oct. 2021 Bibliography Bibliography A Abrams, P. A. (1995) Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities. The American Naturalist 146:112-134. Aguirre-Macedo, M. L., Kennedy, C. R. (1999) Diversity of metazoan parasites of the introduced oyster species Crassostrea gigas in the Exe estuary. Journal of the Marine Biological Association of the UK 79:57-63. Aguirre-Macedo, M. L., Vidal-Martinez, V. -
Climate Change, Parasitism and the Structure of Intertidal Ecosystems
Journal of Helminthology (2006) 80, 183–191 DOI: 10.1079/JOH2006341 Climate change, parasitism and the structure of intertidal ecosystems R. Poulin1* and K.N. Mouritsen2 1Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand: 2Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark Abstract Evidence is accumulating rapidly showing that temperature and other climatic variables are driving many ecological processes. At the same time, recent research has highlighted the role of parasitism in the dynamics of animal populations and the structure of animal communities. Here, the likely interactions between climate change and parasitism are discussed in the context of intertidal ecosystems. Firstly, using the soft-sediment intertidal communities of Otago Harbour, New Zealand, as a case study, parasites are shown to be ubiquitous components of intertidal communities, found in practically all major animal species in the system. With the help of specific examples from Otago Harbour, it is demonstrated that parasites can regulate host population density, influence the diversity of the entire benthic community, and affect the structure of the intertidal food web. Secondly, we document the extreme sensitivity of cercarial production in parasitic trematodes to increases in temperature, and discuss how global warming could lead to enhanced trematode infections. Thirdly, the results of a simulation model are used to argue that parasite- mediated local extinctions of intertidal animals are a likely outcome of global warming. Specifically, the model predicts that following a temperature increase of less than 48C, populations of the amphipod Corophium volutator, a hugely abundant tube-building amphipod on the mudflats of the Danish Wadden Sea, are likely to crash repeatedly due to mortality induced by microphallid trematodes. -
Effects of Salinity on Multiplication and Transmission of an Intertidal Trematode Parasite
Mar Biol (2011) 158:995–1003 DOI 10.1007/s00227-011-1625-7 ORIGINAL PAPER Effects of salinity on multiplication and transmission of an intertidal trematode parasite Fengyang Lei • Robert Poulin Received: 9 November 2010 / Accepted: 6 January 2011 / Published online: 20 January 2011 Ó Springer-Verlag 2011 Abstract Salinity levels vary spatially in coastal areas, Introduction depending on proximity to freshwater sources, and may also be slowly decreasing as a result of anthropogenic Intertidal areas are subject to rapid and sharp environ- climatic changes. The impact of salinity on host–parasite mental changes due to the daily exposure to air and water interactions is potentially a key regulator of transmission caused by tides. Salinity levels, though roughly constant in processes in intertidal areas, where trematodes are extre- the open ocean, are highly variable in intertidal habitats, in mely common parasites of invertebrates and vertebrates. both space and time. They can range from 2 to 3 psu due to We investigated experimentally the effects of long-term freshwater input from precipitation, rivers and surface exposure to decreased salinity levels on output of infective runoff, up to 60 psu following evaporation from shallow stages (cercariae) and their transmission success in the pools at low tide (Adam 1993; Berger and Kharazova trematode Philophthalmus sp. This parasite uses the snail 1997). On longer time scales, predicted climate change Zeacumantus subcarinatus as intermediate host, in which it may lead to altered precipitation regimes and rising sea asexually produces cercariae. After leaving the snail, levels following the thawing of freshwater ice stores at the cercariae encyst externally on hard substrates to await poles, both of which are likely to affect the salinity levels accidental ingestion by shorebirds, which serve as defini- experienced by intertidal organisms (IPCC 2007). -
Mortality of Corophium Volutator (Amphipoda) Caused by Infestation with Maritrema Subdolum (Digenea, Microphallidae) -Laboratory Studies
DISEASES OF AQUATIC ORGANISMS Published January 7 Dis Aquat Org Mortality of Corophium volutator (Amphipoda) caused by infestation with Maritrema subdolum (Digenea, Microphallidae) -laboratory studies Karin Meifiner*, Andreas Bick University of Rostock, Department of Zoology. Universitatsplatz 5. D-18051 Rostock, Germany ABSTRACT: The impact of Maritrema subdolum Jagerskiijld, 1908 on Corophjum volutator Pallas, 1766 was examined under laboratory conditions. Adult specimens of C. volutator were placed in petri dshes and exposed to different numbers (3, 10, 30, 50, 100, 150, 200) of recently emerged cercariae of the microphallid trematode M. subdolum. Addition of the same number of cercariae to the dishes was repeated every second day until the crustaceans died. The experiments revealed a strong negative cor- relation between the density of cercariae in the dlsh and the average survival times of C. volutator. Amphipods exposed to cercariae densities of 200 cercanae per 9.6 cm2 d~edafter 1.6 d (10.5 SD) whereas specimens exposed to cercariae densties of 30 cercariae per 9.6 cm2 died after 35.8 d (17.1 SD). All dead C. volutator were inspected for larval M. subdolum. Highest infestation intensities of approxinlately 80 larval M. subdolum were found In the test group to whlch 50 cercariae were added every second day. In other test groups, where C volutator was exposed to elther higher or lower cer- canae densities, the specinlens harboured fewer larval trematodes when they died. Not yet encysted metacercariae seemed to affect C. volutator in a more detrimental manner than encysted metacer- cariae. Changes in the behaviour of the infested crustaceans were observed during the experiments. -
Infection Characteristics of a Trematode in an Estuarine Isopod: Influence of Substratum
Hydrobiologia (2005) 539:149–155 Ó Springer 2005 DOI 10.1007/s10750-004-3917-0 Primary Research Paper Infection characteristics of a trematode in an estuarine isopod: influence of substratum Susana M. Ferreira1,*, K. Thomas Jensen2 & Miguel A. Pardal1 1Department of Zoology, IMAR – Institute of Marine Research, University of Coimbra, 3004-517 Coimbra, Portugal 2Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark (*Author for correspondence: Tel.: +351239836386, fax: +351239823603, E-mail: smff@ci.uc.pt) Received 25 July 2004; in revised form 9 September 2004; accepted 28 September 2004 Key words: parasitism, Maritrema, Cyathura, Hydrobia, sediment Abstract The estuarine isopod Cyathura carinata is a second intermediate host to microphallid trematodes, which use mud snails Hydrobia spp. and shorebirds as respectively first intermediate and final hosts. To identify processes responsible for infection patterns observed in C. carinata, a short-term microcosm experiment was conducted with both macroinvertebrates and one of their common parasites – Maritrema subdolum. Fine sand collected from two different shallow water sites was used to test if sediment type could affect infection rates. After 7 days at 25 °C, C. carinata from the substratum with the highest proportion of particles <125 lm were more surface active and obtained significantly more M. subdolum individuals than isopods from the other sediment type. No parasite-induced effects on the hosts were found during this short-term experiment. The distribution pattern of microphallid cysts and mesocercariae inside the isopods revealed that M. subdolum cercariae primarily penetrated through the pleopods and afterwards located themselves in the middle-posterior region of the host’s body. -
Monophyly and Systematic Position of Glypthelmins (Digenea), Based on Partial Lsrdna Sequences and Morphological Evidence Ulises J
ARTICLE IN PRESS Organisms, Diversity & Evolution 6 (2006) 308–320 www.elsevier.de/ode Monophyly and systematic position of Glypthelmins (Digenea), based on partial lsrDNA sequences and morphological evidence Ulises J. Razo-Mendivil, Virginia Leo´n-Re` gagnon, Gerardo Pe´rez-Ponce de Leo´nà Laboratorio de Helmintologı´a, Instituto de Biologı´a, Universidad Nacional Auto´noma de Me´xico, Ap. Postal 70-153, Del. Coyoaca´n, C.P. 04510 Me´xico, D.F. Me´xico Received 15 December 2004; accepted 1 December 2005 Abstract Species composition and systematic placement within the order Plagiorchiida has been controversial. Species number in Glypthelmins Stafford, 1905, a genus of cosmopolitan parasites of anurans, has varied between 19 and 28 species, depending on the taxonomic treatment. The present study performs a phylogenetic analysis using partial lsrDNA sequences to test the monophyly of the genus, and compares new sequences obtained with those published for different plagiorchiids to clarify the systematic position of Glypthelmins within the order Plagiorchiida. Maximum parsimony (MP) and maximum likelihood (ML) analyses result in identical tree topology. The single MP tree (L ¼ 1587, CI ¼ 0.40, RI ¼ 0.76) includes several clades with high bootstrap and Bremer support values. Glypthelmins sensu lato as traditionally classified is paraphyletic. Based on molecular and/or morphological evidence, the taxonomic diagnosis for Glypthelmins is emended, only eight species are retained in the genus, and re-establishment of the genera Choledocystus Pereira & Cuocolo, 1941 and Rauschiella Babero, 1951 is proposed, resulting in the following new combinations: Choledocystus simulans (Teixeira de Freitas, 1941) comb. nov., C. vitellinophilum (Dobbin, 1958) comb. -
Parasite Communities of the Schlei Fjord (Baltic Coast of Northern Germany) V
HELGOL.$NDER MEERESUNTERSUCHUNGEN Helgol~nder Meeresunters. 50, 477-496 (1996) Parasite communities of the Schlei Fjord (Baltic coast of northern Germany) V. Kesting, S. Gollasch & C. D. Zander* Zoologlsches Institut und Zoologisches Museum der Universitfit; Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany ABSTRACT: The parasite faunas of snails, mussels, crustaceans and small-sized fishes were inve- stigated over a period of six months in the Schlei fjord, on the Baltic coast of Schleswig-Holstein. Two sites differing in salinities were compared: Missunde with 5-9 %o and Olpenitz with 12-20 %~ Pre- valences, number of host-parasite combinations, numbers of core and secondary species were ge- nerally higher in Olpenitz than in Missunde. In the latter site, only prevalences of cestodans in plank- tic copepods and the number of rare species were apparent. Specificity of parasites was relatively high in snails, mussels and fishes, but lower in benthic crustaceans. Parasites may survive in an ex- treme environment like brackish water by means of special strategies which differ from those ac- quired in the marine milieu: suspension of specificity, adaptation to hosts which are genuine brackish water species, extension of host spectra, and shortening of life-cycles. Although the parasite com- munities of the Schlei fjord were primarily influenced by the prevailing salinities, the influence of other factors, e.g. environmental stress, was also confirmed. Whereas generally low prevalences in Missunde may contradict Thienemann's biocoenotic rule. planktic parasites infested their hosts often at higher rates than in Olpenitz. This phenomenon is explained by the poorer environmental condition of the benthal zone in Missunde compared to that of the pelagial or the benthal zones of Olpenitz. -
Effects of Salinity on an Intertidal Host–Parasite System: Is the Parasite More Sensitive Than Its Host?
Journal of Experimental Marine Biology and Ecology 412 (2012) 110–116 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Effects of salinity on an intertidal host–parasite system: Is the parasite more sensitive than its host? A. Studer ⁎, R. Poulin Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand article info abstract Article history: Intertidal habitats are characterised by highly fluctuating environmental conditions including varying salinity Received 4 August 2011 regimes. Changes in salinity may be gradual or abrupt; for example, heavy rainfall or evaporation during Received in revised form 7 November 2011 warm periods can either decrease or increase salinity. Trematodes are the most common parasites in Accepted 12 November 2011 intertidal ecosystems and their transmission is known to be highly influenced by environmental conditions. Available online 6 December 2011 However, effects of salinity on the transmission of intertidal trematodes are not well studied. Here, we investigated the effects of long-term (i.e. several weeks) exposure to different salinities (25, 30, 35 and Keywords: fi Amphipoda 40 psu) on the transmission of Maritrema novaezealandensis from its rst intermediate snail host (Zeacumantus Host–parasite interaction subcarinatus) to a second intermediate amphipod host (Paracalliope novizealandiae), in order to evaluate overall Parasitism net effects. The following steps were assessed: output of parasite transmission stages (cercariae) from infected Salinity snail hosts, survival and infectivity of cercariae, susceptibility of amphipod hosts to infection and survival of Transmission amphipod hosts including parasite development within amphipod hosts. Output and survival of cercariae Trematoda increased with increasing salinity whilst infectivity of cercariae and susceptibility of amphipods to infection were not clearly affected. -
Hydrobia Ulvae and Corophium Volutator-The Possible Role Oi Trematodes
HELGOLANDER MEERESUNTERSUCHUNGEN Helgol~inder Meeresunters. 46, 329-339 (1992) Mass mortality in two common soit-bottom invertebrates, Hydrobia ulvae and Corophium volutator-the possible role oi trematodes K. T. Jensen & K. N. Mouritsen Institute of Biological Sciences, Department of Ecology and Genetics, University of Aarhus; Building 540, Ny Munkegade, DK-8000 Aarhus C., Denmark ABSTRACT: Two httoral macrofaunal invertebrates, Hydrobia ulvae (Prosobranchia) and Corophium volutator (Amphipoda) suffered mass mortality on an intertidal mudflat in the Danish Wadden Sea in May-June 1990. Dissection of collected H. ulvae individuals revealed a considerable increase from March to May in numbers of infected individuals by microphallid trematodes that use H. ulvae and C. volutator as first and second intermediate host, respectively. The numbers of infested snails were hereafter reduced by an amount equal to the observed mortality rate of snails. At the same time, the C. volutator population became extinct. Since other conceivable mortality factors could be ruled out, parasites are suspected to be the causative agent. Apart from the expected effects on potential predators by the decline in the two invertebrate populations, the benthic community changed and destabilization of the substratum occurred probably because of the die-off in C. volutator. Meteorological data suggest high temperatures as a triggering factor of the mass- development of the studied trematodes. INTRODUCTION Unexplained fluctuations in abundance are a characteristic feature of Corophium volutator populations (Watkin, 1941; Reise, 1978; Olafsson & Persson, 1986). In order to understand the factors causing temporal variability, we studied the population dynamics of C. volutator and other co-occurring macrofaunal invertebrates on a "Corophium-bed" (Reise, 1978).