Climate Change, Parasitism and the Structure of Intertidal Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change, Parasitism and the Structure of Intertidal Ecosystems Journal of Helminthology (2006) 80, 183–191 DOI: 10.1079/JOH2006341 Climate change, parasitism and the structure of intertidal ecosystems R. Poulin1* and K.N. Mouritsen2 1Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand: 2Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark Abstract Evidence is accumulating rapidly showing that temperature and other climatic variables are driving many ecological processes. At the same time, recent research has highlighted the role of parasitism in the dynamics of animal populations and the structure of animal communities. Here, the likely interactions between climate change and parasitism are discussed in the context of intertidal ecosystems. Firstly, using the soft-sediment intertidal communities of Otago Harbour, New Zealand, as a case study, parasites are shown to be ubiquitous components of intertidal communities, found in practically all major animal species in the system. With the help of specific examples from Otago Harbour, it is demonstrated that parasites can regulate host population density, influence the diversity of the entire benthic community, and affect the structure of the intertidal food web. Secondly, we document the extreme sensitivity of cercarial production in parasitic trematodes to increases in temperature, and discuss how global warming could lead to enhanced trematode infections. Thirdly, the results of a simulation model are used to argue that parasite- mediated local extinctions of intertidal animals are a likely outcome of global warming. Specifically, the model predicts that following a temperature increase of less than 48C, populations of the amphipod Corophium volutator, a hugely abundant tube-building amphipod on the mudflats of the Danish Wadden Sea, are likely to crash repeatedly due to mortality induced by microphallid trematodes. The available evidence indicates that climate-mediated changes in local parasite abundance will have significant repercussions for intertidal ecosystems. On the bright side, the marked effects of even slight increases in temperature on cercarial production in trematodes could form the basis for monitoring programmes, with these sensitive parasites providing early warning signals of the environmental impacts of global warming. Introduction air and sea surface temperatures, coupled with changes in precipitation, sea level, and ocean salinity and circulation Climate change and global warming scenarios, once patterns. There is no doubt that these environmental viewed as the wild prophecies of a small band of changes will impact natural ecosystems in one way or environmental scientists, are now accepted as facts by the another. Weather and climate affect several ecological broader scientific community and by society at large. The processes, from the performance of individual organisms, predictions for the next few decades include changes in to the dynamics of populations and the distribution of species. This has been clearly illustrated by a series of recent studies that have linked changes in ecosystem *Fax: þ64-3-479-7584 properties and functions with large-scale climate fluctu- E-mail: [email protected] ations (Holmgren et al., 2001; Mysterud et al., 2001; 184 R. Poulin and K.N. Mouritsen Ottersen et al., 2001; Walther et al., 2002; Stenseth et al., Roles of parasites in intertidal systems 2002, 2003). In particular, temperature is emerging as a key driving force behind many ecological processes. Earlier reviews have argued that parasites play major Although often not emphasized as much as other roles in intertidal ecosystems (Lauckner, 1987; Sousa, ecological interactions, the extent and intensity of 1991; Mouritsen & Poulin, 2002b). Here, the importance of parasitism can also be modulated by climatic conditions parasites is illustrated using the soft-sediment intertidal (Mouritsen & Poulin, 2002a). Parasites can regulate the communities of Otago Harbour (South Island, New abundance of their host population (e.g. Scott, 1987; Zealand) as a case study. Otago Harbour is approximately Hudson et al., 1998; Albon et al., 2002), influence the 20 km long and about 2–3 km wide on average, and it composition and structure of animal communities consists of several sheltered bays that have been the (Minchella & Scott, 1991; Combes, 1996; Mouritsen & subject of numerous ecological and parasitological Poulin, 2002b), and affect the functioning of ecosystems studies over the past several years. For parasites to be (Thomas et al., 2005). Any influence of climate on important determinants of community structure, they parasitism is therefore potentially important for natural must be relatively abundant, and their impact must communities and ecosystems. Recent reports have high- extend to a level beyond that of the individual host, i.e. to lighted the causal relationship between climate change the population or community. These two issues are and emerging parasitic diseases, i.e. diseases suddenly addressed in turn. increasing in either local prevalence or geographical First, are parasites common among the invertebrates on distribution (e.g. Harvell et al., 1999, 2002; Patz et al., 2000; the Otago Harbour mudflats? For macroparasites the Marcogliese, 2001; Lafferty et al., 2004). There is also answer is yes, with trematodes being particularly evidence that climate can act to synchronize cycles of host abundant. Trematodes use a mollusc, usually a gastro- population abundance by directly affecting the survival pod, as first intermediate host in their complex life cycle; and transmission of parasite infective stages (Cattadori cercariae produced in the first intermediate host generally et al., 2005). Thus, the many direct and indirect effects of go on to encyst in a second intermediate host, before the temperature and other climatic variables on parasite cycle is completed via trophic transmission to a vertebrate transmission are bound to have community-wide impacts. definitive host. Table 1 lists all the mollusc species from Here, the potential impact of climate-mediated increases Otago Harbour soft-sediment flats that have an adult in parasitism on the structure and biodiversity of intertidal shell length greater than 5 mm. Without exception, each ecosystems is discussed. The discussion applies more mollusc species serves as first intermediate host to at least broadly to other ecosystems; we only focus on the intertidal one trematode species. This is not surprising, as zone as a model system. Located at the interface between trematodes are known to infect most major gastropod land and sea, the intertidal zone is the best-studied marine taxa around the world (see Pechenik et al., 2001). In most ecosystem, and also the habitat most likely to be affected by cases, the prevalence of infection is rather low, with fewer both atmospheric and oceanic changes. Specifically, three than 10% of individuals in a population infected by general questions are addressed: (i) Do parasites play trematodes (table 1). This is typical of the values found in important ecological roles in intertidal communities? (ii) other surveys from around the globe (Poulin & How is climate change likely to affect the local abundance of Mouritsen, 2003). However, in many populations of the parasites in intertidal systems? (iii) Can we predict how mudsnail Zeacumantus subcarinatus, an abundant grazer climate-mediated increases in parasitism may impact on of microalgae throughout Otago Harbour, more than half intertidal populations and/or communities? of the population is infected by the microphallid Table 1. Molluscs of Otago Harbour intertidal mudflats, and the trematodes that use them as first intermediate hosts. Mollusc species Trematodes Prevalence* (%) Reference Snails Zeacumantus subcarinatus Maritrema novaezealandensis 5–70 Fredensborg et al., 2005 Microphallus sp. 1–2 Fredensborg et al., 2005 Acanthoparyphium sp. 5–10 Fredensborg et al., 2005 Philophthalmid sp. 5–10 Fredensborg et al., 2005 Heterophyid sp 2–3 Fredensborg et al., 2005 Cominella glandiformis Curtuteria australis 3–6 Unpublished data Trematode sp. 1–2 Unpublished data Diloma subrostrata Opecoelid sp. 10–15 Donald et al., 2004 Melagraphia aethiops Opecoelid sp. 2–3 Donald et al., 2004 Amphibola crenata Trematode sp. 2–5 Unpublished data Bivalves Austrovenus stutchburyi Trematode sp. 2–4 Poulin et al., 2000 Macomona liliana Gymnophallid sp. ? ** * Range of values from different sites within the Harbour. ** Not yet positively identified as first intermediate host, but appears to be the only potential candidate in Otago Harbour. Austrovenus stutchburyi acts as second intermediate host for this trematode (see table 2). Climate change and parasitism 185 trematode Maritrema novaezealandensis (table 1). Given The snail is characterized by direct development, i.e. it that infection by the first larval stages (sporocysts and has no planktonic larvae. Recruitment of new individuals rediae) of trematodes almost invariably leads to host to local populations therefore depends on local reproduc- castration (Sousa, 1983; Pearson & Cheng, 1985; Mour- tion rather than on immigration. The trematode M. itsen & Jensen, 1994; see review in Mouritsen & Poulin, novaezealandensis, and the few other, less common 2002b), the consequences of high prevalence can be trematode species also exploiting the snail Z. subcarinatus, serious at the population level, as illustrated below. all castrate their gastropod host (Fredensborg et al., 2005).
Recommended publications
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Hitch-Hiking Parasite: a Dark Horse May Be the Real Rider
    International Journal for Parasitology 31 (2001) 1417–1420 www.parasitology-online.com Research note Hitch-hiking parasite: a dark horse may be the real rider Kim N. Mouritsen* Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark Received 3 April 2001; received in revised form 22 May 2001; accepted 22 May 2001 Abstract Many parasites engaged in complex life cycles manipulate their hosts in a way that facilitates transmission between hosts. Recently, a new category of parasites (hitch-hikers) has been identified that seem to exploit the manipulating effort of other parasites with similar life cycle by preferentially infecting hosts already manipulated. Thomas et al. (Evolution 51 (1997) 1316) showed that the digenean trematodes Micro- phallus papillorobustus (the manipulator) and Maritrema subdolum (the hitch-hiker) were positively associated in field samples of gammarid amphipods (the intermediate host), and that the behaviour of Maritrema subdolum rendered it more likely to infect manipulated amphipods than those uninfected by M. papillorobustus. Here I provide experimental evidence demonstrating that M. subdolum is unlikely to be a hitch- hiker in the mentioned system, whereas the lucky candidate rather is the closely related but little known species, Microphallidae sp. no. 15 (Parassitologia 22 (1980) 1). As opposed to the latter species, Maritrema subdolum does not express the appropriate cercarial behaviour for hitch-hiking. q 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved. Keywords: Microphallid trematodes; Transmission strategy; Cercarial behaviour; Maritrema subdolum; Microphallidae sp. no. 15 Parasites with complex life cycles (e.g.
    [Show full text]
  • Digenea, Microphallidae) and Relative Merits of Two-Host Microphallid Life Cycles
    Parasitology Research (2018) 117:1051–1068 https://doi.org/10.1007/s00436-018-5782-1 ORIGINAL PAPER Microphallus ochotensis sp. nov. (Digenea, Microphallidae) and relative merits of two-host microphallid life cycles Kirill V. Galaktionov1,2 & Isabel Blasco-Costa3 Received: 21 July 2017 /Accepted: 23 January 2018 /Published online: 3 February 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract A new digenean species, Microphallus ochotensis sp. nov., was described from the intestine of Pacific eiders (Somateria mollissima v-nigrum) from the north of the Sea of Okhotsk. It differs from other microphallids in the structure of the metraterm, which consists of two distinct parts: a sac with spicule-like structures and a short muscular duct opening into the genital atrium. Mi. ochotensis forms a monophyletic clade together with other congeneric species in phylograms derived from the 28S and ITS2 rRNA gene. Its dixenous life cycle was elucidated with the use of the same molecular markers. Encysted metacercariae infective for birds develop inside sporocysts in the first intermediate host, an intertidal mollusc Falsicingula kurilensis. The morphology of metacercariae and adults was described with an emphasis on the structure of terminal genitalia. Considering that Falsicingula occurs at the Pacific coast of North America and that the Pacific eider is capable of trans-continental flights, the distribution of Mi. ochotensis might span the Pacific coast of Alaska and Canada. The range of its final hosts may presumably include other benthos- feeding marine ducks as well as shorebirds. We suggest that a broad occurrence of two-host life cycles in microphallids is associated with parasitism in birds migrating along sea coasts.
    [Show full text]
  • Chapter Bibliography
    VU Research Portal Pacific oysters and parasites Goedknegt, M.A. 2017 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Goedknegt, M. A. (2017). Pacific oysters and parasites: Species invasions and their impact on parasite-host interactions. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 02. Oct. 2021 Bibliography Bibliography A Abrams, P. A. (1995) Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities. The American Naturalist 146:112-134. Aguirre-Macedo, M. L., Kennedy, C. R. (1999) Diversity of metazoan parasites of the introduced oyster species Crassostrea gigas in the Exe estuary. Journal of the Marine Biological Association of the UK 79:57-63. Aguirre-Macedo, M. L., Vidal-Martinez, V.
    [Show full text]
  • Trematodes in a Cyathura Carinata Population from a Temperate Intertidal Estuary: Infection Patterns and Impact on Host
    J. Mar. Biol. Ass. U.K. (2004), 84,4647/1^8 Printed in the United Kingdom Trematodes in a Cyathura carinata population from a temperate intertidal estuary: infection patterns and impact on host P O O K. Thomas Jensen* ,SusanaM.Ferreira andMiguelA.Pardal *Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, O DK-8200 Aarhus N, Denmark. IMARöInstitute of Marine Research, Department of Zoology, University of Coimbra, P 3004-517 Coimbra, Portugal. Corresponding author, e-mail: [email protected]. A study was initiated to identify trematode patterns in Cyathura from two key sites in the Mondego Estuary: a Zostera-bed and a sand£at. The two subpopulations of Cyathura di¡er, as the annual recruitment success is much higher and more regular on the sand£at than on the Zostera-bed. Counting and sizing of trematode cysts inside the body of preserved Cyathura specimens enabled a description of trematode patterns in space and time. Further identi¢cation of trematodes was based on DNA studies of unpreserved cysts as well as on identi¢cation of parasites in co-occurring mud snails. Two trematode species dominated in Cyathura: Maritrema subdolum (cysts around 190 mm) and a hitherto unknown Levinseniella species (cysts around 340 mm), the latter being the most frequent one. Generally, the prevalence of both species peaked during winter months, when migratory water birds occur in the estuary. Cyathura from the Zostera bed harboured more infections per specimen than those from the sand £at. A much higher density of mud snails 52 mm (which can be host to microphallids) and a low abundance of Cyathura are thought to be the main reasons for this pattern.
    [Show full text]
  • Effects of Salinity on Multiplication and Transmission of an Intertidal Trematode Parasite
    Mar Biol (2011) 158:995–1003 DOI 10.1007/s00227-011-1625-7 ORIGINAL PAPER Effects of salinity on multiplication and transmission of an intertidal trematode parasite Fengyang Lei • Robert Poulin Received: 9 November 2010 / Accepted: 6 January 2011 / Published online: 20 January 2011 Ó Springer-Verlag 2011 Abstract Salinity levels vary spatially in coastal areas, Introduction depending on proximity to freshwater sources, and may also be slowly decreasing as a result of anthropogenic Intertidal areas are subject to rapid and sharp environ- climatic changes. The impact of salinity on host–parasite mental changes due to the daily exposure to air and water interactions is potentially a key regulator of transmission caused by tides. Salinity levels, though roughly constant in processes in intertidal areas, where trematodes are extre- the open ocean, are highly variable in intertidal habitats, in mely common parasites of invertebrates and vertebrates. both space and time. They can range from 2 to 3 psu due to We investigated experimentally the effects of long-term freshwater input from precipitation, rivers and surface exposure to decreased salinity levels on output of infective runoff, up to 60 psu following evaporation from shallow stages (cercariae) and their transmission success in the pools at low tide (Adam 1993; Berger and Kharazova trematode Philophthalmus sp. This parasite uses the snail 1997). On longer time scales, predicted climate change Zeacumantus subcarinatus as intermediate host, in which it may lead to altered precipitation regimes and rising sea asexually produces cercariae. After leaving the snail, levels following the thawing of freshwater ice stores at the cercariae encyst externally on hard substrates to await poles, both of which are likely to affect the salinity levels accidental ingestion by shorebirds, which serve as defini- experienced by intertidal organisms (IPCC 2007).
    [Show full text]
  • Mortality of Corophium Volutator (Amphipoda) Caused by Infestation with Maritrema Subdolum (Digenea, Microphallidae) -Laboratory Studies
    DISEASES OF AQUATIC ORGANISMS Published January 7 Dis Aquat Org Mortality of Corophium volutator (Amphipoda) caused by infestation with Maritrema subdolum (Digenea, Microphallidae) -laboratory studies Karin Meifiner*, Andreas Bick University of Rostock, Department of Zoology. Universitatsplatz 5. D-18051 Rostock, Germany ABSTRACT: The impact of Maritrema subdolum Jagerskiijld, 1908 on Corophjum volutator Pallas, 1766 was examined under laboratory conditions. Adult specimens of C. volutator were placed in petri dshes and exposed to different numbers (3, 10, 30, 50, 100, 150, 200) of recently emerged cercariae of the microphallid trematode M. subdolum. Addition of the same number of cercariae to the dishes was repeated every second day until the crustaceans died. The experiments revealed a strong negative cor- relation between the density of cercariae in the dlsh and the average survival times of C. volutator. Amphipods exposed to cercariae densities of 200 cercanae per 9.6 cm2 d~edafter 1.6 d (10.5 SD) whereas specimens exposed to cercariae densties of 30 cercariae per 9.6 cm2 died after 35.8 d (17.1 SD). All dead C. volutator were inspected for larval M. subdolum. Highest infestation intensities of approxinlately 80 larval M. subdolum were found In the test group to whlch 50 cercariae were added every second day. In other test groups, where C volutator was exposed to elther higher or lower cer- canae densities, the specinlens harboured fewer larval trematodes when they died. Not yet encysted metacercariae seemed to affect C. volutator in a more detrimental manner than encysted metacer- cariae. Changes in the behaviour of the infested crustaceans were observed during the experiments.
    [Show full text]
  • Infection Characteristics of a Trematode in an Estuarine Isopod: Influence of Substratum
    Hydrobiologia (2005) 539:149–155 Ó Springer 2005 DOI 10.1007/s10750-004-3917-0 Primary Research Paper Infection characteristics of a trematode in an estuarine isopod: influence of substratum Susana M. Ferreira1,*, K. Thomas Jensen2 & Miguel A. Pardal1 1Department of Zoology, IMAR – Institute of Marine Research, University of Coimbra, 3004-517 Coimbra, Portugal 2Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark (*Author for correspondence: Tel.: +351239836386, fax: +351239823603, E-mail: smff@ci.uc.pt) Received 25 July 2004; in revised form 9 September 2004; accepted 28 September 2004 Key words: parasitism, Maritrema, Cyathura, Hydrobia, sediment Abstract The estuarine isopod Cyathura carinata is a second intermediate host to microphallid trematodes, which use mud snails Hydrobia spp. and shorebirds as respectively first intermediate and final hosts. To identify processes responsible for infection patterns observed in C. carinata, a short-term microcosm experiment was conducted with both macroinvertebrates and one of their common parasites – Maritrema subdolum. Fine sand collected from two different shallow water sites was used to test if sediment type could affect infection rates. After 7 days at 25 °C, C. carinata from the substratum with the highest proportion of particles <125 lm were more surface active and obtained significantly more M. subdolum individuals than isopods from the other sediment type. No parasite-induced effects on the hosts were found during this short-term experiment. The distribution pattern of microphallid cysts and mesocercariae inside the isopods revealed that M. subdolum cercariae primarily penetrated through the pleopods and afterwards located themselves in the middle-posterior region of the host’s body.
    [Show full text]
  • Monophyly and Systematic Position of Glypthelmins (Digenea), Based on Partial Lsrdna Sequences and Morphological Evidence Ulises J
    ARTICLE IN PRESS Organisms, Diversity & Evolution 6 (2006) 308–320 www.elsevier.de/ode Monophyly and systematic position of Glypthelmins (Digenea), based on partial lsrDNA sequences and morphological evidence Ulises J. Razo-Mendivil, Virginia Leo´n-Re` gagnon, Gerardo Pe´rez-Ponce de Leo´nà Laboratorio de Helmintologı´a, Instituto de Biologı´a, Universidad Nacional Auto´noma de Me´xico, Ap. Postal 70-153, Del. Coyoaca´n, C.P. 04510 Me´xico, D.F. Me´xico Received 15 December 2004; accepted 1 December 2005 Abstract Species composition and systematic placement within the order Plagiorchiida has been controversial. Species number in Glypthelmins Stafford, 1905, a genus of cosmopolitan parasites of anurans, has varied between 19 and 28 species, depending on the taxonomic treatment. The present study performs a phylogenetic analysis using partial lsrDNA sequences to test the monophyly of the genus, and compares new sequences obtained with those published for different plagiorchiids to clarify the systematic position of Glypthelmins within the order Plagiorchiida. Maximum parsimony (MP) and maximum likelihood (ML) analyses result in identical tree topology. The single MP tree (L ¼ 1587, CI ¼ 0.40, RI ¼ 0.76) includes several clades with high bootstrap and Bremer support values. Glypthelmins sensu lato as traditionally classified is paraphyletic. Based on molecular and/or morphological evidence, the taxonomic diagnosis for Glypthelmins is emended, only eight species are retained in the genus, and re-establishment of the genera Choledocystus Pereira & Cuocolo, 1941 and Rauschiella Babero, 1951 is proposed, resulting in the following new combinations: Choledocystus simulans (Teixeira de Freitas, 1941) comb. nov., C. vitellinophilum (Dobbin, 1958) comb.
    [Show full text]
  • Parasite Communities of the Schlei Fjord (Baltic Coast of Northern Germany) V
    HELGOL.$NDER MEERESUNTERSUCHUNGEN Helgol~nder Meeresunters. 50, 477-496 (1996) Parasite communities of the Schlei Fjord (Baltic coast of northern Germany) V. Kesting, S. Gollasch & C. D. Zander* Zoologlsches Institut und Zoologisches Museum der Universitfit; Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany ABSTRACT: The parasite faunas of snails, mussels, crustaceans and small-sized fishes were inve- stigated over a period of six months in the Schlei fjord, on the Baltic coast of Schleswig-Holstein. Two sites differing in salinities were compared: Missunde with 5-9 %o and Olpenitz with 12-20 %~ Pre- valences, number of host-parasite combinations, numbers of core and secondary species were ge- nerally higher in Olpenitz than in Missunde. In the latter site, only prevalences of cestodans in plank- tic copepods and the number of rare species were apparent. Specificity of parasites was relatively high in snails, mussels and fishes, but lower in benthic crustaceans. Parasites may survive in an ex- treme environment like brackish water by means of special strategies which differ from those ac- quired in the marine milieu: suspension of specificity, adaptation to hosts which are genuine brackish water species, extension of host spectra, and shortening of life-cycles. Although the parasite com- munities of the Schlei fjord were primarily influenced by the prevailing salinities, the influence of other factors, e.g. environmental stress, was also confirmed. Whereas generally low prevalences in Missunde may contradict Thienemann's biocoenotic rule. planktic parasites infested their hosts often at higher rates than in Olpenitz. This phenomenon is explained by the poorer environmental condition of the benthal zone in Missunde compared to that of the pelagial or the benthal zones of Olpenitz.
    [Show full text]
  • Effects of Salinity on an Intertidal Host–Parasite System: Is the Parasite More Sensitive Than Its Host?
    Journal of Experimental Marine Biology and Ecology 412 (2012) 110–116 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Effects of salinity on an intertidal host–parasite system: Is the parasite more sensitive than its host? A. Studer ⁎, R. Poulin Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand article info abstract Article history: Intertidal habitats are characterised by highly fluctuating environmental conditions including varying salinity Received 4 August 2011 regimes. Changes in salinity may be gradual or abrupt; for example, heavy rainfall or evaporation during Received in revised form 7 November 2011 warm periods can either decrease or increase salinity. Trematodes are the most common parasites in Accepted 12 November 2011 intertidal ecosystems and their transmission is known to be highly influenced by environmental conditions. Available online 6 December 2011 However, effects of salinity on the transmission of intertidal trematodes are not well studied. Here, we investigated the effects of long-term (i.e. several weeks) exposure to different salinities (25, 30, 35 and Keywords: fi Amphipoda 40 psu) on the transmission of Maritrema novaezealandensis from its rst intermediate snail host (Zeacumantus Host–parasite interaction subcarinatus) to a second intermediate amphipod host (Paracalliope novizealandiae), in order to evaluate overall Parasitism net effects. The following steps were assessed: output of parasite transmission stages (cercariae) from infected Salinity snail hosts, survival and infectivity of cercariae, susceptibility of amphipod hosts to infection and survival of Transmission amphipod hosts including parasite development within amphipod hosts. Output and survival of cercariae Trematoda increased with increasing salinity whilst infectivity of cercariae and susceptibility of amphipods to infection were not clearly affected.
    [Show full text]
  • Hydrobia Ulvae and Corophium Volutator-The Possible Role Oi Trematodes
    HELGOLANDER MEERESUNTERSUCHUNGEN Helgol~inder Meeresunters. 46, 329-339 (1992) Mass mortality in two common soit-bottom invertebrates, Hydrobia ulvae and Corophium volutator-the possible role oi trematodes K. T. Jensen & K. N. Mouritsen Institute of Biological Sciences, Department of Ecology and Genetics, University of Aarhus; Building 540, Ny Munkegade, DK-8000 Aarhus C., Denmark ABSTRACT: Two httoral macrofaunal invertebrates, Hydrobia ulvae (Prosobranchia) and Corophium volutator (Amphipoda) suffered mass mortality on an intertidal mudflat in the Danish Wadden Sea in May-June 1990. Dissection of collected H. ulvae individuals revealed a considerable increase from March to May in numbers of infected individuals by microphallid trematodes that use H. ulvae and C. volutator as first and second intermediate host, respectively. The numbers of infested snails were hereafter reduced by an amount equal to the observed mortality rate of snails. At the same time, the C. volutator population became extinct. Since other conceivable mortality factors could be ruled out, parasites are suspected to be the causative agent. Apart from the expected effects on potential predators by the decline in the two invertebrate populations, the benthic community changed and destabilization of the substratum occurred probably because of the die-off in C. volutator. Meteorological data suggest high temperatures as a triggering factor of the mass- development of the studied trematodes. INTRODUCTION Unexplained fluctuations in abundance are a characteristic feature of Corophium volutator populations (Watkin, 1941; Reise, 1978; Olafsson & Persson, 1986). In order to understand the factors causing temporal variability, we studied the population dynamics of C. volutator and other co-occurring macrofaunal invertebrates on a "Corophium-bed" (Reise, 1978).
    [Show full text]