<<

Research Papers SGU series Ca 89 Forskningsrapporter

Jurassic geology and foraminiferal faunas in the NW part of the East European Platform A Lithuanian-Swedish geotraverse study

Algimantas Grigelis and Erik N orling

TT 1 -tAAr'\

Research Papers SGU series Ca 89 Forskningsrapporter

Jurassic geology and foraminiferal faunas in the NW part of the East European P latform

A Lithuanian - Swedish geotraverse study

Algimantas Grigelis and Erik Norling

UPPSALA 1999 ISSN 1103-3363 ISBN 91-7158-621-0 (Sweden) ISBN 9986-615-21-6 (Lithuania)

This research was supported by Lithuanian Academy of Sciences and Swedish Royal Academy of Sciences. The edition is part1y granted by Ministry of Studies and Science, Repub1ic of Lithuania.

Cover: Microfossil residue of a sample taken from beds, Lower Jurassic, Rya Formation at Katslösa, NW Scania (most! y foraminifers). Collector: Jan Rees, Department of Geology, Lund University. Photo: Yvonne Arremo, Swedish Museum of Natural History, Stockholm.

© GeologicaJ Survey of Sweden, 1999 © Lithuanian Institute of Geology, 1999

Layout: Agneta Ek, SGU Print: Wikströms, Uppsala 1999

2 CONTENTS

Abstract 6 Introduction ...... 6 Acknowledgements ...... 7 Jurassic geology and stratigraphy of Lithuania and the SE part of the Baltic Sea ...... 8 Mai n land Lithuania ...... 8 Lower Jurassic ...... 8 Jotvingiai Group ...... 8 Neringa Formation (Upper Pliensbachian) ...... 8 () ...... 8 Middle Jurassic ...... Il Skalviai Group ...... 11 lsrutis Formation (Bajocian- Lower Bathonian) ...... 11 Liepona Formation (Upper Bathonian) ...... 11 Papile Formation (Lower Callovian) ...... 12 Papartine Formation (Middle to Upper Callovian) ...... 13 Skinija Formation (Upper Callovian) ...... 13 Upper Jurassic ...... 16 Afuolija Formation () ...... 16 Tarava Formation (Kimmeridgian) ...... 18 Girdava Formation (Lower Tithonian) ...... 19 South-eastern part of the Baltic Sea ...... 19 Lower Jurassic ...... 19 Middle Jurassic ...... 19 Middle and Upper Jurassic ...... 20 D6-3 Borehole ...... 20 C8-1 Boreho le ...... 21 Jurassic geology and stratigraphy of scania ···························· ··· ············ ············································· ·· ························ 22 Lower Jurassic ...... 22 Höganäs Formation (Rhaetian-Hettangian) ...... 22 Höör Sandstone Formation (Rhaetian?- Hettangian) ...... 23 Rya Formation (Lower - Toarcian) ...... 24 Röddinge Formation (Sinemurian -? ) ...... 28 Middle Jurassic ...... 28 Vilhelmsfält Formation (Bajocian - Bathonian)...... 28 Mariedal Formation (Bajocian - Bathonian) ...... 28 Middle Jurassic-Upper Jurassic transition ...... 28 Annero Formation ...... 28 Upper Jurassic ...... 30 Annero Formation ...... 30 Upper Jurassic - Lower transition ...... 32 Annero Formation ...... 32

3 Jurassic geology and stratigraphy offshore from Scania ...... 34 Hanö Bay 104!13-1 ...... 34 Upper (Rhaetian) ...... 34 Lo wer Jurassic ...... 34 Middle Jurassic ...... 36 Upper Jurassic ...... 36 Hanö Bay 104/14-2 ...... 36 Upper Triassic (Rhaetian)- Lower Jurassic ...... 36 Upper Jurassic ...... 36 Öresund boreholes in Swedish territorial waters ...... 36 Lower Jurassic ...... 36 Jurassic foraminiferal faunas of Lithuania and the SE part of the Baltic Sea ...... 38 Middle Jurassic ...... 38 Upper Bathonian ...... 38 Beds with Ophthalmidium infraoolithicum ...... 38 Lower Callovian ...... 40 Beds with Lenticulina okrojanzi ...... 40 Middle Callovian ...... 40 Lenticulina cultratiformis Zon e ...... 40 Upper Callovian ...... 41 Lenticulina tumida Zon e ...... 41 Upper Jurassic ...... 41 Lower Oxfordian ...... 41 Ophthalmidium sagittum- Lenticulina brueckmanni Zone ...... 41 Middle Oxfordian ...... 41 Ophthalmidium strumosum - Lenticulina brestica Zone ...... 41 Upper Oxfordian ...... 43 Lenticulina quenstedti Zon e ...... 43 Lower Kimmeridgian ...... 43 Lenticulina prussica - Lenticulina kuznetsovae Zon e ...... 43 Upper Kimmeridgian ...... 43 Lenticulina illustris - Lenticulina daiva Zone ...... 43 Lower Volgian ...... 44 Beds with Marginulina striatocostata ...... 44 Jurassic foraminiferal faunas of Scania and adjacent sea areas ...... 46 Lower Jurassic ...... 46 Hettangian - Lower Sinemurian ...... 46 Astacolus semireticulata Zon e ...... 46 Upper Sinemurian- Lower Pliensbachian ...... 47 Marginulina spinata spinata Zone ...... 47 Upper Pliensbachian ...... 47 Saracenaria sublaevis Zone ...... 47 Toarcian- Aalenian ...... 47 Saracenaria trigona- Citharina clathrata Zone ...... 47

4 Middle Jurassic ...... 50 Aalenian - Bajocian ...... 50 Beds with Citharina proxima and Reinholdella dreheri ...... 50 Upper Hathonian - Callovian ...... 50 Epistomina callovica - Saracenaria phaedra Zon e ...... 50 Upper Jurassic ...... 50 Lo wer Oxfordian ...... 50 Saracenaria oxfordiana - Lenticulina brueckmanni Zone ...... 50 Oxfordian ...... 51 Beds with Reophax suprajurassica ...... 51 Kirnrneridgian ...... 51 Beds with Verneuilinoides meentzeni ...... 51 Tithonian ...... 51 Beds with Lenticulina muendensis...... 51 Comparison of the Swedish and the Lithuanian foraminiferal faunas ...... 54 Facies distribution, palaeogeography and palaeoecology ...... 58 Foraminiferal biogeography and palaeoecology ...... 61 The lithologic-palaeogeographical ma ps ...... 62 Index of foraminiferal genera and (including stratigraphical ranges of species in Lithuania and in Sweden) ...... 63 Index of ammonites ...... 71 References ...... 73

Plates ...... 77 Plate 1. Scanning electron micrographs of Lower Jurassic foraminifera of Sweden ...... 78 Plate 2. Scanning electron micrographs of Middle and Upper Jurassic foraminifera of Sweden ...... 80 Plates 3-4. Scanning electron micrographs of Middle and Upper Jurassic foraminifera of Lithuania, and the Kalini ngrad Enclave, and the SE part of the Baltic Sea ...... 82 Plate 5. Scanning electron micrographs of the Middle and Upper Jurassic foraminifera of Lithuania and Sweden ... 86 Plates 6-17. Lithologic-palaeogeographical maps of Jurassic Stages ...... 88 6. Hettangian-Sinemurian ...... 89 7. Pliensbachian ...... 90 8. Toarcian ...... 91 9. Aalenian ...... 92 10. Bajocian ...... 93 11. Hathonian ...... 94 12. Callovian ...... 96 13. Oxfordian ...... 97 14. Generalized Oxfordian thicknesses ...... 98 15 . Kimmeridgian ...... 99 16. Portlandian ...... l 00 17. Jurassic structural units ...... 101

5 A. GRIGELIS AND E. NORLING

Abstract

In the southern Baltic Sea and framing land areas thick deposits of between the two areas compared may be a doser contact between Jurassic age are preserved, mostly covered by younger sediments, the Baltic-Polish Basin and the Tethyan Sea than between Scania but to a certain degree outcropping too. In the east area treated and the Tethys. Southern Scandinavia, on the other hand was more (Fig. l) the northernmost fin d s of Jurassic rocks are located to influenced from the northwest through water gateways with the southern Latvia, near the border to Lithuania. To the westJurassic Arctic Basin than Lithuania. Such differences have eaused di screp­ sediments occur along the margin of the Baltic Shield and further ancies in salinity and water temperature between the western and to the south and west (Fig. 1). The northernmost find s in Swedish eastern areas studied, which have had effects on fauna! diversity, territory are located to the Province of Scania and framing parts of ecological conditions and, most Iikely migration trends. The publi­ the Öresund Strait and the Kattegat. The present publication cation is illustraled with 31 fi gures and 7 tables. Foraminiferal spe­ describes the Jurassic succession of Lithuania, the South Baltic cies are illustraled by scanning electron micrographs in 5 p1ates. Basin, and Scania. The Jurassic stratigraphical representation is The lithology and palaeogeography of the Jurassic Stages of n orth­ treated, as are biostrati graphical dating and correlation with the Eu­ em and central is illustraled by 12 coloured maps (Plates ropean standard chronostratigraphy. The foraminiferal faunas ob­ 6-17). In Index of foraminifera, page 63, their stratigraphical rang­ tained from the areas in question have been used for bi ozonation. es in Lithuania, and in Sweden can be found. The fau nas of Lithuania and adjacent areas are compared with those of Scania and frami ng sea areas as to taxonornie composition Algimanras Grigelis, Lirhuanian Institute ofGeology, Sevcenkos 13, and representation. Similarities and major differences are com­ 2600 Vilnius, Lithuania. E-mail: grigelis@ geologin.lt mented on, and an attempt has been made to explain the major Erik Norling, Swedish Museum of Natural History, Department of characteristics of depositional environments, palaeoecology and Palaeozoology, Box 50007, SE-104 05 Srockholm, Sweden. biogeography. According to our interpretation main differences E-mail: erik.norling@nrm. se

Introduction

In the north-western part of the East European Platform water prospecting, drillings made for scientific purposes etc. Jurassic sedimentary rocks cover a vast area in the southem The stratigraphical representation of the Jurassic, viz. the Baltic Sea and framing land regions. The present study can­ presence of strata in terms of chronostratigraphical units, is cerns mainly the Jurassic of Lithuani a and southern Sweden, different in Lithuania and Sweden. In Lithuania, the Lower including offshore areas and the Jurassic of the Russian Jurassic is rnissi ng in exposures, whereas in Scania this se­ Kaliningrad Enelave (Fig. 1). In the East Baltic countries, ries forms the darninating part of the Jurassic rock surface. an area including SW Latvia, Lithuania and the Russian In subsurface core material from Lithuania and the SE part Kaliningrad Enclave, the Jurassic deposits reach a maxi­ of the Baltic Sea, however, the upper part of the Lower mum thickness of c. 240 m near the Lithuanian-Polish bor­ Jurassic (the Pliensbachian and Toarcian Stages) has been der. The total maximum thickness of the Jurassic in Sweden, recorded. The first marine influence in the East Baltic Juras­ restricted to the Province of Scania, is estimated to be of the sic seems to have occurred late in the Bathonian. During the order 700-800 m. In Lithuania, most of the Jurass ic expo­ Callovian a major marine transgression started, which is in­ sures are to be found in the vall ey of River Venta in the dicated e.g. by a rich ammonite fauna and a prolific micro­ north-western part of the country. In southern Lithuania fauna, of w hi ch the foraminifers are paid special attention in some exposures of Oxfordian deposits are located to the thi s monograph. The marine upper Middle Jurassic and vall ey of River Merkys. In Lithuania, as weil as in Scania, Upper Jurassic deposits have a fair! y widedistribution in the Jurassic outcrops are usually of minor dimensions. In eastern part of the Baltic region. In the west, in Scania, the Scania most of the exposures are to be found in the north­ first major marine transgression appeared in the Early Sine­ western and central parts of the province. murian . Thereafter, dominantly marine conditions Iasted The stratigraphical and micropalaeontological presenta­ throughout the . The Middle Jurassic of Swe­ tions in the present monograph are based on previous stud­ den, known mai nly from borings (and one outcrop only), is ies, by the authors rn ai ni y, of strata visible in exposures and represented by conlinental and lagoanal deposits; sand and of subsurface sequences penetrated by borings. The core clays with coal-seams of Bajocian and Hathonian ages. At material, which has been at our di sposal, originates from the very end of the Hathonian certain parts of western Sca­ mi ssions of various purposes; clay, coal, hydraearbon and nia were influenced by marine conditions, which progres-

6 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM sively invaded wider areas during the Callovian and Oxfor­ thank Mr Uno Samuelsson, Department of Palaeozoology, Swed­ dian. ish Museum of Natural History for careful dark-room work. Most The marine microfaunas of Callovian and Oxfordian of our draft illustrations were finally refined by Mr Algimantas ages in Lithuania and Scania show similarities, as weil as Rucys, Institute of Geology in Vilnius, using the Corel Draw soft­ differences. During the Late Jurassic full y marine conditions ware, a fine work for which we are most gratefuL Our sincere thanks go also to Professor Euan Clarkson, University of Edin­ Iasted longer in the eastern Baltic region than in Scania and burgh, who has corrected our English, and to Dr Anders Ahlberg, adjacent offshore areas. This is evident from the records of Lund University, who with his great experience in Jurassic geolo­ ammonites as well as foraminifers. In the following chap­ gy and sedimentology, has contributed most constructive criticism. ters, the Jurassic geology and stratigraphy will first be The mutual research visits in Lithuania and in Sweden have been described from Lithuania and the south-eastern part of the sponsored by the Royal Swedish Academy of Sciences (KVA), and Baltic Sea, then from Scania and adjacent offshore areas. the Lithuanian Academy of Sciences. We want to thank the The following chapters describe the composition of the Research Exchange Secretaries, Mrs Sascha Edblad, KVA , and foraminiferal faunas, and the based on them, Mrs Nijole Bulotaite at the Lithuanian Academy for kind and in the regions in question, followed by a comparison of the ductile treatment of our applications, and the academies for giving faunas. The final chapter concerns facies distribution, us substantial economic support to this project. We are most grate­ palaeo- and biogeography, and foraminiferal palaeoecology. ful to Dr Hans-Ji.irgen Teschke, Berlin, Ors Franz Kockel and Thomas Schubert, Niedersächsisches Landesamt fi.ir Bodenfors­ Acknowledgements. -This investigation was mainly carried out at chung, Hannover, who have kindly supported us to get the copy­ the Lithuanian Institute of Geology in Vilnius, and at the Swedish right for printing 12 coloured maps, illustrating the lithology, Museum of Natural History, Department of Palaeozoology in palaeogeography and structural geology of the Jurassic System in Stockholm. The authors want to thank Dr. Valentinas Baltrunas and northem Europe, maps compiled for the IGCP Project No. 86: East Desiree Edmar, Directors of the Lithuanian institute and the Swed­ European Platform, SW Border. Warm thanks go also to the refer­ ish museum respectively, and Professor J an Bergström, head of the ee of the manuscript resulting in this publication, Dr Lars-Henrik Department of Palaeozoology mentioned. For the scanning elec­ Nielsen, GeologicaJ Survey of Denmark and Greenland (GEUS), tron micrography of foraminifers, presenled in this publication, Ministry of Environment and Energy, Copenhagen, for construc­ equipment both at the Stockholm University, Department of Geol­ tive criticism and improving corrections. We thank the GeologicaJ ogy, and at the Swedish Museum of Natural History has been used. Survey of Sweden (SGU), Ministry of Studies and Science of We are grateful to Emeritus Professor Maurits Lindström, Stock­ Lithuania and the Royal Swedish Academy of Sciences for sup­ holm University for putting at our disposal the SEM microscope at porting the printing of this publication, and the SGU editors, his department, and to Dr Zhang lianhua and Mrs Yvonne Arremo, Ms Agneta Ek and Mrs Jeanette Bergman Weihed for their fine assisting us at the electron microscopes of the University Depart­ editing and layout work. ment of Geology, and the Museum of Natural History. We will

7 A. GRIGELIS AND E. NORLING

Jurassic geology and stratigraphy of Lithuania and the SE part of the Baltic Sea

In Lithuania the marine Early Triassic was followed by a and the Latvian village Nigrande. Callovian sands and sand­ Iong continental period resulting in erosion and deposition stones can be studied in the Saltiskes Pit, and in the slopes of non-marine sediments with major stratigraphical gaps in of River Vadakstis. In southern Lithuania, Oxfordian black Middle to Upper Triassic, as well as Lower and Middle clays are outcropping in the valley of River Merkys. Jurassic. Not until the Middle Callovian did major marine transgressions appear in Lithuania. Within the Lithuanian­ Polish (Peribaltic) Syneclise marine basins predominated Lower Jurassic from Late Middle Jurassic times throughout the Cretaceous No Hetrangian or Sinemurian strata are documented from and into the Palaeogene (Grigelis & Kadilnas 1994). The the Baltic area studied. The Pliensbachian and Toarcian south-western part of the syneclise is lirnited by a major tec­ Stages are represenred by the Jotvingiai Group, which in­ tonic lineament, viz. the Tornquist Zone, forming the boun­ cludes two formations, viz. the Neringa and Lava Forma­ dary between the East European Platform and the area of tions (Grigelis 1994, Grigelis & Suveizdis 1993, Fig. 6 here­ subsidence in western Europe. In the Lithuanian-Polish in). Syneclise, Jurassic, Cretaceous and Palaeogene sedimentary successions are characterized by repeated facies shifts and great diversity in lithologies. The analyses of the sedimen­ JOTVINGIAI GROUP tary successions of the and Cenozoic geological Neringa Formation (Upper Pliensbachian) systems show that various conditions prevailed, linked to changes in the depth of the basin. Differences in local A core, the 535- 567.5 minterval of drilling in the Yladirni­ environments may often have been eaused by interaction rov (Tarava) borehole, Kaliningrad Enclave, has been eho­ between eustacy and synsedimentary tectonics. sen as stratotype for this formation (Fig. 3). The Neringa Formation (Fig. 6) is composed of noncalcareous, light or yellowish grey and black sands and sandstones with black­ MAINLAND LITHUANIA ish coal- and plant bearing interbeds. In some sections of the Mesozoic and Palaeogene strata are restricted to SW Latvia, Neringa Formation, a basal conglamerate has been ob­ Lithuania and the Kaliningrad Enclave, whereas Estonia and served, resting on Lower or Upper Triassic deposits. the major part of Latvia are devoid of post-Palaeozoic de­ On the basis of palynological data, the Neringa Forma­ posits (Grigelis 1982b, Norling 1993). They include clastic tion is referred to the Lower Jurassic by Vienozinskiene & as well as carbonate deposits of continental, lagoonal and Kisnerius (1978). After a Iong Triassic-Early Jurassic break marine origin. The stratigraphy of the Jurassic in Lithuania in sedimentation (or Early Jurassic denudation), strata rep­ is illustrared in Table l. Two lithofacies zones may be distin­ resenting the Neringa Formation were deposited in a fresh­ guished, though one lithostratigraphical unit relevant for water lagoon, most Iikely in Late Pliensbachian time (Grig­ both zones is regarded to be valid. The Jurassic rocks of SW elis, Monkevich & Vishniakov 1985). The formation is Latvia, Lithuania, and the Kaliningrad Enelave gradually in­ present in a deeply submerged part of the Jurassic basin in crease in thickness towards the south and west reaching a SW Lithuania too. Its thickness may reach some 33 m. maximum of about 240 m near the Lithuanian- Polish bor­ der (Figs. 2-5 and Table 1). In rnainland Lithuania Jurassic Lava Formation (Toarcian) rocks usually rest upon the Triassic, but in minor areas on The Lava Formation (Fig. 6), oveflying the Neringa Forma­ or deposits too. In NW and Central Lith­ tion, exhibits a similar lithology indicating a continuation of uania Callovian and Oxfordian strata form the rock surface more or less the same depositional environment. The forma­ beneath the Quaternary cover. Further towards the south­ tion contains grey, greenish, and dark grey silt and clay with west Kimmeridgian and Volgian deposits are present, cov­ interealatians and lenses of fine-grained sand, pyritic con­ ered by Successively younger pre-Quaternary strata, viz. cretions and plantremains (carbonised wood fragments). Cretaceous and Tertiary (Grigelis 1982b). Since the 19th The Lava Formation differs from the Neringa Formation century outcropping Callovian and Oxfordian strata have in its high content of clay and in the composition of its spore been known from the vieini ty of the little town of Papile in and pollen flora (Vienozinskiene & Kisnerius 1978). The NW Lithuania. The exposures are mainly found in the val­ formation has been correlated with the Cechocinek Beds in ley of River Venta and at nearby localities, e.g. at Papartine Poland and given a Toarcian age (Grigelis, Monkevich &

8 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

~5 km CZJ Rhaetian and Jurassic, A presen t distribution B C Faults active in the NORWAY Jurassic

LATVIA

___• /------~ -···------Baltic Sea

ENCLAVE

----J.'~~'

Fig. l. A) Distribution of Jurassic rocks in the Baltic Sea area, Kattegat and Skagerak (at the base of the Quaternary. After Norling 1994). B) Distribution of the Rhaetian-Jurassic in Scania and adjacent waters (After Norling & Bergström 1987). C) Di stribution of Jurassic deposits in the Baltic countries (after Norling & Grigelis 1996).

RUSSIA & IITITi l i ~1 ITIIIIJ 2 t o 25 50 75 100 km "

Fig. 2. Present distribution of Jurassic sedimentary rocks in SW Latvia, Lithuania and the Kal iniograd Enelave of Russia, including the SE Baltic Sea (after Grigelis 1985). Legend: l) beneath the Quaternary, 2) covered by Cretaceous and Palaeogene deposits.

9 A. GRIGELIS AND E. NORLING

Table 1. Stratigraphical table of the Middle and Upper Jurass ic in the Baltic countries (foraminiferal zonation after Grige­ li s 1985, ammonite zo nation after Rotkyt e 1987).

LITHOSTRA­ REGIONAL ZONATION TIGRAPHY Stage Substa­ standard ammonite ge zones Ammonite Foraminiferal Formation

Craspedites notiger Upper Craspedites subditus Kachpurites fulgens 1-----+----'----=------j-'------'------'---f- ---L-- Epivirgatites nikitini Not reeorded 1---'--=------1 ...... VOLGlAN Middle Virgatites virgatus Not established Not established Dorsoplanites panderi Girdava llovaiskya pseudoscythica Beds with L.ower llovaiskya sokolovi Not established Margin u lina striatoeostata llovaiskya klimovi Aulaeostephanus Aulaeostephanus autisssiodorensis autissiodorensis Lentieulina illustris­ Upper Aulaeostephanus eudoxus Aulacostephanus eudoxus Lentieulina daiva KIMMERID­ Aulaeostephanus mutabilis Aulacostephanus mutabilis GlAN Tara va Lentieulina prussiea­ Rasenia eymodoee Beds with Lentieulina L.ower Amoeboeeras kitehini Pietonia baylei kuznetsovae Amoeboceras Ringsteadia pseudoeardata rosenkrantzi Amoeboc. regulare

Upper Deeipia deeipiens f-1 A""'rm=-'o~e;ocb

Perisphinetes eautisnigrae Am oeboceras glosense . Cardioceras Ophthalmidium stru­ OXFOR­ Middle Gregoryeeras transversanum tenuiserratum J\zuolija Cardioceras mosum - Lentieulina DIAN Perisphinetes plieatilis densiplicatum brestiea

Cardieeeras eardatum Cardieeeras eardatum Ophthalmidium sagit- L.ower 1------+------1 tum - Lentieulina Vertumniceras brueckmanni Quenstedtoeeras mariae mariae Quenstedtoeeras Lenticulina Quenstedtoeeras lamberti Upper lamberti chmielewskii Skinija L.enticulina Peltoeeras athleta Kosmaeeras ornatum paracultrala Erymnoeeras earo­ l.enticulina Erymnoeeras earonatum GALLO­ Middle natum cultratiformis Papartine l.enticulina VIAN Kosmaeeras jason Kosmaeeras jason pseudocrassa sigaloeeras ealloviense Beds with L enticulina L.ower Not recorded Papile Maeroeephalites maero­ okrojanzi eephalus

BATHO­ Clydoniceras diseus Beds with Ophthalmi­ Upper Not reeorded dium infraoolithieum Liepona NIAN "Oppelia" aspidoides

10 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Vishniakov 1985). The formation has a thickness of c. 45 m lakes after a Iong period of non-deposition, including Aale­ and a smaller distribution than the Neringa Formation. The nian times. The formation rests on Triassic or Lower Juras­ two formations represent deposits laid down in fresh water sic rocks. Its thickness varies between 80m and 140m and and brackish basins, possibly lagoons or coastal plain lakes it is recorded from rather deep depressions in the areas of (Vienozinskiene & Kisnerius 1978). Kursiai and N Gumbine-Kybartai (Figs. 3, 6). The distribu­ tion of the tsrutis Formation is determined by tectonic faults. Thisistrue of the 140m thick coal-bearing deposits record­ Middle Jurassic ed from the Vepriai Graben (Slabada-201 borehole), NE Lithuania. Samples from this borehole have yielded a rnac­ SKALVIAI GROUP roflora including plant of the genera and Hausmannia, Pachypteris lanceolata Brongiard, Nilsso­ The Middle Jurassic is represented by the Skalviai Group, nia acuminata (Presl) Goeppert, Gingkodium nathorstii which includes three formations; the lsrutis, Liepona, and Yokoyama, and sp. (Vakhrameev, Origelis & the Papile Formations (Figs. 6, 7). Mikhailov 1971). Originally, the lsrutis Formation most certainly had a {srutis Formation (Bajocian- Lower Bathonian) wider distribution than it has today. The present distribution Localities of the lsrutis Formation are known in the vicinity is affected by erosion, partly linked toMid-Kimmerian tec­ of Nida and Kybartai-Gumbine, W and SW Lithuania tonic fracturing and later inversion movements along the (Fig. 3). Its stratotype is a cored sequence, 365.5-451.3 m, western margin of the East European Platform. in Uljanov-3 (Kraupiskes) in the south-eastern part of the Kaliningrad Enelave (Simkevicius 1973). The rich content Liepona Formation (Upper Bathonian) of coal is characteristic of the formation, especially in the sandy-clayey parts. In some sections, up to 8 m thick lignit­ As stratotype of the Liepona Formation the 357-381 m ic beds have been recorded, in which the coal is evenly in terval of drilling in Kybartai-22 (Fig. 3), SW Lithuania has spread within the entire stratum (Fig. 6). been ehosen (Stirpeika 1968). The formation is composed of The lsrutis Formation is referred to the Bajocian - calcareous sands and sandstones with few finds of fossils . Lower Bathonian. lts sedimentation too k place in freshwater The sequence includes non-calcareous dark grey, laminated

LITHUANIA

7 Vilnius \ -/'y.r'<"") ....'-\ 1 POLAND '-".,;-

Fig. 3. Sketch map showing the location of Jurassic type seetians in Lithuania and the Kaliniograd area, commented on in the text. l) Papile, 2) Papartine, 3) Zadeikiai, 4) Dumpiai, 5) Stancaiciai, 6) Vilkyciai, 7) Afuolija, 8) Nida, 9) Panoviai, lO) Kybartai, 11) Kalva­ rija, 12) Simnas, 13) Lesnoye, 14) Pereslavskoye, 15) Ladushkin, 16) Vladimirov, 17) Znamenka, 18) Gvardeiskoye, 19) Belyi Jar, 20) Zheleznodorozhnyi, 21) Ulyanovo, 22) Prioziorskoye, 23) Kutuzovo, 24) Rucava. Simplified isopachs of Jurassic deposits are shown mm.

11 A. GRIGELIS AND E. NORLING

Fig. 4. Distribution and isopachs (in m) of Jurassic sedimentary rocks in the SE part of the Baltic Sea. Locations of borehole sections discussed in the text are given (after Kanev and Grigelis 1981). clays with a high content of mi ca, pyrite and organic matter. red to the Papi!e Formation. Along River Venta, and its trib­ The thickness of the formation may reach 70 m. The few utaries Luse and Zane in SW Latvia, whitish quartz sand, finds of foraminifers in thin marine intercalations, referred and partly coal-bearing sandstones crop out. to Beds with Ophthalmidium infraoolithicum (see p. 38), In general, the Papi!e Formation is camposed of grey, indicate a Late Bathonian age (Origelis 1980, 1985b ). The slightly calcareous, argillaceous sand and non-calcareous Liepona Formation rests upon deposits referred to the lsru­ black, laminated clay and silt. The strata contain pyrite and tis Formation, in certain areas on older Jurassic strata (Fig. plant remains represented by carbonised wood fragments. 6). The lithology, as weil as the fauna, shows similarities to The basal part of the formation is represented by 5 m of Upper Bathonian ones of NE Poland. black laminated clay and dark brown medium-grained sand with lenses of shell detritus, wood fragments and concre­ tions. They are overlain by yellowish sand exposed in the Papile Formation (Lower Callovian) upper part of the Saltiskes-1 Ciay Pit near the town of Papile The Papile Formation is the youngest lithostratigraphical (Figs. 3, 7). unit of the Skalviai Group. As stratotype a section at Papile Origelis ( 1960) coined the name of the formation and on has been ehosen (Figs. 3, 7). lts upper part, known as layer the basis of foraminifers obtained from borehole samples h, crops out in the River Venta Exposure No. l (Dalinkevi­ from Zemaitija, W Lithuania, an Early Callovian age was cius 1926). This part of the formation is represented by assigned by him. The assemblage has been referred to the 1.5 m of fine-grained, yellow sand. Drilling in the area has Beds with Lenticulina okrojanzi (Grigelis 1980, 1985b, shown that 13 m of sandy, clayey deposits beneath known p. 40 herein). Middle Callovian strata and resting on Lower Triassic red The present distribution of the Papi!e Formation has an clays, should be referred to the Papi!e Formation (Fig. 7). In archipelagic pattern, including many small islands, resting the Vadakstis Brook Valley, NW Lithuania small outcrops of either upon Lower Triassic, Permian or Devonian rocks. lts coarse-grained, ferruginous sand and sandstone occur, refer- maximum thickness is of the order 30 m.

12 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

100

C=:J Clayey sand !~; ~ ;~;~j Clayey sandslene and clay 200 [(1!!;:\'d/:\ii~\J Sand k "~~ :.-J Mari and sillslene 25 km ~ E:::::J Gravel ~ Mari and sandslene 300 [:::=--- - ~ Sill and clay

Fig. 5. A schematic SW-NE oriented cross section of the Jurassic in the Baltic Basin (After Grigelis 1994).

The Lower and Middle Jurassic Jotvingiai and Skalviai The ammonite fauna obtained from Papile-1, Papile-2 Groups are camposed of subcontinental terrigenous, some­ and the Papartine outcrops (Fig. 3) includes the following times coal-bearing sediments. The Liepona and Papile For­ species: Kosmaeeras jason, K. castor, K. obductum, K. o rna­ mations represent marine ingressions and have yielded fo­ tum, K. aculeatum, K. transitionis, K. cf . compressum, K. raminifers and remnants of a rnaerafauna (Grigelis 1985b ). gemmatum, and Peltoceras ex gr. athleta (Authors' names At the end of the Middle Jurassic, from Mid-Callovian time, are given in Index of Ammonites, p. 71 ). The best preserved marine transgressions into a shelf basin formed the forma­ ammonites are to be found in great nu m ber in concretions of tions described in the following. calcareous sandstone from layer P3 ; Erymnoceras corona­ tum, E. banksi, Kosmaeeras pollucinum, K. duncani should be mentioned (see Fig. 7). In the Papartine outcrop, the low­ Papartine Formation (Middle to Upper Callovian) er and upper boundary beds of the Papartine Formation have The name of this formation is derived from the Papartine not been defined (Rotkyte 1987). At some levels within the village situated near the little town of Papile on the eastem Kosmaeeras jason and Erymnoceras earonatum Zones bra­ side of River Venta in NW Lithuania (Fig. 3). The stratotype chiopods such as Rhynchonelloidea varians popilanica, of the formation is located at Papile and the reference sec­ Zeilleria popilanica and Ptychothyris dorsoplicata lithua­ tion at Papartine (Grigelis 1985b, 1993). In the Papile strato­ nica are common. The most complete sections of the Papar­ type section (Figs. 3, 7), originally described by Dalinkevi­ tine Formation are located at the Zemaitjia Depression, cius (1934), the Papartine Formation rests upon the Papile western Lithuania (Fig. 8). In the Vilkyciai and Sarkuva Formation (Lower Callovian). Between the two formations boreholes within this depression the formation is represenr­ a stratigraphical gap has been observed. The formation con­ ed by yellow grey sands, oolitic sandstones and Iimestones sists of greyish and brownish polymictic, fine-grained sands reaching a thickness of 13m (Figs. 3 and 8). Some sections and sandstones measuring 6.20-6.25 m in thickness (Grige­ of the formation, related to local structures, have been inter­ lis 199lb). prered as condensed deposits not more than 0.5- 0.8 m The Papartine Formation has been dated to Middle to thick. Late Callovian with the aid of foraminifers and ammonites In the Papile area, the upper part of the Papartine Forma­ (Pakuckas 1933, Grigelis 1985b, Rotkyte 1987). lt is tion, referred to the Lenticulina paracultrala foraminiferal ascribed to the Kosmaeeras jason, Erymnoceras coronatum, zone, is camposed of sandy deposits. Forther towards the and the Kosmaeeras ornatum Ammonite Zones (Middle westand deeper into the basin the lithology changes gradu­ Callovian to early Late Callovian). In terms of foraminifer­ ally to greyish brown clays, referred to the Skinija Forma­ al zones, established by Grigelis (1985b), the formation ear­ tion (Fig. 7). The upper boundary of the Papartine Forma­ responds to the Lenticulina cultratiformis and Lenticulina tion is diachronous. paracultrala Zones (pp. 40, 41 ). In the stratotype section the formation is overlain by black clays of the Skinija Forma­ tion (Fig. 7). Skinija Formation (Upper Callovian) In the parastratotype section of the Papartine Formation, The stratotype seetio n of the Skinija Formation is a core sec­ at present not accessible, the upper part of the formation is tion of the Vilkyciai-18 weil in western Lithuania (Figs. 3, camposed of oolitic rnaris and inaequigranular sands not 8). Another section, documented by drilling, has been eho­ exceeding 1.5 m in thickness. sen as parastratotype, viz. Lesnoye-50 at Sarkuva, Curonian

13 A. GRIGELIS AND E. NORLING

Q) c c Q) OJ o o OJ Q)...-- Cll -~ -~ Q)...-- Cll OJ

Fig. 6 a. Correlation of some lithological columns from the Lower and Middle Jurassic in Lithuania and the Kaliniograd Enelave (After Grigeli s 1980, 1985).

·· - ·· - ·· - · ...... ~~------...... - ·· - ·· - ·· ...... ------········ · · ·· · ·· - ·· - ·· - · ...... ------cm.. -.. -.. • ...... ---- · ··· · ··· · · ·· · - ·· - ·· - ·· . . . ------····· ··· ···· · ·· - ·· - ·· - · ...... ------············ · - · · - · · - ·· ...... ------· ··· · · ··· · ·· · ·· - ·· - ·· - · ...... ------[Jillill] . ------B ····· ········ - ·· - ·· - ·· ...... 2 3 4 5 _=:=:=:=: • ---=-=-=-=-=- Ed:-:-:-:-r- r-r-,...... -r-....--,.... =-=-=-=-=____ _-_-_-_-_------_- .---.---.---....--.-- -______------.-- .-- .-- ....-- [[]------...... • ------.--.---.---....-- 6 7 8 g 10 -: : : :-: : : :-: : : :-: ·-··- ··-·· ~: : ~::~::~ ·-··-...... · ·-··. .. . 0EJ 11 12 14 15

Fig. 6 b. Lithology legend fo r Figs. 6- 10. l) conglomerate, 2) sand , 3) clayish sand, 4) sandstone, 5) clayish sandstone, 6) marly sand­ stone, 7) silt, 8) limestone, 9) clayish limestone, 10) mar!, l l) concretions (silicified, carbonaceous), 12) coal-bearing sediment, 13) pl ant­ hearing, laminated clay, 14) fossi li ferous beds, 15) hi atus.

14 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Stage, For­ ·E ~u en- substa­ ma­ ·-en Lithology ..C Q) Ammonites Foraminiters ge tio n l-C x. x . x. x u1 -- -1 - - . \ ~m Uo ------

c -- - ctS ..... _-_-_- o Q) ctS "O - - - ..... $: o .E o :J x _J >N 6.6 o <("'

82 -=-=-- 52 -Car dioceras o /aevigatum Bod., C. popi/aniense Bod., Q. mariae d 'Orb . s,-Ouenstedtoceras ~ :~ =-=-=- o lamberti Sow., c -~=oQ Lenticulina ,__ :s;:: r - -- Q. mariae d 'Orb . 2.1 tumida Q) (f) _ ~~~~ 1/ K. acu/eatum E ich., §:: q K. transitionis Ni k., ~ ~---4~-4~~~~-+--~ K. Rein. , p 3 _l5Q:2j 0 castor K gemrnatum Phill., Lenticulina P1.2IT •• 1.7 K. ornatum Schloth., paracultra o j!ibd±~~O~ ___j~K~.p~r~o~n~m~e~~~e~is~.------t----.------~ c f---­ . y.y. y C'Ö Erymnoceras ">o n ·Q) earonatum (Brug),. Lenticulina ctS 2.5 c E. banksi Sow ., cultratiformis o :;::::;..... m n ctS K. pollucinum Teis ., (f) Q. 2 ctS m K. duncani Sow. .~ '§ -+~~*4~~---4------~ ~ Q r------~ a.. m1_ o u·.;:::; 1m_ K osmoceras ~ ~ 1 jason Rein ., ffi "§ 1 K. ca stor R e in ., ...J u Lenticulina 15 O 3 · K. obductum pseudocrassa 0 Buckm.

Q) h R , =v s: Papile l ~ .9

Fig. 7. The Papile stratotype section, Papartine Formation, Middle CaJlovian (after Grigelis 1985). Legend symbols are given in Fig. 6b.

Spit in the Kaliniograd Enelave (Fig. 8). The formation is Throughout the Lithuanian- Polish Basin the Skinija narned after the Skinija rivulet, an eastern tributary of River Formation consists of clays, si l t and siltstones. In the lower Minija (Peteraitis 1992). In Vilkyciai stratotype section, part of the formation the sequence is camposed of greyish 117.1-159.2 minterval of drilling, the Skinija Formation and brownish clays, whereas the upper part is characterized rests upon the Papartine Formation and is overlain by the by dark grey to blackish clays, occasionally rich in Astarte Azuolija Formation (Figs. 8, 9). The succession seems to be shells. The most complete seetians of the Skinija Formation stratigraphically complete and consists of homogenous have been found in the Zemaitija and Nivensk Depressions. black shales containing carbonate concretions. The equiva­ Foraminiferal studi es by Grigelis ( 1985b) indicate that lent Sarkuva section, the parastratotype, is found at a depth the Skinija Formation should be referred to the Upper Cal­ of 280.9-335.0 m in the Lesnoye-50 borehole (Fig. 8). lovian, in terms of foraminiferal zones to the Lenticulina

15 A. GRIGELIS AND E. NORUNG

rol Stage, c Substage oE o LL. ·~ Dumpiai-226 Lesnoye-50 L.adushkin-55 l ...... ro ..... Q) ::"' Stancaiciai-25 Vilkyciai-18 Pereslavskoye-20 o c 3\: o x ro o ::l 0'6 _J <>N

...... ro Q) Q. c Q. ~ :::) (j)

·Q) c :;::; ...... ro Q. ro D.... - . - J) p

Fig. 8. Correlation of borehole seetians in the Skinija Formation, Upper Callovian, Lithuania, including the Vilkyciai-18 stratotype, and the Lesnoye-50 parastratotype sections. Legend to lithology is given in Fig. 6b. paracultrata and Lenticulina tumida Zones (p. 41). Amman­ Upper Jurassic ites are rare. Rotkyte (1987) has recorded Quenstedtoceras lamberti, Q. carinatum, and Q. leachi in the upper part (Bed A..zuolija Formation (Oxfordian) Sl) of the Papik outcrop No. 2 (to be found in the The Afuolija village in western Lithuania (Fig. 3, p. 11) has Jurakalnis gorge). In the Vilkyciai-18 and Zadeikiai-27 wells given its name to this formation. A cored sequence in the (Figs. 8, 9) ammonites characteristic of the Quenstedtoceras Ladushkin-55 (Liudvigsortas) borehole in the Kaliningrad lamberti Zone, including Quenstedtoceras henryci, have Enelave has been ehosen as type stratum, whereas the para­ been obtained (Table l, Fig. 3). The lower boundary of the stratotype is defined in the Azuolija-20 borehole (Fig. 9). In Skinija Formation is diachronous, as mentioned before. At the Ladushkin-55 stratotype, 369.8-448.9 m interval of several si tes the upper boundary is marked by a break in the drilling (Fig. 9), the Azuolija Formation overlies the Skinija sedimentation. Above thi s, oolitic sandstones of the Azuoli­ Formation, which in turn is overlain by the Tarava Forma­ ja Formation follow. In the Papik area the thickness of the tion . Between the first two formations, a distinct break in the Skinija Formation is about 2 m. In SW Lithuania, however, sedimentation has been observed. The stratotype, which is the formation ma y reach a thickness of about 55 m. In local complete without stratigraphical gaps, is camposed of clay­ structures of Central Lithuania and in the Suvalkai area of ey and marly, fairly homogenous deposits. At the base of the SW Lithuania, the Skinija Formation is rnissing. Here, the stratotype, an oolitic clayey sandstone occurs, 0.9 m thick. Afuolija Formation rests directly upon the Papartine Forma­ In general, the lower part of the stratotype consists of detri­ tion. tic, clayey limestones, 25 m , with abundant spongian spic-

16 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

dl Stage, c substage Eo o LL:;:::; f\zuolija-20 Lesnoye- 50 Belyj Jar-1 Panoviai- 3 Vilkyciai- 18 Ladushkin- 55 Prioziorskoye- 1 s K, K, 92.2 >"" 238.0 :::''" 369.8 408.0 327.5 164.7 l

o ~ -=-=-= il.A=--=--=--1.1\ <>N ~-~ ~-~ ~-~ wr-- J~~~~_ '\64.0'1="'=-=-1 1--- ~ 198.0 - -- Middle ~=~=~= e;196.0 =~~~~~ 451 . ~wer ~ 204.5::=::=::= [ m 280.9 10 16.011<=--=---=---r--- ~-~~~---~~~2o~6~.2E_=-~_=-~__=V J2cl a ~;I,\:~I =:~:~: Cii c -_-_-_ 384.5 --- 219.0 _-_-_- c.. 1 c.. :52 ::::l (f) : == = = =r220.~ '""·"~ J,cl, 442.0.

4 86 448.9 ~~~~-"""""'·· '&~ffi:!'~ ---- J2cl 3 J2cl 3 411.5

Fig. 9. Correlation of boreho le sections in the Oxfordian ;\fuolija Formation of Lithuania, including the Ladushkin-55 stratotype, and the ;\fuolija parastratotype sections. Lithology legend is given in Fig. 6b.

ulae, whereas the upper part (47 m thick) is composed of Foraminiferal, as weil as ammonite finds, indicate an interbedded rnaris and silt. In the parastratotype, 159.0- Oxfordian age of the Afuolija Formation. It seems as if the 206.2 m in Afuolija-20, sil ty sediments are prevailing. In the formation more or less corresponds to the entire Oxfordian Baltic Basin the Afuolija Formation, represented by grey Stage and the ammonite fauna has justified the following micaceous, carbonaceous silt, clay and mar!, has a more re­ biostratigraphical subdivision (Rotkyte 1987, Origelis stricted distribution than the Skinija Formation. In some 1985b): borehole sequences, viz. in Vilkyciai-18, Simnas-3, and Kal­ varija-2 (Fig. 3), carbonaceous detritic rnaris and Iimestones Substages Ammonite zones Foraminiferal zones are found in 5 to 8 m thick bioherms. Foraminiferal data in­ Upper Oxfordian Amoeboceras dicate a Middle Oxfordian age of the reef-like structures rosenkrantzi Lenticulina quenstedti (Grigelis 1985b). A. regulare A. serratum In the outcrops of the Lower Oxfordian in Lithuania am­ A. glosense monites are rare. From the Papile-2 and Papile-3 exposures Vertumniceras mariae and Cardioceras laevigatum have Middle Oxfordian Cardioceras densi­ Ophthalmidium stru­ plicatum mosum - Lenticulina been recorded. Among Middle Oxfordian ammonites ob­ brestica tained from borehole sections Cardioceras zenaidae, Cardi­ oceras tenuistriatum and non-specified forms of the "tenui­ Lower Oxfordian Vertumniceras Ophthalmidium sagit­ mariae tum - Lenticulina serratum group" may be mentioned. Upper Oxfordian am­ Cardioceras brueckmanni monites, found along with foraminifers characterising the eardatum Lenticulina quenstedti Zone, belong to genus Amoeboceras. In the Azuolija-20 type section Amoeboceras leucum (found As commented on before, the lower boundary of the at a depth of 181.5 m), Amoeboceras rosenkrantzi (169 .4 Afuolija Formation is characterized by the shift from black m), and some unidentified species of Amoeboceras have clays of the Skinija Formation to the basal oolitic sandstone been found (Figs. 3, 9). followed by grey, marly clays. The upper boundary of the

17 A. GRIGELIS AND E. NORLING

Zheleznodorozhnyi-5 Ladushkin-55 Kutuzovo-1

Stage, d:s Gvardeyskoye-57 Belyj Jar-1 Znamenka-59 ,_E c substage o o K, K, K, ~en ~en-st K, U.:;:; 328.0 .. 399.0 IL;,.L,;,.I 354.6 340.0 ·" ...... 356.0X~ 432.0 f.s - x - x - x c -=-J ------l • • 439.0.1=====~- -~ ,_ c Q) o 3 .c o -:=c i=- ...J ~·~ · · ~~ 351.0-- -

,_ 426.0 ~ ~ ~ Q) 369.8 tailifl,,:8~'·,6, • Q. Jpx3 v Q. :J 394.5 373.5 - c f--­ m Ol :0,_ Q) E ,_ ---,r,-J:O~ E Q) 3 ~ o ...J 476.0

427.4

c m :~ :.0,_ o ::l .2 >N \ 517.0ffi~~ o>< < l,/ L---~----4-----~'

Fig. l O. Correlation of boreho le seetio n s from the Kimmeridgian Tara va Formation and the Lower Tithonian Girdava Formation, includ­ ing the Gvardeyskoye-57 stratotype seetian (See Fig. 3). Lithology legend is given in Fig. 6b.

Azuolija Formation is less distinct; the grey, marly clays Miulhauzenas village in the western part of the Kaliningrad gradually turn into siltstones of the Tarava Formation. Enelave (Silas & Sambora 1990, Peteraitis 1992, and Fig. 3 The Afuolija Formation is the result of one of the most herein). comprehensive marine transgressions into the Baltic Basin At its stratotype section, the Tarava Formation is com­ during the Jurassic. The thickness of the formation may posed of grey siltstones and claystones with interbeds of reach 85 m. A detailed biostratigraphical subdivision of the dark grey clay. It rests on the Azuolija Formation and is Oxfordian in Lithuania, based on foraminifers, is given in overlain by the Girdava Formation. The boundary between p.41 (Grigelis 1985b ). the siltstones of the Tarava Formation and the marls of the Afuolija Formation is gradual. The upper boundary of the Tarava Formation to the Girdava Formation is characterized Tarava Formation (Kimmeridgian) by a transition from sandy siltstone to clayey silt. In some As stratotype of the Tara va Formation the 351 .0-427.4 m other sections of the Tarava Formation clayey sandstones, interval in the Gvardeiskoye-57 (Miulhauzenas) borehole rnaris and biogenie Iimestones with spongian spiculae have has been ehosen (Fig. 10). The name of the formation orig­ also been found (Grigelis 1985b). i nates from the little town of Tarava (Vladimirov), which is Foraminiferal and ammonite faunas of the Tarava situated in the ancient NotangaLand not far away from the Formation indicate a Kimmeridgian age (Grigelis 1985b,

18 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Rotkyte 1987). The foraminiferal zonation by Origelis is dantly (Grigelis 199la, 1995). presented on p. 43. A subdivision into substages and bio­ In this area Jurassic stratigraphy is based on records zones has been made. Strata which have yielded a few from deep petroleum exploration weil s drilled in 1980- 1984 amrnonites of the Amoeboceras kitchini Zone (including (Fig. 4). As to distribution and age of different formations, Rasenia evoluta, Amoeboceras kitchini and Rasenia cf. additional data were received from dredging and shallow lepidula) have been given an Early Kimmeridgian age weil drilling in the Kursi4 Marios Lagoon and offshore from (Table 1). From borehole sections the following Upper Kim­ Zelenogradsk (Krantz) during the years 1978 to 1985. The meridgian amrnonites have been recorded: Aulacostephanus results achieved from offshore operations, including litho­ cf. moeshi, A. aff. eudoxus, A. eulepidus and Amoeboceras logical analyses and foraminiferal studies, have been com­ cf. anglicum. This Late Kimrneridgian amrnonite fauna in­ pared with corresponding data from rnainland Lithuania. In dicates the presence of the Aulacostephanus mutabilis, this way the stratigraphical subdivision established for land A. eudoxus, and A. autissiodorensis Zones (see Table l, p. l 0). areas was transferred to the SE Baltic Sea area (Grigelis 199la). In the SE Baltic area Jurassic rocks are distributed Girdava Formation (Lower Tithonian) within a narrow bett from Klaipeda south-westwards to Leba in Poland (Figs. l, 4). The Jurassic is known from The stratotype section of the Girdava Formation has been boreholes within the C and D blocks marked in Fig. 4. The ehosen from the same borehole as for the Tarava Formation, presence of Lower, Middle and Upper Jurassic deposits is at 328-351 m (Fig. J 0). The Girdava Formation forms the recorded. Up to the top of the Bathonian the sequence con­ uppermost part of the Jurassic succession in the East Baltic sists of continental deposits. From Callovian time to the end region. Its name is given after a little town, Girdava (at of the Jurassic marine conditions prevailed. The total thick­ present officially narned Zheleznodorozhniy), located in the ness of the Jurassic in the SE Baltic area increases towards ancient Barta Land in the southem part of the Kaliningrad the southwestfrom about 64 m (05-borehole) to more than Enelave (Silas & Samhora 1990, Fig. 3 herein). The strato­ 200m (C9-borehole) (Fig. 4). type consists of 23 m of grey marl, clay and silt overlying The Jurassic sedimentary rocks rest directly upon Lower the Tarava Formation. In its type section the upper boundary Triassic reddish clays and siltstones and are succeeded by of the formation is erosional. With a great stratigraphical greenish glauconitic sand of the Lower Cretaceous. The fo­ gap the Girdava Formation is overlain by greenish glauco­ raminiferal biostratigraphy (p. 38) is based on analysis of nitic sand of Albian age, belonging to the Jiesia Formation, drill cuttings. Lithologs have also been used for lithostrati­ indicating that the major part of the Lower Cretaceous is graphical purposes. missing (Grigelis 1958b). Based on foraminiferal analysis, e.g. by finds of Margin­ ulina striatocostata, Origelis (1985b) referred the Girdava Lower Jurassic Formation to the Lower Volgian. According to Rotkyte Rocks of Hettangian, Sinemurian and Early Pliensbachian (1987) ammonites are rare in this formation. Species to be ages have not been recorded from the offshore well materi­ mentioned are Pectinatites boidini and Pavlovia hypophan­ al studied. The Upper Pliensbachian (Neringa Formation) tica, indicating Early and Middle Volgian ages. According to and Toarcian strata (Lava Formation) consists of continental the Jurassic chronostratigraphy, the Lower and Middle Vol­ sand, sandstones and clays together referred to the Jotvin­ gian, being parts of the regional Volgian Stage of the East giai Group (p. 8). In the South Baltic (C8-borehole) the European Platform, may be equivalent to the Lower Titho­ Neringa Formation has a thickness of some 15 m, whereas nian. Consequently, the Girdava Formation can be referred the Lava Formation measures 31m (Figs. 4, 11). to the latter substage (Grigelis & Suveizdis 1993).

Middle Jurassic SOUTH-EASTERN PART OF THE BALTIC SEA NoAalenian deposits have been recorded in borehole mate­ rial studied. Bajocian, Bathonian and Lower Callovian stra­ In the south-eastem and southem parts of the Baltic Sea ta, referred to the continental Skalviai Group, have been Mesozoic deposits are widely distributed (Figs. 2, 4, 5, Il). found in boreho le sam p les from the C Block (Figs. 4, Il). In this area they are affected by tectonic movements along No thorough dating of the Middle Jurassic Skalviai Group the NW slope of the Lithuanian-Polish Syneclise, the for­ has yet been carried out. In the C8- and C9-boreholes the mation of which started in Late Permian time. From the east Skalviai Group is represented by clays and siltstones with towards the west in the SE part of the Baltic Sea, Mesozoic interbeds of sand. In nearby land areas of Lithuania this deposits cover , Devonian and Permian rocks discor- group is subdivided into three lithostratigraphical units, viz.

19 A. GRIGELIS AND E. NORLI NG

C8-1 82-1 06-1 05-1 p Q Q Q C/) 155 113 117 ::l 103 ~ o X· X X· X Q) 176 166 181 o . . . Cll 290 ~- -- 194 ~ ~ () l-_-~ = = =_ -= =_ x- x- x -x 260 ___,/ 1-_-_ - _ x x x x · X X "-- 1-- - ~ r- : -:-: .S2 Q. / ·X·X·X· 400 ~ :J - _-_- 385 Cil . x x. x. ~~ /- _ - _ -476 J(i;Tj :;;X-X 414 \ ;~,- ~:~ 5::2 - - - .9::2: :-:-: - \ -:-'!-: 540 p2

X X·X X

-_-_v_ ---v-- -- - 881 =====:::--- w---:-:-:-:- p2 W:::::::: -:-:-:-: 2 3

4 5 6

Fig. Il. Mesozoic sedimentary rocks from boreholes in the SE part of the Baltic Sea (After Kanev & Grigeli s 1991). Legend: l) sand­ stone, 2) clay, 3) siltstone, 4) mar! , 5) dolomitic mar! , 6) stratigraphical gap.

the lsrutis, Liepona and Papile Formations. Offshore from Lenticulina parainflata, Epistomina mosquensis, Lenticuli­ Lithuania, the total thickness of thi s group is of the order na hebetata, and Epistomina gracilis may be mentioned. 50 m. The presence and distribution of Kimmeridgian and Vol­ gian strata in the SE Baltic area is not yet established. Rocks of these ages are found in borehole sections in onshore Middle and Upper Jurassic areas of SW Lithuani a and the Kaliningrad region. From the Middle Callovian upwards in the Jurassic succes­ In the following, some information will be given from sion, the deposits are of marine origin . In the SE Baltic area two offshore weil s from the SE part of the Baltic Sea: the Callovian and Oxfordian Stages only have been identi­ fied . In the Gdarisk Basin deposits of these stages form the D6-3 Borehole (Figs. 4, 11) rock surface. They include sandstones, siltstones, clays, Location: 55°19' N, 20°36' E rnaris and limestones. Callovian strata may reach a thickness The 169-266 m interval (below sea level), penetrating Cal­ of 51 m, whereas Oxfordian deposits have been estimated to lovian and Oxfordian strata (undivided), shows dark grey 85 m (C9-borehole). ciay with interealatians of Iimestones and sandstones. At the From the Middle and Upper Jurassic the following base of this sequence greenish g re y rnaris occur, probably to lithostratigraphical units have been recognized: Papartine be assigned to the Papartine Formation. In this section Formation (Middle to Upper Callovian), Skinija Formation fo raminifers are rather common. Species recorded, such as (Upper Callovian), and Azuolija Formation (Oxfordian), all Lenticulina brestica, Epistomina gracilis, Lenticulina para ­ known and weil defined from rnainland Lithuania (p. 13). inflata and Epistomina mosquensis indicate Middle Callo­ As characteristic foraminifers of these offshore deposits vian to Oxfordian ages.

20 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

TABLE 2. Foraminiferal species recorded from the Callovian and Oxfordian of the CS-1/82 bore­ hole, SE Baltic Sea. For borehole location see Fig. 4.

Upper ! Low er ! Ox- Callovian ! Oxfordian ! ford. Species De th of sarnples, m 400 395 390 380 375 370 360 350 340 300 Epistomina porcellanea o Citharinella schellwieni • Ichthyolaria suprajurensis • Lenticulina papillaecostata • Troeholina ldaipedica • • Epistomina elschankaensis o • Astacolus Iimataeformis • • Planularia limataeformis • • Pseudolamarekina rjasanensis x o Citharinella nikitini • Lenticulina involvens • • Lenticulina uhligi • • • • Epistomina mosquensis x o x x Epistomina planiconvexa XX x XX x o o Marginulinopsis erucaeformis • Lenticulina hoplites • Lenticulina chmielewskii • Lenticulina tumida o • o • • Lenticulina polonica • Epistomina nemunensis o Lenticulina brueckmanni • Epistomina volgensis o Paulina furssenkoi • Marginulinopsis folium o • Epistomina intermedia x XX x Troeholina trasversarii o o x Epistomina stelligeraeformis o • o Epistomina gracili s x x x o Epistomina rjasanensis x x x x x Epistomina uhligi o x XX Astacolus dubius • • Citharina chanika • Lenticulina hebetata • • o • • Epistomina parastelligera o • • Lenticulina sp. •

Number of specimens: •1-2, o 3-5, x 6-10, xx 10-30 shells.

C8-1 Boreho/e (Fig. 11, Table 2) Deeper intervals of the CS-1 borehole, i.e. 400--476 m, Location: 54°46' N, 19°43' E contain non-marine strata referred to the Lower and Middle Jurassic. Due to the lack of diagnostic fossils, no exact dat­ The 290-375 m interval (b.s.l.), including dark grey marls, ing has been possible. The non-marine Middle Jurassic in silty clays and siltstones, has been referred to the Oxfordian the SE Baltic offshore areas is represented by dark, grey based on forarninifers. Species to be mentioned are: Lenti­ sandstones poor in calcareous content They are referred to culina hebetata, Epistomina rjasanensis, Epistomina graci­ the Liepona Formation (Upper Bathonian), which is resting lis and Troeholina transversarii. The 375--400 minterval in­ on top of Lower Jurassic strata (Toarcian), the latter being cludes dark grey and grey calcareous clays. The fairly rich represented of kaolinized sandstones of the Lava Formation. foraminiferal fauna includes species such as Lenticulina tumida, L. polonica, Planularia deeckei, Epistomina mos­ quensis and E. planiconvexa indicating Middle to Late CaJ­ lovian ages.

21 A. GRIGELIS AND E. NORLING

Jurassic geology and stratigraphy of scania

After deposition of mainly continental to deltaic sediments bachian and the Toarcian Stages with the aid of palynostra­ in Late Triassic to Hettangian times, several marine trans­ tigraphy, ammonite, foraminiferal and ostracodal biostrati­ gressions invaded Scania during the Early Jurassic. Jurassic graphical datings and zonation (Fig. 14, p.26). deposits cover the major part of western Scania and adjacent offshore areas. Minor faultbounded basins and small isolat­ Höganäs Formation (Rhaetian- Hettangian) ed inliers in central and north Scania indicate that the distri­ The Höganäs Formation, subdivided into three members, is bution of Jurassic deposits prior to denudation periods, was a unit some 250m in thickness, spanning the Triassic-Juras­ much widerand more continuous in the past than today (Fig. sic boundary in W and NW Scania. It was originally de­ 12). Usually, Jurassic rocks rest upon Upper Triassic (Rhae­ scribed as the Höganäs Series by Troedsson (1947, 1951). tian) deposits. There are exceptions, however, mainly linked For information on Lower Jurassic local stratotypes in Swe­ to tectonic (Kimmerian) activities during the Jurassic. In den see Sivhed (1984). Based on plant macrofossils and pa­ some parts of the Vomb Trough for instance (Fig. 12), Mid­ lynomorphs the formation has been dated to Rhaetian-Het­ dle Jurassic strata rest directly on the Proterozoic crystalline tangian. The Rhaetian part of the Höganäs Formation, repre­ basement. In other parts of Scania there may be major gaps senred by the Vallåkra and Bjuv Members, has been as­ within the Jurassic succession. In certain part of the signed to the Rhaetopollis - Limbosporites Zone by Lund Ängelholm Basin (Fig. 12. See also Guy-Ohlson & Norling (1977) and Guy-Ohlson (1981). 1988), the Upper Jurassic (Oxfordian) is overlying Pliensba­ chian strata. Many varieties of the stratigraphical represen­ Vallåkra Member (Rhaetian). The basal member of the tation could be exemplified. Even if the major part of Scania Höganäs Formation, the Vallåkra Member, is regarded as once was covered by Jurassic sediments, marine as weil as forming a transition between the continental Kågeröd For­ non-marine, there were also land areas subjected to denuda­ mation (Norian?) and the deltaic, coal-bearing deposits of tion, viz. landscapes characterized by freshwater sloughs, the Bjuv Member (Sivhed 1984). The Vallåkra Member in­ forests and, in Central Scania, high volcanic necks. As in the cludes grey and variegated clays with sphaerosiderite and North Sea Graben System, Central Scania was subjected to greenish sandstorre lenses. In the Helsingborg area (Fig. 12), volcanism from the Toarcian/Aalenian, the Middle Jurassic the thickness of this member is estimated to about 30 m, ac­ and onwards during the Jurassic period (Fig. 12 herein, Nor­ cording torecords from boreholes (Erdmann 1915, Troeds­ ling et al. 1993). In Central Scania more than 70 Mesozoic son 1947, Sivhed & Wikman 1986). The clays of the basaltic necks have been recorded (Bergström 1981). Vallåkra Member have been used for facade bricks, drain­ According to Klingspor (1976) most of the K-Ar datings of pipes etc. (Norling et al. 1993). volcanic basalts group around 167 Ma and 108 Ma. Recent palaeomagnetic datings, however, have yielded older, Toar­ Bjuv Member (Rhaetian). The following unit, the Bjuv cian-Aa1enian ages (Bylund & Halvorsen 1993). Member, may be defined as the sedimentary sequence Nowhere in Scania complete sections of the entire Juras­ between and including the two main coa1-seams of the sic can be studiedin exposures. In outcrops the Lower Juras­ Rhaetian. The lower seam (B-seam) forms the boundary to sic can best be studied in NW Scania, along the coast of the Vallåkra Member. The upper seam (A-seam) has been Öresund, in quarries of the coal and day mirring district and ehosen to mark the boundary to the Helsingborg Member in some road ditches, where the soi1 cover is thin or absent. and thus the lithostratigraphical boundary between the Tri­ At one outcrop only, the Eriksdal Sand and Clay Pit of south assic and the Jurassic (Fig. 13). The Rhaetian coal and fire­ central Scania (Fig. 17), Middle and Upper Jurassic strata clays have been mirred for centuries in NW Scania, on a are visible. This is the most comprehensive section of the scale of national economic interest for more than 200 years. Swedish Jurassic, exposing Pliensbachian, Toarcian, Bajo­ Though still mirred in a few quarries, coal and clay exploita­ cian, Bathonian and Kimmeridgian strata (Edström et al. tion is only of minor importance today. Between the two 1991, Norlinget al. 1993). From many boreholes, however, main coal-seams (in some areas split up into several seams), more or less complete Jurassic successions have been re­ the Bjuv Member is represenred by sandstones, siltstones, corded. clay and claystones, characterized as palaeosols with under­ Lower Jurassic clays and autochthonous coal-seams followed by lenticular­ ly bedded mudstone, sometimes rich in ripple marks and A fairly complete Lower Jurassic sequence occurs in Scania, trace fossils, beds upwards grading into fiaser bedded sand­ which is referred to the Hettangian, Sinemurian, Pliens- storres (Ahlberg 1994). Its thickness may be up to 25m.

22 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

o 25 km p;~:] Rhaetian and Jurassic, llSllSJ present distribution

Faults active in the Jurassic

Q\ 'i • Kristianstad

Fig. 12. Present distribution of Rhaetian and Jurassic rocks in Scania with adjacent areas tagether with faults. The volcanic activity (more than 70 basalt necks have been found in Central Scania), is datedas Jurassic and Crecaceous (after Bergström 1981, Norling and Bergström 1987).

Helsingborg Member (Hettangian). The Hettangian part gian-L. Toarcian), Reophax horridus (Rhaetian-Jurassic), of the Höganäs Formation is called the Helsingborg Mem­ and another five species previously described from Rhaetian ber. It has a known thickness of 215 m and has been de­ strata only. Those species are: lchthyolaria intercostata, scribed by Troedsson (194 7, 1951) am o ng others. A brief Pseudonodosaria holocostata, P. plumiricostata, Reophax presentation was given by Sivhed (1984), whereas Ahlberg eominutus, and Tetrataxis enjlata, all withKristan-To limann (1994) and Pierikowski (1991) presented sedimentological (1957, 1964) as the author. The foraminiferal assemblage studies of this unit. Detailed descriptions from four local­ with Rhaetian and post-Rhaetian forms together may indi­ ities are given by Ahlberg in Norling et al. (1993). cate presence of reworked Rhaetian microfossils in Hettan­ Lund (1977) estab1i shed the Pinuspollenites-Trachys­ gian strata, orthat the microfauna recorded by Kri stan-Tall­ porites palynomorph assemblage zonefor the Hettangian in mann in Rhaetian strata in fact has a Rhaetian-Hettangian Scania (Fig. 14). Finds of foraminifers in Hettangian strata range. The Hettangian age of the Helsingborg Member is (Helsingborg Member) are restricted to one locality only, based on palynomorphs, plant fossils and bivalves (Norling the Välluf Viaduct Exposure (Norling 1972), some 7 km 1972). SSE of Helsingborg centre (Fig. 12). The fa una! assemblage includes species such as Ammodiscus asper (Liassic), Astac­ Höör Sandstone Formation (Rhaetian?- Hettangian) olus semireticulata (Hettangian-L.Sinemurian), Astacolus ex gr. varians (J urassic ), Marginulina lamellosa (Hettan­ In Central Scania, Lower Jurassic (perhaps also Rhaetian) gian-Pliensbachian), Mesodentalina tenuistriata (Hettan- strata rest directly upon the weathered crystalline basement.

23 A. GRIG ELIS AND E. NORUNG

The Höör Sandstone is mainly referred to the Lower Juras­ c. 25 m. Silicified sandstones of the Vittseröd Member have sic and is succeeded by tuffites and sedimentary rocks not been mi ned since the 11th Century for different purposes, given any lithostratigraphical unit name (Table 3). The Höör including building stonefor the Lund Cathedra! (Norling et Sandstone, usually not exceeding 55 m in thickness, is sub­ al. 1993). divided into three members, from base to top: unnamed member (HMl), Stanstorp Member (HM2), and the Rya Formation (Lower Sinemurian - Toarcian) Vittseröd Member (HM3). The basal member, HM l (partly Rhaetian?), varies between l m and 15m in thickness and is The entire post-Hettangian Lower Jurassic sequence is re­ represented by mudstones and siltstones. The Stanstorp ferred to the Rya Formation in western and north-westem Member, made up of coarse-grained, quartz-cemented Scania (Fig. 14). This formation is marine, but with a short arkosic sandstones, sometimes interealared with mudstones, break for shallow, littoral to deltaic sedimentation in the was in the past used for millstone production. Its maximum Late Sinemurian. The Rya Formation has been subdivided thickness is 15 m. The Vittseröd Member comprises fine­ into four members, from below: Döshult, Pankarp, Katslösa grained, quartz-cemented sandstone with a total thickness of and Rydebäck Members (Fig. 14).

13-

m ., Q) ·c: ~

'C"' Q) ID 'C 'C :::.:2 Q) .o (9 .,l a: ~ o u .c ID Cl (9 " z ~ Ci5 ::2! _J ::2! :J

B

Fig. 13. A) Sedimentologicallog of the Rhaetian Bjuv Member, Höganäs Formation. Lower part with the B-seam, Rhaetian. Lunnom, Loc. AS (After Ahlberg in Norting et al. 1993) (B-seam is a local name for the lower coal-seam of the Rhaetian). B) Sedimentological log of the Rhaetian- Hettangian section at Norra Albert, NW Scania (A-seam is a local name for the upper major coal-seam or, at some localities the upper series of thinner coal-seams of the Bjuv Member). MB= Member in Fig. B. Loc. A6 (after Ahlberg in Norlinget al. 1993).

24 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Table 3. Rhaeto-Liassic stratigraphy of Central scania (after Sivhed in Norling et al. 1993).

CHRONOSTRATIGRAPHY LITHOSTRATIGRAPHY

Formation Me m ber

JURASSIC Sinemurian Vittseröd (HM3) Hettangian Höör Sandstone Stanstorp (HM2)

Rhaetian Unnamed (HM1) TRIASSIC Norian me m ber

Döshult Member (Lower Sinemurian). The Döshult ber transition). In borehole material ammonite indications of Member represents the first major marine transgression in the Oxynoticeras oxynotum Zone too have been recorded W and NW Scania and is referred to the Early Sinemurian, (Figs. 14, 15 B). an age indicated by ammonites as weil as forarninifers and ostracods. The member is characterized by coarse-grained, Katslösa Member (U. Sinemurian - L. Pliensbachian). cross-bedded sandstones in the lower part and clays and The Katslösa Member consists of 30-40 m of greenish, rnaris in the upper part. A lateral change from coastal sand­ brownish and dark grey claystones, siltstones and Sand­ stones to sublittoral, more argillaceous, marly sediments is stones with a varying content of iron and carbonate. Thin also observed. The type locality for the lower part of the beds of Iimestones and ferruginous oolites do also occur member, narned the Döshult sandstone, is an old sandstone (Troedsson 1951, Nor! i ng 1972, Sivhed 1980). The ammon­ quarry in the Höganäs Basin of NW Scania, so me 4 km ESE ite fauna obtained, mainly from drill cores, indicates the of Viken church (Fig. 14.). The sandstone is devoid of fos­ presence of the Uptonia jamesoni and Protodactyloceras sils of any use in biostratigraphy. The marls, however, are davoei Zones, which does not mean that the interjacent rich in marine biota such as bivalves, ammonites, forarnini­ Tragophylloceras ibex Zone is rni ssing (Hoffmann in Bölau fers and ostracods. Belerunites have also been recorded. 1959, Reyment 1959, 1969, Norlinget al. 1993). Among the ammonites Arietites bucklandi and Arnioceras The ammonite and foraminiferal zonatian of the Lower semicostatum may be mentioned. The fauna as the whole in Jurassic of Sweden is illustrared in Fig. 14 (See also Figs. the Döshult Mari Pit, near the type locality, indicates that the 27, 28). From the Pliensbachian throughout the Jurassic a Döshult Member should be referred to the upper subzone of palynomorph zonatian has been established by Guy-Ohlson the Arietites bucklandi Zone and to the Arnioceras semi­ (1981, 1986, 1989, 1990) and Guy-Ohlson & Norling costatum Zone (Reyment 1959, Norlinget al. 1993). As to (1994), which especially has been of importance for the the forarniniferal assemblages and zonatian see p. 46 and biostratigraphy of sedimentary intervals devoid of marine Figs. 14, 27. biota such as ammonites and foraminifers. For marine inter­ vals the palynostratigraphy has contirmed the stratigraphy Pankarp Member (Upper Sinemurian). The Döshult based on other organisms, and in general improved the rela­ Member is overlain by the Pankarp Member (Upper Sine­ tivedatings of the Swedish Jurassic units. murian). Today this member is accessible in one locality only, the Gantofta Brick Pit some 9 km SE of Helsingborg Rydebäck Member (U. Pliensbachian - Aalenian). The centre (Figs. 12, 14, 15). A complete sequence of the Pan­ uppermost part of the Rya Formation is referred to the karp Member, known from boreholes, has a thickness of Rydebäck Member, which spans across the Upper Pliensba­ 60-75 m. The member has a threefold division into a lower chian, Toarcian and the Aalenian in part, according to bio­ part of variegated clays and shales, a rniddle, thin part of stratigraphical dating. The member, varying in thickness sand and sandstone with a rootlet bed, or a coal-seam, and between 50 m and 100m, is known from boreholes only. an upper part of variegated clays and shales. With the aid of The unit includes sandy and silty, partly oolitic sediments ammonites, forarninifers and ostracods the Pankarp Member with a varying content of day and calcium carbonate. Inter­ is dated to the Late Sinemurian (Reyment 1959, 1969; Nor­ vals of variegated rocks occur, rnaini y with reddish, greenish ling 1972; Sivhed 1980; Norlinget al. 1993). At Gantofta and red-spotted blackish colours. The Upper Pliensbachian the ammonite fauna indicates the presence of the Asteroce­ Amaltheus margaritatus, Pleuroceras spinatum and Dactyli­ ras obtusum Zone (on the Döshult Member/ Pankarp Mem- oceras tenuicostatum ammonite zones have been es-

25 N m

VlV) () VlW (!j z l w a: o:::; ENVIRON­ 0.!.>­ LITHOSTRATIGRAPHY z f­ _J ::l Zf-I :00:: FORAMINIFERAL ZONATION l w o _J o

LYTOCERAS JURENSE (j Not SARACENARIA TRIGONA HILDOCERAS BIFRONS II () a: recorded & a: o HILDAITES SERPENTINUS CITHARINA CLATHRATA o ~ l RYDEBACK DACTYLIOCERAS ZONE NO OSTRACODE EVIDENCE I ~ o TENUICOSTATUM l Reco rded 1- _j -cc ·­ l------"' Q)-'<. PLEUROCERAS SPINATUM in core E"' c z SARACENARIA SUBLAEVIS ZONE z c ~ -~ b <( o .o ~ < AMALTHAEUS MARGARITATUs material , ~ :J I BRIZALINA LIASSICA l~~ ·:;; t: E one I z () c o Q) ~ PRODACTYLIOCERAS DAVOEI barehale AMALTHEA SUBZ. w <( Q)~ c al z GRAMANNELLA m ·- Vl o al ( ~cti(J) ASTACOLUS DENTICULA o Vl z N APOSTOLESCUI­ ·· < ·;::.c w f­ TRAGOPHYLLOCERAS IBEX z :· ··< 2 KATSLöSA Not CARINATA & <( a w ctS .-t= (Q :::; l l l (.) < reco rded MARGINULINA SPINATA MARGINULINA SPINATA KINKELLINELLA (KLINGLE­ :::; "'v ::;;;:__. a.. l "' :::; z a.. )> UPTONIA JAMESONI Reco rded SPINATA SUBZ. RELLA) FQVEOLATA SUBZ a: C§ SPINATA ZONE Gl t-- o <( ..J :Il LJ.. Not ..J m ECHIOCERAS RARICOSTATUM r rded CITHARINA INAEQUI­ G) i l eco w INSUFFICIENTLY KNOWN I m z <( STRIATA & MARGINULINA (.) o Conlinental PANKARP z OSTRACODE FAUNA ­ SPINATA SPINATA SUBZ. o en' v a: (.) z a: OXYNOTICERAS OXYNOTUM lRecorded l o UN-NAMED ZONE <( )> ::; ::l ------~inoutcrop~~-----IN_S_U_F_F_IC-E~N~T-LY_K_N_O_W_N----~ PROGONOIDEA a: z ~ (!} ABOVE PINUSPOLLENITES - ::l o Q) :::; ASTEROCERAS OBTUSUM o c FORAMINIFERAL FAUNA RETICULATA SUBZ. :::; m w seetians TRACHYSPORITES ZONE w - - o ~ -- .---- z ,._ z CAENISITES TURNERI and drill REINHOLDELLA iii z :2 DöSHULT o l Vl c o res MARGARITA CRISTACYTHERE BETZI - o ARNIOCERAS SEMICOSTATUM :Il ,._ & NEOBULlMINA C. CRASSIRETICULATA c:: z ARIETITES BUCKLANOl SP NO 2 SUBZ . t------+-+---+- --t------+--- ASTACOLUS Gl E u., SEMIRETICULATA ZONE u SCHLOTHEIMIA ANGULATA

=- o ~ ~ z o Olo !':! C:;:; z o <( == ;2 < "'c f­ oo. "'E f­ z w Q) l w <( ·"'c, I "O~

Fig. 14. Lower Jurassic chrono-, litho-, and biostratigraphy of Sweden (partly after Norling et al. 1993). JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

CORRELA TION OF SOME JURASSIC BOREHOLE SECTIONS IN NW AND W SCANIA, AND ÖRESUND A) Upper Pliensbachian to Middle Jurassic B) Sinemurian to Lower Pliensbachian VI LHE L MSFÄ LT M 60

BO ÖRESU ND No.? RYOEBÄCK-FORTUNA "' M M No.l. o .."'a: :::1 100 o

UJ -' ..; a 12 0 20 0 .CD RY OEBÄCK- FORTUNA l z M N o. l w o -' H O .. " z l .. z u zo :! a u 60 ~ 160 u a: a a: .... - ..a a• 1- ca 1- l l 180 z z . o(;---- Qny c hoc e r~ l Oe\'e ~ ~ a: a: w z ~ 60 :>: .. o 100 - 200 a a: _.9_ a w :>: a o 220 -.:_-

D Ple islocene El Conglamerate § - Ctoy ( s tone) D . Sond, sitt (stone) li53 Limestene C\ O)' (s t on e l, Sand,silt (stone) . 1 Vari ego t ed rock A B Cool seam ~o Ooli t e § sondy, si\ t y 8 c loy is h ~

KÄVLINGE No.930

RYDEBÄC K-F ORTUNA ÖRESUND " PA NKARP-STR ÖVELS TORP No. l No. 15 60 KATSL ÖSA 60 SORl NG

20 eo 80 ( JAMESONI ZONE l cf leev igat us 100 l i neo t u s 100

120 110 "'"'...ou .t:>" GANTQFTA BRICK P IT 8 0 "" e ILO c " 1 H O HELSING BORG u o. "' .:::.: KVARN No. 2Z20 ~ i~~t: ~:cue~a: ~~~usum 100 J _-_ Prom1cro ceras ~M'Icr;d"ero~ra~l birchi l2m1e planleostum 160 -=- { TURNERI ZONE) Arn ioce ros et ---- pseudocridion Ar nioceras fa l caries Gryphoea arcuoto i (SEMICOSTATUM ZONE) '"

138,\m

180 96m

E:3 Coal sea m Cloy (stone) E:3 Clayshate L i mestone B C l ay(stone), Congtomerale EJ Sand, sitt (stan e) 8 sondy,s i Ity Variego ted c.loys

Fig. 15. Correlation of some Jurass ic borehole seetians in Scania and the Öresund Strait with markings of levels where stratigraphical index foss ils (ammonites and foraminifers) have been found.

27 A. GRIGELIS AND E. NORLING tablished in borehole cores only, viz. in Nya Vilhelmsfält-1 Bajocian, Zone 3 straddles the Bajocian/Bathonian boun­ in NW Scania (Bölau 1959, Reyment 1959, 1969). Norling dary, and Zone 4 earresponds to the Lower Bathonian (Guy­ (1972) introduced the Saracenaria sublaevis and Saracen­ Ohlson 1989 and Fig. 16 herein). aria trigona - Citharina clathrata foraminiferal zones, the latter zone spanning the Toarcian-Aalenian boundary (Figs. Mariedal Formation (Bajocian- Bathonian) 14, 16, 28). The Fuglunda and Glass Sand Members of the Mariedal Formation have been penetrated by drilling in the area Röddinge Formation (Sinemurian- ?Aalenian) between Landskrona and Helsingborg, W Scania. Their type The name of this lithostratigraphical unit was introduced by area, however, is located further to the east, to the Fy ledalen Erlström (in Norling et al. 1993). These ferruginous Sand­ Valley in south central Scania (Figs. 12, 16, 17, Table 4 ). stones are outcropping in the Kurremölla Valley in the Eriks­ Here, a brief description of the type sections of the two dal area of south central Scania (Figs. 16, 17). The Röddinge members, forming the Mariedal Formation, follows: Formation, assigned a Sinemurian to Aalenian age on the The Fuglunda Member consists of a 100 m thick se­ basis of lithostratigraphical comparisons (Norling 1972), quence of repeated eyeles of sand, elay and coal, the lower has so far not been thoroughly investigated as to its deposi­ part of the member being characterized by very thin eyeles tional environment. Most likely, the coarse-grained nature of of sand, el a y and coal. The upper 40 m of the member, how­ the Röddinge Formation is linked to rapid erosion of a tec­ ever, are composed of 5-6 m thick cyeles. The fine-grained tonically active hinterland (Edström in Norlinget al. 1993). hetero Ii tic elaystone beds of the Fuglunda Member are char­ A marine influence is evident because of the presence of acterized by grey to blackish grey kaolinitic elaystones, gen­ some calcareous beds, which have yielded ammonites and erally succeeded by fine-grained bioturbated sandstones other marine fossils. According to Moberg (1888) and Rey­ topped by a unit of siltstones with rootlets and a coal-seam ment (1959), the basal part of the Röddinge Formation, (Rolle et al. 1979, Edström in Norling et al. 1993). The comprising limonitic and sideritic sandstones, have yielded Fuglunda Member is of Bajocian age according to palaeo­ a few ammonites indicating a Late Sinemurian to Pliens­ botanical evidence (Tralau 1966, 1968). bachian age (the Oxynoticeras oxynotum and Uptoniajame­ The Glass Sand Member, up to 100 m in thickness soni Zones). No foraminifers have been obtained fromthese (Figs. 16, 17, Table 4) succeeds the Fuglunda Member in the strata. Eriksdal quartz sand quarry. The sediments consist predom­ inanti y of coarse-grained and fine-grained sandstones (or sands), with minor interealatians of heteroliths and mud­ Middle Jurassic stone with Diplocraterion burrows. According to Rolle et al. Vilhelmsfält Formation (Bajocian- Bathonian) (1979) the member can be described as being of foreshore and lagoonal origin. The upper part of the Glass Sand con­ The main Middle Jurassic lithostratigraphical unit of NW sists of a pure quartz sand with occasional streaks and band­ Scania is the Vilhelmsfält Formation (Figs. 15, 16), an ing of pyrite concretions and heavy minerals. The sand has essentially non-marine succession originally described by been quarried at Eriksdal (Fig. 17) by the Fyleverken Com­ Bölau (1959), who was the first to state the presence of pany for its unique content of silica (>99 % ). The sandston e Middle Jurassic geology in Sweden. This formation, known with Diplocraterion was probably deposited in a beach­ from boreholes only, consists of up to 75 m of soft mud­ foreshore area. Palaeocurrent measurements indicate a tri­ stones, partly silty and micaceous with thin beds of sand­ polar pattern; ENE and WSW, perpendicular to the Torn­ stone and a coal-seam in its basal part. The known distribu­ quist Zone, and SSE, parallel to the presurned coastline tion of the Vilhelmsfält Formation is the Ängelholm Trough (RoiJe 1979, Erlström et al. 1993). At Eriksdal the Batho­ and the northem part of Öresund (the strait between Sweden nian Glass Sand is overlain by the Upper Jurassic Fyledal and Denmark). It is Iikely that parts of the Middle Jurassic Clay. beneath the Kattegat are developed in a similar facies. Pur­ ther to the south and east in Scania, e. g. in the western slope of the Seanian up lift between Helsingborg and Landskrona, the Middle Jurassic has a different facies similar to what has Middle Jurassic - Upper Jurassic transition been found in the Vomb Trough (Fig. 16 herein, Norling Annero Formation 1970, 1972). The Vilhelmsfält Formation has been de­ scribed, dated and stratigraphically subdivided by Guy­ The Annero Formation straddles the Middle Jurassic­ Ohlson (1971 , 1986, 1989). Zon e l and Zone 2 of the Upper Jurassic boundary. It is subdivided into 4 members, Middle Jurassic palynomorph zonation, earrespond to the viz. Fortuna Mari (top Bathonian-Lower Oxfordian),

28 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

ENVIRON­ 0 . LITHOSTRATIGRAPHIC _j~ Z~ (f) UNITS o :J MENT I-' oa: t-zer: t: ~----r------~ FORAMINIFERAL ZONES PALYNOLOGIGAL ZONES t: o I (f)=> -'o () FOR. MEMBER c Q) ~~ _g _g z e:== <( o Q) .g a: Epistomina callovica & / mc o Q) (f) § w FORTUNA MARL l c o _J z Saracenaria phaedra co <( z ZONE i=E l" () <( Dc ~----~=o=·~·7~--~~~2-~ __ _t----jL __ ,_~------~------~~------I -c------~ BARREN z <( GLASS o z co o SAND NO FORAMINIFERAL 4 l o I (Central & l() ~ EVIDENCE W Scania) !Il INTERVAL ~

Q) c -~c z E Q) <( o Q) E Saracenaria trigona > c z ·-o w & m "' (f) ~ _J RYDEBACK ~ -~ <( Citharina clathrata <( O> Q) ZONE er:Q)

1==9 Conglamerate ~=~j Silty claystone ~ Shale WPalaeosol §Limestone

~ Sandstone, Variegated c=7l Coal-seam/ l ~T~ T~ l Mari ~ L3 s1ltstone ~=-==El Claystone ~ Coal fragments - _-_- ~beds

------~

Fig. 16. Middle Jurassic chrono-, litho-, and biostratigraphy in Sweden, including legends to Figs. 14, 16, 19 (partly after Norlinget al. 1993).

Fyledal Clay (Middle Oxfordian-Kimmeridgian), Nytorp consists of steeply dipping strata with an estimated true Sand (Kimmeridgian-Tithonian), and Vitabäck Clays thickness of 9.7 m (Fig. 20 A). The section includes dark (Tithonian-Berriasian) (Figs. 16, 18). grey and brownish claystone, partly silty and calcareous, with thin layers of ferruginous claystone and silty lime­ Fortuna Mari Member (U. Rathonian - L. Oxfordian). stone. At 160.1 m a conglamerate occurs. The sequence con­ This unit, forming the basal member of the Annero Forma­ tains a fairlyrich foraminiferal fauna, calcareous (dominat­ tion, was first recorded from the Rydebäck-Fortuna bore­ ing), as well as arenaceous forms. Based on this fauna the hale No. 5 in western Scania (Norling 1970, 1972). The type type section of the Fortuna Mari has been referred to the to p section, 135 .2-161.3 m below surface (core length 26.1 m), Bathonian/Callovian-Lower Oxfordian (Norling 1972).

29 A. GRIGELIS AND E. NORUNG

LEGEND Limestene and marl Cretaceous Vitabäck Cle.ys Porllandlon - Bsrrloslon Nytarp Sand Porlfondfan rylodal Clay OxfMian- KinmBridgian Glasa Sand Batlr!nlan Fugl unda be da Bajoc/an Ferruginous sandstonas liJNer Jurassic Fyledal Clay seetian Vitabäck Claya seetian Loca.lites deacribed by Nilsson (1953)

N l] [f

250m ERIKS

FY LEVERKEN SA ND PIT KURR EMÖLLA VALL EV

A ves B t------<

Berr . ?~ort.

Fig. 17. GeologicaJ map of the Eriksdal area, Central Scania and a schematic cross section (after Erl ström et al. 1991).

In the basal part of the Fortuna Mari (156.6-161.3 m ) in Sivhed et al. (1999). See also Fig. 19, 22 herein, and the Rydebäck-Fortuna No. 5, a top Hathonian age is indicated chapter on the offshore Jurassic of Sweden (p. 34). by the presence of ostracods s uch as Oligocythereis fulloni­ ca, O. woodwardi, and Procythereis parva (Nor! i ng 198 1). A Callovian age of the central part of this member (147. 1- Upper Jurassic 156.6 m) is given on the basis of a foraminiferal assemblage Annero Formation including species such as Dentalina subplana, Epistomina callovica, E. c o nie a, Frondicularia franconie a, Lenticulina Fyledal Clay Member (Middle Oxfordian - Kimmerid­ fraasi and Vaginulinopsis epicharis. The upper part of the gian). The term Fy leda! Clay was introduced by Christensen Fortuna Mari, in its type seetian (135.2-147.1 m) (Fig. ( 1969). This member has been defined and described by 20A), is referred to the Oxfordian. Among characteri stic Norling (1972, 198 1), Guy-Ohlson & Norling (1988), foraminiferal species obtained Lenticulina brueckmanni, Ed ström et al. ( 1991 ), and N orling et al. ( 1993). In NW Sca­ L. irretita, L. quenstedti var. evoluta, Marginulinopsis sculp­ nia, the Fyledal Clay is represented by green, greenish blue tilis and Epistomina volgensis may be mentioned. The fauna and grey-brown to iron brown, greasy clays and claystones is more thoroughly treated on page 50, Fig. 29. wi th a varying content of silt. According to available data, Dominantly marine strata in Fortuna Mari facies are the thickness of the Fyledal Clay in NW Scania varies known from many boreholes in Scania, viz. Åstorp-20 of between 16 and 31 m. In its type area, at Eriksdal in the NW Scania (Fig. 20B), and Hammarlöv-l, Håslöv-l, Fyledalen Valley (Fig. 17), the exposed part of the Fyledal Höll viksnäs-l and Kungstorp-1 , all deep wells in the south­ Clay is less than 10 m. The occurrence of rootlet beds, la­ ern part of the province, and from offshore wells SE of custrine and brackish marine fossils, including ostracods, ar­ Scania (Hanö Bay 104/13-l and 104/14-2, Fig. 19). These enaceous and calcareous foraminife rs, calcareous algae etc., occurrences are documented by Norling (1972, 1981), Guy­ cali che nodules, gypsum and organic-rich beds, verify de­ Ohlson & Norling (1988), Norling & Skoglund (1977) and position in shallow lakes, lagoans and marshes (mangroves)

30 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Table 4. Jurassic stratigraphy of Eriksdal (after Erlström in Norling et al. 1993)

CHRONOSTRA TIGRAPHY LITHOSTRATIGRAP HY

Series Stage Formation Me m ber

Upper Tithonian Annero Jurassic Kimmerid Oxfordian

Callovian Middle Bathonian Mariedal Glass Sand Jurassic Bajocian Formation Fuglunda Aalenian Toarcian Röddinge No defined Lower P Iiensbachian Formation members Jurassic Sinemurian Hettangian

. -- z Cypridea valdensis praecursor a' a: Fabanella mediopunctata w

,.._o BEDSWITH Klieana calyptroides l VITABACK CLAYS c o Lenticul ina muendensis "' Maeradentina retirugata f-.=- .. z Maeredentina transiens <( z Mantellina purbeckensis o ...J: Scabriculocypris f= trapetzoides z ------1------f------1 o . 1 ... :·.:::z <( NO FORAMINIFERAL "' ::; "'l ') NYTORP SAND INTERVAL ZONE a: EVIDENCE "' o u. o a: 1------1------1------l w z z Cytheropteron deceratum <( Damenella pygmaea BEDSWITH Verneuilinoides meentzeni B Klieana alata o ,.._ FYLEDAL CLAY Klieana calyptroides l ~ Maeredentina rudi s f------1------Rhinocypris jurassica

BEDSWITH Rhinocypris rasilis Reophax suprajurassica A

~------1------~ ·------~------1 Saracenaria oxfordtana o Oxfordian part of the Fortuna l &

Fig. 18. Upper Jurassic chrono-, litho- and bi ostratigraphy of Sweden For legend explanation see Fig. 16 (parti y after Norling et al. 1993).

31 A . GRIGELIS AND E . NORLING

PRESENT DISTRIBUTION OF THE UPPER JURASSIC IN SCANIA, SWEDEN

VITA BÄCK CLA YS IPORTLA NDIAN-L.CRETACEOUS) NYTORP SAND IKIMMERIDGIAN-PORTLANDIAN) FYLEDA L CLA Y IOXFORDIAN-KIMMERIDGIAN) FORTUNA MARL !TOP BATHONIAN-OXFORDIANI

SELECTED BORE-HOLES 1. Karindal-l 180m> 7. Håslöv-l 2. Astorp-20 l SOm) 8. Hammarlöv-l 3 {Rydeback - Fortuna - 5 Assmåsa-1 · Hilleshög-1 l 75m) 9.{ Eriksdal area 11 25m) 4. Barseback-1 1 O. Hanö Bay-1 5 . Svinarp-90 l 40ml 11 . Hanö Bay-2 l 70ml {Höllviksnas- 1 6 · Kungstorp - 1 C. O.ne of the uplifts delivering influx material into the Jurassic Angelholm Trough

o 25 50 km

l

Denudation areas; Faults,flexures troughs inverted i n late Cretaceous­ active during in­ l :~>. .: ··. :1 Sand,sandstone l@ version movements ~== === ~ Cia y, claystone Palaeogene t i mes B

Location of ~ Marl,marlstone ~ Silt,siltstone Glauconite L_j selected bore-holes B

Fig. 19. Upper Jurassic geology of Scania. Present distribution of sedimentary rocks and the locations of selected boreholes penetrating Upper Jurassic strata (after Guy-Ohl son & Norling 1988). within a low relief coastal marginal environment, i.e. a core drilling, Verneuilinoides meentzeni (Kimmeridgian) coastal plain. The overall unifo rmity of the Fyledal Clay in has been found. At the base of the succeeding member, the Scania indicates a continuous subsidence of the deposition­ Vitabäck Clays, specimens of Lenticulina muendensis (Ti­ al area, which led to a maintainance of a stable environment thonian) have been recorded. The age of the Nytarp Sand is during much of the Oxfordi an- Kimmeridgian times thus regarded to be Kimmeridgian and/or Tithonian. (Ed ström et al. 1991). Based on foraminifer and ostracod biostrati graphy the Fyledal Clay is referred to the Oxfordian and Kimmerid­ Upper Jurassic- Lower Cretaceous gian, a dating which is supported by palynostrati graphy Transition (Guy-Ohl son 1985, Guy-Ohlson & Norling 1988). Forami­ Annero Formation niferal assemblages and zonatian are commented on in page 46. See also Figs. 18, 29) . Vitabäck Clays Member (Tithonian - Berriasian). The uppermost lithostrati graphical unit of the Annera Formation Nytorp Sand Member (Kimmeridgian - Tithonian). The is called the Vitabäck Clays after a farm narned Vitabäck Nytarp Sand, characteri zed by whitish, greyish and brown­ near Eriksdal in the Fy ledalen Valley (Fig. 17). The Vitabäck ish (ferruginous), partl y clayey, coarse and fine-grained Clays were fo rmed in a depositional environment similar to sandstones, uncemented sands, sit ts and siltstones, is known that of the Fyledal Cia y. The Vitabäck Clays are known fro m from boreholes only. The thickness of this member, ori ginal­ ditch seetians in the Eri ksdal area and from many boreholes ly described by Norling (1970, 1972), ranges from 18 to 35 in NW Scania (Figs. 17, 18, 19). Today, the unit is not ex­ m. The unit is devoid of fossils. A few me tres below the base posed. The member is camposed of a heterogenous of the Nytarp Sand type seeti an in Rydebäck-Fortuna No. 5 sequence of differentl y coloured, argillaceous beds with a

32 JURASSIC GEOLOGY AN D FORAMINI FERAL FAUNAS IN TH E NW PART OF THE EAST EUROPEAN PLATFORM

RYDEBÄCK-FORTUNA CORE NO.S A) The whole prc-Quar·tcrnary scqucncc B) Enlarged part of the se u q uencc SI::LECTEU FORAMINIFEI{A

5010 % ~ ·;;;"' ~ 10 ~"' .::;, z E ~ -~ ~ o; <::; ~ -~ ~ ~"' ;:::> .t! o; .~ ~ ~ -l ~ -<::; - "'~ 20 ~ > ·~·':or ~ % ~ .s g <::; o a "' G -,::; ~ <::; o; ~ .f· :z <::; b<) "' ~"' ~ "J ·:s_" -Q u "" () g (.) "' "'u » ~ -S! <::; ~ ~ A ... ~ · ~ .:::; "' :::: ~ <::; "-' :::: _§ :..;;: .:: ::: ~ ~ .:::: "J o "O"' 30 '- ;.. "' ~ <:l_ ~ 8 -~ -~ "' ~ ·E=JJ "': ~ "' ~ > "' ..c ;::,. (.) ~ .::: §, ~ <:l_ ~ - co"' o '-' Q ~ ~ <::; "' "' -l .:::: ;;:; · ~ · ~ ~ - ~ 2 "' G ~l ~ , c::" () .::: u s o <::; se se ;2 :::: : Oj -Q <:; ~ o ·~ .. 40 § :t <::; ~ o; ~ o; :::: > ..c "'... <;;- o § .::::" -":" (.) ~ f- o (.) .:::; 1 a <::; "' (.) !'- ..... ~[: z 70 l~ - 80 ~ . ~ ~ g~ ~ ---c:::><==>e>c:>C> • • ~ - :..: ' --, • ' • . ~ 90 r-t-~-t~JL• l e r-+-~-t-+~--r-+-~-+-+--~ 11 j, E ~ ... ; ~.J ~ .... '/l -' ~ u ..l 100 • -' -r. u Q 110 ..l ~~ '"'-' ~ z >- Q • -< 11 o ~ "' 120 ..l 0:: '"';;.. o ~ ..... x • .~ "' 130 o Q. - 120 => • ~ ~ g~ -' 11.0 ---~ ~ ~ ~ .""":1.. -:-_ ::: ~:; < • "' ~-.J...- ~ o~ ~ • • r-- -< r~ 130 z 150 L_..L=_-__r--=_ => = '· 6 1- w,@ 1--'=-' o • ...L.~ • - -r. < "' " ·~ co u 1 6 0~ ---~ "' T.D.161.2!1 .":l-:-- t-+-+-+--t--+-++-+-+-1f-+-+-+-+-1---l--l H ~ L._-_L- l-r- • 5 ~o • ?l N -..1._-- • j_ _-__ • Vi ...i Chronust rat igraphy • • _-_r-_ • • • • and lithostratigraphic • • • • • • subdivision into members l of the Armero Fonnation . .L . .:_ T_:_ ...1:-- . J • • c;-ö o-c.~ r- • • • T, D. 161.25

Conglomerate C laystune Maristune

Samistune Variegatt>d Clayish Sillstun e claystone limestune

\ l Limestune

Fig. 20. A) The Rydebäck-Fortuna core sequence, including stratotypes for the Fortuna Mari and the Nytorp Sand. B) Enlarged part of the core sequence showing the lithology of the Fortuna Mari and the Fyledal Clay (Bathonian/Callovian- Kimmeridgian). In Fig. 20B records of some foraminifers of stratigraphical importance are shown, as weil as foraminiferal zones and beds, and chronostratigraphy. Abbreviations: Kim.= Kimmeridgian, T.=Tithonian, VC.=Vitabäck Clays. Oblique Iine ornament in lithologic columns indicates multi­ coloured strata. 33 A. GRIGELIS AND E. NORLING varying content of silt. When compared to the Fyledal Clay, cates a Tithonian-Berriasian age. The foraminiferal fauna is however, the Vitabäck Clays show a higher frequency of meagre, but some species are of biostratigraphical value, silty and sandy beds. The unit includes several palaeosols. such as Lenticulina rnuendensis (Tithonian) and epistomin­ The petrography and biostratigraphy of the Vitabäck Clays, ids of the caracolla group (Berriasian or younger), record­ which span the Jurassic-Cretaceous boundary, was treated ed by Noding (1972, 1981) and Guy-Ohlson & Norling by Edström et al. (1991 ). A weil preserved palynoflora, ( 1988, 1994) from boreho le material. described by Guy-Ohlson (in Edström et al. 1991), indi-

Jurassic geology and stratigraphy offshore from scania

The Province of Scania is framed by the sea in all directions (939-831 m), Jurassic-Cretaceous transitional beds (831- but the north; to the east by the Hanö Bay, to the south by 810 m), Cretaceous (810-161 m), Palaeogene (161-135 m), the South Baltic Sea, to the west by the Öresund Strait, and and Quaternary deposits. to the northwest by the Kattegat. According to data from seismic surveys and offshore wells drilled in connection with oil prospecting (Norling 1973, Talbacka 1974, Norling Upper Triassic (Rhaetian) & Skoglund 1977, Kumpas 1980, Norling 1981), Jurassic (981-939 m subsea depth) deposits of the Hanö Bay east of Scania are restricted to the In general, the Rhaetian sequence in Scania is represenred Linderödsåsen-Christiansl('l fault zone in the SW part of the by non-marine beds. In the Hanö Bay wells, however, this bay, where they are found beneath a thick cover of Creta­ stage includes marine strata, which are indicated by the ceous-Palaeogene and Quaternary sediments (Fig. 19). lithology; glauconitic, calcareous clays and siltstones, as South and west of Scania too the Jurassic rocks are most­ weil as by the rnicrofauna. The fauna includes a.o. Scabrio­ ly found at rather great depths, covered by younger deposits culocypris sp. No. 844 Wieher 1957 (Rhaetian ostracod), (Edström et al. 1997). From the area of Landskrona­ and the foraminifers Eoguttulina kuhni (Rhaetian-L. Juras­ Helsingborg in the northern part of Öresund to the southern sic), Gaudryina triadica, Variostorna coclea, Variostorna co­ part of Kattegat, Jurassic deposits form the rock surface to niforrne (Rhaetian), Glornaspira gordialis (Rhaetian-Juras­ be found beneath a Quaternary cover up to c. 100m in thick­ sic) and Tetrataxis inflata (Rhaetian) (See Fig. 22). ness (Fig. 21). The offshore drillings include three deeper wells in the Hanö Bay, and two deep wells drilled for hydraearbons Lower Jurassic (939-893 m) south of Scania (Fig. 19). In northern Öresund Strait some The interval 939-893 m has been referred to the Lower Ju­ shallow boreholes were drilled in connection with the plan­ rassic partly on lithostratigraphical grounds, partly based on ning of a tunnel or bridge between Sweden and Denmark microfossil finds (foraminifers and ostracods). The tentative (Larsen et al. 1968). boundary between the Triassic and the Jurassic Systems is Jurassic strata have been recorded from the deep wells based on the uppermost finds of Rhaetian foraminifers such Falsterborev-l and Smygehuk-1 offshore from south Scania. as Gaudryina triadica, Variostorna cf. coclea, Variostorna No foraminiferal studies have been made on cuttings sam­ coniforrne, Glornaspira gordialis, and Tetrataxis inflata, all pied from these wells. Material from two of the Hanö Bay described from the Eastern Alps byKristan-Tollman n (1957, wells, viz. Nos. 104/13-1 and 104/14-2, however, have been 1964). The Lower Jurassic sequence is characterized by studied at some detail with regard to forarniniferal faunas. interbeds of clay and claystone, argillaceous sandstone and (Fig. 22). siltstone, partly with calcareous cement and traces of glau­ conite and pyrite. Certain parts of the sequence show simi­ HANÖ BAY 104/13-1 larity to the Katslösa and Rydebäck Members of the Rya Formation (p. 25), a comparison which is supported by the This weil, drilled by Oljeprospektering AB (OPAB) in 1973, foraminiferal assemblages (Figs. 14, 22). has a total depth of 1026 m (below sea bottom). The se­ quence penetrated includes Triassic (1026-939 m), Jurassic

34 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

SWEDEN

Fig. 21. Sketch map of southern Sweden and surmunding sea areas; Skagerrak, Kattegat, and the South Baltic Sea, showing the distribu­ tion of Jurassic rocks (black) beneath the Quaternary cover (after Norling, SNA 1994).

35 A. GR IGELI S AND E. NORLING

Middle Jurassic (893-849 m) Upper Liassic and Middle Jurassic strata are missing in the sequence. Thus, in terms of lithostratigraphical units, strata The uncemented sand with some thin beds of argillaceous correponding to the Pankarp, Katslösa, and Rydebäck Mem­ sandstone with traces of coal overlying a more clayey se­ bers are missing. The same is true of the Middle Jurassic quence, recorded from 893-849 m (subsea depth), have coal-bearing Mariedal Formation. (See Fig. 14). been given a Middle Jurassic age on the basis of both ostra­ cods and foraminifers. Among the ostracods may be men­ tioned Fuhrbergella (Praefuhrbergella) sauzei and Ljubim­ Upper Jurassic (813-744 m) ovella piriformis, both limited to the Bajocian. Characteris­ This interval mainly comprises brownish to greyish, partly tic foraminifers are Epistomina conica (Middle Jurassic), clayey and shaly, calcareous siltstones. In the lower part of Trochammina ex. gr. inflata and Verneuilinoides fusca (Cal­ the sequence glauconitic rnari s and thin layers of limestorre lovian). occur. lt may be equivalent to the Fortuna Mari (p.29), but in general the Hanö Bay sequence was obviously formed in Upper Jurassic (849-831 m) a more open marine environment, indicated a.o. by the oc­ currence of planktic foraminifers related to Globuligerina The interval contains argillaceous, greyish to greenish Sand­ oxfordiana. stones. In the two deep wells dri lled by OPAB , the lithostrat­ The upper part of the Upper Jurassic sequence in this igraphical equivalent to the Fortuna Marl is succeeded by weil has not the characteristic colours of the Fyledal Clay purely marine, glauconitic siltstones and claystones, indeed (p. 30), but has a similar type of foraminiferal fauna ( main­ different from the Fyledal Clay. Apart from benthic calcare­ ly arenaceous forms indicating a low salinity and/or cold ous foraminifers, which have many species in common with water). Selected foraminifers from the two Hanö Bay wells, the Fortuna Mari (Fig. 22), the latter beds have also yielded and their stratigraphical ranges, are Iisted in Fig. 22. (For tiny planktic forms, some of which showing a close affinity further information see Norling & Skoglund 1977, Kumpas to Globuligerina oxfordiana (Grigelis). Since the wells are 1980, Norling 1981 , Norlinget al. 1993.) rotary drillings, not core drillings, one cannot be sure, how­ ever, that all the planktic foraminifers obtained from Upper Jurassic strata represent in situ finds. Some of them might ÖRESUND BOREHOLES IN originate from the overlying Lower Cretaceous. In the Hanö SWEDISH TERRITORIAL WATERS Bay it seerus as if a Late Jurass ic marine episode may have Iasted longer than in any other parts of Scania (Norling The location of 14 shallow offshore boreholes in the Juras­ 1981). Not only the upper Middle Jurassic and Upper Juras­ sic between Helsingborg (Scania) and Helsingör (Den­ sic foraminiferal faunas of the Hanö Bay, but the lithology mark), and the boundaries between the Jurassic series and too, show a striking similarity to corresponding marine de­ members are presented by Sivhed (1986, geological map posits of Lithuania. Sheet 3C Helsingborg with description). Ten of the bore­ holes are located in Swedish territory, and 4 on the Danish side. All the Swedish boreholes are restricted to Lower HANÖ BAY 104/14-2 Jurassic strata, whereas Middle and Upper Jurassic deposits In this weil, further away from the east Seanian coast and are to be found beneath the Quatemary cover on Danish ter­ doser to the Christiansill Horst fault Iine (Figs. 19, 22), the ritory (Larsen et al. 1968) Rhaetian to Middle Jurassic sequence is rudimentary, whereas the Upper Jurassic is thicker than in Hanö Bay Lower Jurassic 104113-l. The offshore Lower Jurassic sequence in Öresund shows a Upper Triassic (Rhaetian) - close similarity to corresponding strata in the western and Lower Jurassic (822-813 m) north-western parts of rn ainland Scania. Thus, all members of the Höganäs and Rya Formations have been identified This interval mainly comprises siltstones with a varying (see p. 22). Norling (1966, 1968) studied the Sinemurian fo­ content of grey, calcareous clay. Trench samples from this raminiferal fauna from one of the offshore boreholes, viz. interval have yielded a mixture of Rhaetian, Lower Liassic Öresund 01 (N 56° 4'32", E 12° 39'30") from a biostrati­ (pre-Pliensbachian), and Upper Jurassic foraminifers. The graphical view as weil as the characteristics of the wall microfossils in these beds may be reworked. According to structures in the nodosariid foraminiferal fauna. The core the microfauna (and supported by the lithology), Middle to sequence has yielded 25 species of calcareous foraminifera,

36 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

HANÖ BAY DEEP WELLS, BALTIC SEA EAST OF SCANIA

HANÖ BAY-1 HANÖ BAY-2 WESTERN EUROPE Black circle marks first (uppermost) record in ditch sample, bar marks E E E E Jurassic E E E E o Lower ~sic stratigraphical range in W. Europe o o o o o o o o o o o o o o o o C()

Fig. 22. Records of selected Triass ic to Lower Cretaceous foraminifers, and a few ostracod species, from the Hanö Bay well s, Baltic Sea east of Scania, and their stratigraphical ranges. Abbreviations: LJ= Lower Jurassic, MJ= Middle Jurassic, UJ= Upper Jurassic. Chronostratigraphical stages from older to younger: N= Norian, R= Rhaetian, H= Hettangian, S= Sinemurian, P= Pliensbachian, T= Toarcian, A= Aalenian, B= Bajocian, B= Bathonian, C= Call ovian, 0= Oxfordian, K= Kimmeridgian, T= Tithonian, B= Berriasian, V= Valanginian, H=Hauterivian, B= Barremian, A= Aptian, A= Albian.

37 A. GRIGELIS AND E. NORLING

most of them nodosariids restricted to the Sinemurian and Jurassic in other offshore wells. Larsen et al. mainly pre­ Pliensbachian Stages. Species such as Nodosaria kuhni, sents the lithostratigraphy and sedimentology, the forami­ Marginulina undulata, Vaginulinopsis exarata, Nodosaria niferal biostratigraphy, and the ostracod biostratigraphy of columnaris and Paralingulina tenera ssp. pupoides, indicate the Jurassic in Öresund between Sweden and Denmark. The that the whole interval should be referred to the Lower Sin­ paper commented on, was of great value in the plan ni ng and emurian. From a lithostratigraphical point of view this se­ location of the five core drillings in the Rydebäck-Fortuna quence belongs to the Döshult Member of the Rya Forma­ area, the results of w hi ch were presented by Norlin g ( 1970, tion (Norling 1968). In the same year Bang (in Larsen et al. 1972). 1968), presented the foraminiferal faunas obtained from the

Jurassic foraminiferal faunas of Lithuania and the SE part of the Baltic Sea

Fossils are frequently found in the Jurassic of Lithuania. chik 1980). A change in the number of genera shows that the Sedimentary rocks of Early and Middle Jurassic ages (Jot­ most drastic renewal in the systematic composition of the vingiai and Skalviai Oroups) contain palynomorphs (pollen fauna took place in Late Callovian and Early Kimmeridgian and spores). Not until Late Bathonian- Early Callovian times times (Fig. 24). The changes can be explained by major ma­ foraminifers, marine bivalves and ostracods seem to appear rine transgressions into the Baltic Basin. The foraminiferal in the Jurassic of Lithuania, all finds obtained from marine studies have been based on material from outcrops as weil ingressional strata. From the Middle Callovian onwards in as boreholes (Origelis 1985b). For precise establishment of the Jurassic succession (Callovian-Volgian), prolific fora­ biozone boundaries, several sections of the same age have miniferal faunas occur, as weil as invertebrate fossils such been studied. Biozones of the Baltic Jurassic, based on se­ as ammonites, belemnites, bivalves and brachiopods lected foraminifers, are shown in Fig. 25. (Bri.ickmann 1904, Pakuckas 1933, Origelis 1985a, Rotkyte The foraminiferal zones established fulfil the demands 1987). The biostratigraphy of the marine Jurassic in the East for assemblage zones (Orige1is 1980a). Every zone is char­ Baltic region is mainly based on ammonites and foramini­ acterized by diagnostic foraminiferal species. The zonatian fers. The biozonatian and the lithostratigraphical subdivi­ is correlated with the ammonite stratigraphy proposed by sion is presentedin Table l, p. 10. Rotkyte (1987). Biostratigraphy based on vertical ranges of As mentioned before, the Jurassic foraminiferal faunas foraminifers is illustrated by Fig. 26. of Lithuania are rich and some 300 species have been re­ corded (Origelis 1985a). In the East Baltic region the foraminiferal fauna is of a boreal shelf sea type in which Middle Jurassic representatives of Nodosariidae, Lenticulinidae and Episto­ UPPER HATHONIAN minidae dominate (Fig. 23). The Superfamily Nodosariacea contri bu tes with 140 species (59%) to the fauna, w h e reas Certain marine ingressions of Late Hathonian and Early CaJ­ Ceratobuliminacea has 50 species (22% of the fauna). lovian ages have yielded foraminifers, but no biozones have Other taxa such as Astrorhizacea and Ammodiscacea (5 spe­ been established for this stratigraphical interval. Correlation cies), Textulariacea (5), Miliolacea (15), Spirillinacea (13) of various sections from this in terval has mainly been based and Olobigerinacea (l species) form tagether 19% of the on lithostratigraphical features and a few foraminiferal spe­ fauna (Origelis 1980b, 1985a and Fig. 24 herein). cies. With few exceptions the classification by Loeblich & Tapparr (1988) has been followed. One exception, favoured Beds with Ophthalmidium infraoolithicum by one of us (Origelis), is the subdivision of the family No­ (Figs. 6, 25; Plate 3:1) dosariidae (sensu Loeblich & Tappan) into three families, In the Baltic area the oldest Jurassic strata which have yield­ viz. Nodosariidae Ehrenberg 1838, Lenticulinidae Chap­ ed foraminifers belong to the Liepona Formation of Middle man, Parr & Collins 1934, and Vaginulinidae Reuss 1860. In Jurassic age. In this formation finds of calcareous foramini­ total, 20 foraminiferal families have been recorded from the fers, bivalves and gastropads are restricted to a few marine Baltic Jurassic (Origelis 1978, 1985a, Origelis & Oorbat- ingressional layers. Within the Beds with Ophthalmidium

38 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Saccamminidae

Ammodiscidae

Lituolidae Trochamminidae

Verneuilinidae

Ataxophragmiidae Textulariidae

lnvolutinidae 11111111111 11111111111 1111111111111 11111111111 11

Spirillinidae lllllllllll llll lllllllffinnrno 11111 111 111 111111111111

Fischerinidae

Nubeculariidae

Ophthalmidiidae ~ l

Miliolidae i$ii$ i -~ 1 i$ii$1

lchthyolariidae

Nodosariidae

Lenticulinidae

Vaginulinidae

Polymorphinidae 1 ~1

Ceratobuliminidae llllllllllllllllllllllllllllmmlllllllllllllllllllllllllllllllllll

Epistominidae lllllllllll llllllll ll llunnlllllllllllllll-lllllllll llllllllllll lllll llllll llilmm

Globuligerinidae

Fig. 23 . Histograms showing the variation in frequencies of foraminiferal genera within 21 families recorded in the Baltic region.

39 A. GRIGE LI S AND E. NORLING

infraoolithieum 22 species in total have been recorded (Figs. No rnaerafauna has been recorded. Throughout the 24, 25). Apart from the bed denominator species such as Pa­ Baltic Basin the Liepona and Papile Formations, according laeomiliolina kanevi, Lentieulina labeeula, Citharina proxi­ to the finds of foraminiferal assemblages referred to the ma, Reinholdella e re bra, Paulina paula, Epistomina eoron­ Beds with Opthalmidium infraoolithieum and Lentieulina ata, E. regularis and Troeholina nana may be mentioned. okrojanzi, are overlain by marine deposits of Middle Callo­ Foraminifers are frequently found together with accumula­ vian age. tions of small bivalves identified as Meleagrinella eehinata.

The Beds with Ophthalmidium infraoolithieum (Plate MIDDLE CALLOVIAN 3: l) have been recorded from boreholes in the southern part of the Baltic Syneclise, i.e. within the Gusev-Kybartai and Lenticulina cultratiformis Zone Nivensk depressions (Fig. 3). They are restricted to the Lie­ (Figs. 7, 8, 26; Plate 3:3, 3:5) pona Formation (Table l , Fig. 6, ). The foraminifers occur in This zone is recorded from the entire Baltic Basin. Its slightly calcareous sands and sandstones. These beds have forarniniferal fauna is fairly rich and 39 species have been been correlated with equivalent strata (Upper Bathonian) in recorded, mostly calcareous forms (Figs. 25, 26). Lenti­ NE Poland, demonstrating similarities in lithology and fau­ culinids dominate. When compared with the fauna of the nas (Grigelis 1985b, Pazdrowa 1969). In NE Poland corre­ Lower Callovian Beds with Lentieulina okrojanzi, the rela­ sponding beds have yielded ammonites representing the tive frequency of new species is calculated to 97%, indeed a Oeeotraustes heteroeostatus, O. paradoxus and Clydoniee­ pronounced renewal of the microfauna. For calculation of ras diseus Zones, arranged here from older to younger renewal percentages in the Lithuanian Jurassic foramini­ (Marek & Grigelis 1998). ferat faunas see Grigelis (1985b ). The Lentieulina eultratiformis Zone (sensu lato) is sub­ divided into two subzones, viz. the Lentieulina pseudo­ LOWER CALLOVIAN c-rassa and Lentieulina eultratiformis Subzones. Beds with Lenticulina okrojanzi (Figs. 6, 26) Lenticulina pseudocrassa Subzone The foraminiferal fauna of these beds is very meagre. As­ According to records from the Papile outcrops, this subzone semblages of similar composition have been obtained from earresponds to the Kosmaeeras jason Ammonite Zone some few boreholes penetrating marine ingressional layers (Table 1). As characteristic foraminifers of this subzone belonging to the Papile Formation (Table l, Fig. 6). Besides, Lentieulina pseudoerassa, L. cultratiformis, L. eiehwaldi, small, thin sheils of bivalves have been recognized. The and Epistomina mosquensis (Plate 4:3) may be mentioned. Beds with Lentieulina okrojanzi contain eight species of All these species appear for the first time in the early Mid­ calcareous forarninifers (Figs. 25, 26), indicating an Early dle Callovian.The most short-ranging species of the subzone Callovian age. Two short-ranging species, Lentieulina okro­ seem to be Lenticulina pseudoerassa and Lentieulina eieh­ janzi and Epistomina ealloviea are characteristic of the waldi (Fig. 26). Lower Callovian of the East European Platform. The latter species has also been recorded from the Bathonian. Among Lenticulina cultratiformis Subzone characteristic species straddling the Bathonian-Callovian This foraminiferal subzone corresponds to the Erymnoeeras boundary in Lithuania, lehthyolaria distorta, Reinholdella earonatum Ammonite Zone. The earrelation has been estab­ erebra, Epistominoides minutus and Troeholina nana may lished on material from the Papartine outcrop in the vicinity be mentioned. Species present in the Upper Bathonian, but of Papile (Fig. 3). Among diagnostic foraminiferal species not recorded from Lower Callovian strata, include Ophthal­ of the Lentieulina eultratiformis Subzone, L. tumida, Plan­ midium infraoolithieum (Piate 3: l), Palaeomiliolina kanevi, ularia flexuosa, Epistomina mosquensis and E. elsehan­ Epistomina eoronata and Epistomina regularis. Based on kaensis may be mentioned. A complete list of species is these facts the Lentieulina okrojanzi assemblage may be re­ given in Fig. 26. garded to be younger than the Ophthalmidium infraoolithi­ From a systematic point of view the composition of the eum assemblage and seems to indicate an Early Callovian faunas of the two subzones treated above is fairly similar. a ge. The renewal of species in the latter subzone, as compared to The Beds with Lentieulina okrojanzi, linked to the Papile the former one, is just 7%. Formation, are restricted to the north-western part of the The Lentieulina eultratiformis Zone embraces the entire Baltic Syneclise, to the Zemaitija Depression. The foramini­ Papartine Formation. In the Papile area, however, the upper­ fers are found in slightly calcareous, sandy and silty beds. most part of the Papartine Formation earresponds to the

40 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNASIN THE NW PART OF THE EAST EUROPEAN PLATFORM

Lenticulina tumida Zone (early Late Callovian). Sands, In most parts of the SE Baltic Basin, the Lenticulina sandstones and oolitic Iimestones represent the main lithol­ tumida Zone corresponds to the Skinija Formation. One ex­ ogies of the Lenticulina cultratiformis Zone. At the base a ception to be mentioned is the Papile area (Fig. 3), where the detritic conglamerate occurs. lower part of this zone, viz. the Lenticulina paracultrala The foraminiferal assemblage of the Middle Callovian Subzone, belongs to the Papartine Formation. The forami ­ Lenticulina cultratiformis Zone of the SE Baltic region niferal assemblages of the Upper Callovian Lenticulina shows great similarity to assemblages elsewhere within the tumida Zone show great similarity to assemblages elsewhere East European Platform; the Dnepr-Donets, Pechora and the in the Baltic area and in the Dnepr-Donets and Mangysch­ Mangyshlak regions to be mentioned (Grigelis 1983, lak regions within the East European Platform. One excep­ 1985b). tion is the Pechora region, where assemblages of corre­ sponding age show differences (Grigelis 1983). UPPER CALLOVIAN

Lenticulina tumida Zone Upper Jurassic (Figs. 7, 8, 26; Plate 3:4, 6,9, JO, J l , 13, 14, 16, Plate 4:2, 3, Plate 5:2) LOWER OXFORDIAN The forarniniferal fauna of this zone contains 67 species. Lenticulinids and epistominids predorninate. Arenaceous Ophthalmidium sagittum - Lenticulina brueckmanni foraminifers occur also (Figs. 23 , 24). In relation to the Len­ Zone ticulina cultratiformis Zone, the present zone shows a re­ (Figs. 9, 26; Plate 3:2, 7, 8, Plate 4:1, 4, 5, 7, Plate 5:1, 4) newal of foraminiferal species calculated to 59%. The Len­ This zon e earresponds to the initial part of the Lower Oxfor­ ticulina tumida Zone is subdivided into two subzones, de­ dian sequence, which is widely distributed in the Baltic Ba­ scribed in the following. sin as a result of a major Late Jurassic marine transgression. From this zone a foraminiferal fauna of 52 species has been Lenticulina paracultrata Subzone recorded. Epistominids and lenticulinids dominate. Oph­ This subzone earresponds to the Kosmaeeras ornatum Am­ thalmidiids and spirillinids are common too. When com­ monite Zone established by Rotkyte ( 1987) for the type stra­ pared with the Lenticulina tumida Zone, the present zone tum of the Papile outcrop. In terms of standard zonation, the show a renewal of species of about 86%. latter zone earresponds to the Peltoceras athleta Zone. The Ophthalmidium sagittum - Lenticulina brueckman­ Among diagnostic foraminiferal species of the Lenticulina ni Zone earresponds to the Vertumniceras mariae and Car­ paracultrala Subzone, the denorninator itself and Lenticuli­ dioceras eardatum Ammonite Zones of the Lower Oxfor­ na tumida, L. catascopium, L. subtilis, Epistomina mos­ dian. Among foraminiferal species of diagnostic importance quensis (Plate 4:3) and E. elschankaensis may be men­ within the zone Ophthalmidium sagittum (Plate 3:2), Lentic­ tioned. A complete list of foraminiferal species of the Len­ ulina brueckmanni (Plate 3:7), L. belorussica, L. hebetata, ticulina tumida Zone is given in Fig. 26, as weil as their Epistomina intermedia, Epistomina volgensis (Plate 4:4) stratigraphical ranges. and Globuligerina oxfordiana (Plate 5:4-8) should be men­ tioned. A full list of foraminiferal species of the zone and Lenticulina chmielewskii Subzone their stratigraphical ranges is given in Fig. 26. The subzone given this name has been correlated with the In terms of lithostratigraphical units the Ophthalmidium Quenstedtoceras lamberti Ammonite Zone established in the sagittum - Lenticulina brueckmanni Zone earresponds to Papile-2 outcrop and some boreholes in western Lithuania the lower part of the f\zuolija Formation of the Baltic Basin. (Rotkyte 1987). In the Papile area the subzone is condensed Within these deposits, mainly of clay and marl, the distribu­ (< 2.1 m thick). Eight forarniniferal species on! y have been re­ tion of foraminifers is continuous without any breaks. corded. Deeper in the basin, a prolific fauna has been obtained with 56 species identified from boreholes. When compared MIDDLE OXFORDIAN with the fauna of the Lenticulina paracultrala Subzone, the forarniniferal fauna of the Lenticulina chmielewskii Subzone Ophthalmidium strumosum - Lenticulina brestica Zone shows a renewal percentage of 18%. The entire foraminiferal (Figs. 9, 26; Plate 5:3) fauna of the subzone is given in Fig. 26. The entire assemblage of the Lenticulina chmielewskii In the Oxfordian, strata of this zone are represented by clay­ Subzone is characteristic and easy to recognize in various ey and marly, fairly homogenous deposits. This zone has sections. yielded 42 foraminiferal species, mainly lenticulinids and

41 A. GRIGELIS AND E. NORLING

A

60

50

40

30

20 2 __ __.. / / 10

B 20 [s gen.

15

10

5

c 20 [10 spec.

15

10

5

Il III-IV V-VI VII Vill IX X XI XII Assemblage, number C l, Cl, Cl, Ox, Ox, Ox, Km, Km, V, Stage/substage, index

CIJIIJ [J]...... ~ ~ illiiJillTI 2 3 4 5 6

Fig. 24. Curves and histograms showing the systematic composition of Jurassic foraminifera of the Baltic (After Grigelis 1985). A) Num­ ber of species (l) and genera (2) ; B) Relative frequency histograms of genera within the superfamilies Iisted below. C) Relative frequencies of species within the same superfamilies. Legend: l) Astrorizacea & Ammodiscacea, 2) Textulariacea, 3) Miliolacea, 4) Nodosariacea, 5) Rotaliacea, 6) Globigerinacea. Abbreviations: Bt3=Upper Bathonian, Cl 1 = Lower Callovian, Cl 2= Middle Callovian, Cl3= Upper Callovian, Ox 1= Lower Oxfordian, Ox2= Middle Oxfordian, Ox3= Upper Oxfordian, Km 1= Lower Kimmeridgian, Krn2= Upper Kimme­ ridgian, V 1= Lower Volgian. epistominids. The renewal percentage of species of the as­ Cardioceras tenuiserratum Ammonite Zones. Among dia­ semblage is about 24%, indicating a rather close similarity gnostic foraminifers of this zon e the zonal denominators and to the Lower Oxfordian foraminiferal association (Figs. 23, Lenticulina hebetata (Plate 3:8), L. sublenticularis, Pseudo­ 24). lamarckina suvalkensis, Paulina furssenkoi (Plate 5: l), The Ophthalmidium strumosum - Lenticulina brestica Epistomina uhligi, E. parastelligera (Plate 4:5) and Troeho­ Zone earresponds to the Cardioceras densiplicatum and lina transversarii (Plate 5:3), Lenticulina nostra and Episto-

42 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

mina perfidiosa ma y be mentioned. The last two mentioned In the Baltic Basin the Lenticulina quenstedti Zone ear­ species are short-ranging. The total foraminiferal fauna and responds to the upper part of the Azuolija Formation. The stratigraphical ranges of species are given in Fig. 26. Baltic Lenticulina quenstedti Zone earresponds to the Epis­ The organogenic, possibly reef-related rnaris in some tomina uhligi - Astacolus russiensis Zon e of the eastern part borehole seetians in SW Lithuania contain a stenofacial, of the East European Platform (Grigelis 1982a). lenticulinid association of foraminifers. In the Vilkyciai-18 well (at 92.2-100.7 m) for example, the following lenticu­ linids have been found (Fig. 9, p. 17): LOWER KIMMERIDGlAN Lenticulina prussica - Lenticulina kuznetsovae Zone Lenticulina hebetata (Figs. 10, 26; Plate 3:12, 15, Plate 4:6) Lenticulina simplex Lenticulina compressaeformis In Kimmeridgian time the Baltic Basin decreased in size. Lenticulina attenuata There are, however, marine Kimmeridgian calcareous clays, Lenticulina bulbiformis which have yielded a rich foraminiferal fauna. 42 species Lenticulina nostra have been recorded from this zone with lenticulinids and Lenticulina aff. brestica vaginulinids as darninating (Figs. 23). Characteristic is also Marginulinopsis primaformis an almost complete renewal, 83% in comparison with the Upper Oxfordian fauna. To be noted, however, is that most In the Baltic area this association earresponds to the of the Oxfordian taxa continue into the Kimmeridgian Middle Oxfordian Ophthalmidium strumosum - Lenticulina (Grigelis 1985b). This zone earresponds to the Lower Kim­ brestica Zone (Grigelis 1985b). In the Baltic Basin the Oph­ meridgian Beds with Amoeboceras kitchini. Diagnostic thalmidium strumosum - Lenticulina brestica Zone occu­ foraminifers are species such as Lenticulina sublenticularis, pies the middle part of the Afuolija Formation. Throughout L. prussica, L. kuznetsovae, L. undosa, Planularia kostro­ the East European Platform the foraminiferal assemblages mensis, Marginulinopsis crepidulaeformis and Epistomina of this zone seem to be rather similar. arkelli. Less common, but characteristic for the zone, are other species Iisted in Fig. 26. As seen in Table l, p. l O, the present foraminiferal zon e

UPPER OXFORDIAN earresponds to the lower part of the Tara va Formation in the Baltic Basin. In the Baltic Basin the composition of the fo­ Lenticulina quenstedti Zone raminiferal fauna of the zone in question shows a noticeable (Figs. 9, 25, 26, Plate 2:4) similarity to faunas from corresponding strata in the central part of the Volga Province. The foraminiferal fauna of this zone is not as rich as those of the Lower and Middle Oxfordian, and the Lower Kimme­ ridgian of Lithuania. The Lenticulina quenstedti Zone has yielded 31 species, most of them being lenticulinids and UPPER KIMMERIDGlAN epistominids. The renewal percentage of the fauna is as low Lenticulina illustris - Lenticulina daiva Zone as 16%. This zone earresponds to four ammonite zones of (Figs. 10, 25, 26) the Upper Oxfordian, viz. the Amoeboceras glossense, A. serratum, A. regulare and A. rosenkrantzi Zones. Apart This zone has yielded 42 species of foraminifers showing a from the zonal denominator, characteristic forarninifers of predominance of epistominids, lenticulinids and vaginulin­ the zone are species such as Lenticulina sublenticularis, ids (Figs. 23). A earrelation of this zone has been made with Sigmoilina milioliniforme, Astacolus russiensis, Epistomina the following Upper Kimmeridgian Ammonite Zones, from nemunensis, E. parastelligera (Plate 4:5) and E. uhligi below: Aulacostephanus mutabilis, A. eudoxus and A. autis­ (Fig. 26). siodorensis. The renewal percentage of the foraminiferal In the Baltic Basin the zonal denominator, Lenticulina species in this zone is about 64% by comparison with the quenstedti (Plate 2:4) is a short-ranging species. More rare, fauna of the preceding zone. Apart from the zonal but short-ranging too are species such as Ophthalmidium denominators, the following species may be mentioned as stuifense and Planularia laminosa. Sigmoilina milioli­ diagnostic forms: Lenticulina vistulae, Marginulina busken­ niforme, Epistomina uhligi, E. parastelligera (Plate 4:5) and sis, Epistomina stellicostata, E. praereticulata and Mimna­ E. nemunensis disappear within this zone, whereas Lenticu­ vella mjatliukae and M. foveata. Purther information is lina sublenticularis and Astacolus russiensis occur in the given in Fig. 25 , 26. Early Kimmeridgian too. The Lenticulina illustris - Lenticulina daiva Zone corre-

43 A. GRIGELIS AND E. NORLING

Stage, Foraminiferal substage zones or beds Species biozones

Upper - r------+------~------t------c m-.oo~---,-.--~ E roc __ >ro ·;;::_ >ro Volgian Middle ? :J 00 E - --o-- ro - o -:Joo -·co--~or----1 Beds with o oo Marginulina E ~ 2 .52 Q) ::::::: "O l Lower striatocostata ,_:J ~ ~ ~ ~ _j _j ,_--m- 2 - :J --..-._---f..,_---1 00 ro L. illustris- - :"Q Upper L. daiva :5 &o..~ll Kimmerid­ o E _J _j _j gian L. kuznetsovae- .3 -- Lower L. prussica _j :so: ~ Il ;g 1------+------!------+--- E-E-+--+------..---~- - ~_,.,._ __ L_j______~ - Lenticulina Upper quenstedti ö :E ~ _Q l 8 r------+------r-~ ~- --N--~-m - __ ;g_.mE_-++-~_J•-~-rro ------~-w L. brestica o 00 S ~ ro,__ ,_ ..c ·;;:: Oxfordian Middle O.strumosum ocj w- .:!:::::(.) t5 r------+------r-~E-L. brueckmanni- l t~-~- r-~-_j l ~- Lower O.sagittum ro-~-~- r-g_ l ~- L. chmielewskii- Upper :J ,§ ö Q. i_j - ~ L. paracultrala :"Q Ö _j _j ro ~------+------+-~ -----~ :2:- L. cu ltratiformis- 1 11 Gallovian Middle L. pseudocrasa l------t------+-1:------_,-.--L_~·~------~ Beds with Lower L. okrojanzi g l Upper Beds with Bathonian O. infraoolithicum l

Fig. 25. Biozones of selected foraminifera from the Jurassic of the Baltic region. Black bar= stratigraphical range in the Baltic, open bar = stratigraphical range elsewhere in Europe.

sponds to the upper part of the Tarava Formation in the Bal­ not rich, bu t some of the 13 species recorded, mainly vagin­ tic Basin (see Table l, o. 10). The foraminiferal assemblage uhnids and epistominids, justify a dating to the Early Vol­ of the zone shows close similarity to the assemblages of the gian. Among diagnostic foraminifers Marginulinopsis Pseudolamarekina pseudorjasanensis Zone of the Central striatocostata, Saracenaria pravoslavlevi and Mironovella Volga Region in Russia, and to corresponding zone in gemina may be mentioned (see Table l , Fig. 10). Other spe­ Poland and Great Britain as weil (Grigelis 1982a). cies to be noted are Citharina zaglobensis, C. raricostata, Epistomina praereticulata and E. gorodistchensis. These species have stratigraphical ranges from the Upper Kimme­ LOWER VOLGlAN ridgian to the Lower Volgian. Amongst the few ammonites obtained from the Lower Beds with Marginulina striatocostata Volgian strata Pectinatites boidini and Pavlovia hypophanti­ (Figs. 10, 25, 26) ca may be mentioned. The foraminifers found, co-occurring These beds represent the uppermost Jurassic deposits in the with these ammonites, were too badly preserved to Baltic Basin, which have yielded foraminifers. The fauna is allow any specific determinations.

44 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

(Q (') o A <5- (f) ~ x Oi" 3" ni o :J c.O (Q o ...., 3 Oi" CD < o. CD Oi " Oi" ...., :J :J :J ~ i b ~ c b ~ c b c b l ~ en (f) "O "O "O l ni c ::E a: "O ::E a: "O ::E "O ::E a: (Q CD...., o. CD ....,CD o. CD CD...., CD CD...., l o. 9" ro ...., ro ...., ...., l ro CD l or-ro L. cultra- 3!0 r-o r- enrro . . r- r- (/)S:OJ CDZ z en N 11 ;>;-Q) CD L. tumida ~Q) CD en o c o o tiformis o-en ..D. < 7'"0 o. g_ O" ::J ...., (3::::!0. ~g-in ...., ...... Ol c ...., ni- ...., NCD Ol ....-::::.::t (J) - · c Ol CD ...., c Ol c !il <;c =·o o ~ ...., ~. -.:s · ~ -.en ....,Ol en~ -o er· C/)::::-:st CD eno.ro tll Dl CD 3!:. Ol...., Ol en ro ' ...... :J o. ...., ene -m ~3 ' =? c ~ tll tll o. CD en, (/)~-·- Ol, q;· ~ iii o. ~ Ol =? i

1------1 Lenticulina okrojanzi 1------1 Reinholldella crebra 1------1 Epistomina cal/ovica 1------1 Troeholina nana l r-- Lenticulina pseudocrassa r- -- L. cultratiformis 1 r-- L. eichwaldi t------L. papillaecostata r---+---+--+----1 Epistomina mosquensis t- -- Lenticulina tumida t------Planularia flexuosa r---+---+--+----1 Epistomina elschankaensis l l 1- Lenticulina paracultrala r--- -- 1 L. catascopium

1- L. subtilis

L. chmielewskii - L. vistulae L. involvens L. daiva L. lithuanica t L. i/lustris E. planict;Jnve a - Marginulina buskensis E. Por- f--- --+---+----1 E. praere(iculata cellanea Ophthalmidium sagittum E. tatariensis L. brueckmanni l E. stellicostata L. belorusica Mironave/la mjatliukae L. hebetata f-----+------M. foveata E. volgensis Saracenaria pravoslavlevi E. intermedia Citharina zaglobensis ----+---­ E. gracil/is Margulina sriatocostata O. strumosum 1------+------j M ironoveila gemina f- ---- +------1 L. brestica 1 l l L. sublenticularis 1-----+----+----+---- E. uhligi E. nemunensis Sigmoilina milioliniforme t-----·--1------1 Lenticulina quenstedti Astacolus russiensis ~--- E parastelligera 1-----+------1----1 Lenticulina prussica L. kuznetsovae l L. undosa Planularia kostromensis Epistomina arkel/i E. praetatariensis l E. ventriosa

Fig. 26. Middle and Upper Jurassic foraminiferal zones and assemblages of the East Baltic region.

45 A. GRIGELIS AND E. NORLING

Jurassic foraminiferal faunas of scania and adjacent sea areas

Foraminifers play an important role in the biostratigraphy of rine lagoonal sediments with thin marine intercalations. The the Swedish marine Jurassic, which is restricted to the brackish foraminiferal fauna is characterized by arenaceous southern part of the country. The oldest forms are recorded forms of genera such as Ammobaculites, Trochammina, from thin marine ingressional strata of the Helsingborg Reophax (Plate 2:10, Il) etc., which often are found tageth­ Member, Höganäs Formation, that was mainly deposited in er with Charophyta oogones (in recent time charophytes are deltaic and freshwater environments (Fig. 14, p. 26). This restricted to freshwater and brackish environments). meagre fauna includes foraminiferal species described from As mentioned before, samples from deep wells offshore the Rhaetian and the lowermost Jurassic (Fig. 27). from east Scania, from the Hanö Bay, indicate more marine The first major marine transgression in Scania occurred conditions during the Late Middle Jurassic to Late Jurassic in the Early Sinemurian and from this time on, marine con­ times than rnainland Scania. This interpretation is based on ditians prevailed throughout the Early Jurassic. This is re­ finds of foraminifers such as Globuligerina ej oxfordiana flected in the foraminiferal faunas. Whereas the Hettangian (Plate 5:4-8), Epistomina mosquensis (Plate 4:3) and some has yielded less than ten species, mostly nodosariids, the nodosariids (Norling 1970, 1972; Norling & Skoglund number of species recorded increases to some 40 in the 1977; Guy-Ohlson & Norling 1988, 1994; Norling et al. Lower Sinemurian deposits. In Upper Sinemurian strata a 1993, and Figs. 22, 29 herein). less prolific fauna has been found, which is partly linked to The foraminiferal zonation of the Swedish Jurassic is a short period with continental brackishand freshwater con­ based on assemblage zones. Ammonite and ostracod zona­ ditions, indicated by a thin coal-seam and rootlet beds. tian have been established in parts of the Lower Jurassic Throughout the Sinemurian, however, there are strata which (Reyment 1959, 1969; Sivhed 1980, 1984). have yielded both foraminifers and ammonites of strati­ graphical importance (Figs. 14, 27). Lower Jurassic On the whole the foraminiferal faunas of the Swedish Jurassic are of a boreal shelf sea type, including mainly HETTANGlAN - LOWER SINEMURIAN nodosariid and epistominid species. The strongest marine Astacolus semireticulata Zone transgression in Early Jurassic time occurred during the (Figs. 14, 28, Plate J.· JO) Pliensbachian, which is also true of major parts of western Europe (Hallam 1961 , 1975, 1987). The foraminiferal fau­ In Lower Liassic strata referred to the Helsingborg Member nas flourished from Early Pliensbachian into Toarcian­ (Hettangian) of the Höganäs Formation and the Döshult Aalenian times with a predominance of nodosariids, where­ Member (Lower Sinemurian) of the Rya Formation, a fairly as epistominids and arenaceous forms, though present, rich fauna of foraminifers has been found, containing Astac­ played a less important role. olus semireticulata accompanied by species described from For the major part of the Middle Jurassic of Sweden the Rhaetian of Austria (Kristan 1957, Kristan-Tollman n foraminifers are not useful tools in biostratigraphy due to 1964) al o ng with forms know n from the Lower Lias of w est­ the predominating continental conditions during this epoch. ern Europe, as weil as more long-ranging ones. Nodosariids In thin interealatians resulting from marine ingressions, predominate, accompanied by ceratobuliminid, buliminid, however, foraminifers have been found in core material, a and arenaceous foraminifers. fauna indicating a Bajocian age. Among short-ranging species obtained from the Döshult No foraminifers useful in biostratigraphy have been Member, Neobulimina sp. No. 2 (Bang in Larsen et al. obtained from the outcropping Middle Jurassic sequence 1968), Reinholdella margarita, Vaginulinopsis exarata (Bajocian-Bathonian) at Eriksdal, Central Scania ( Fig. 17). (Plate l :7), and the zonal denominator Astacolus semireticu­ In core material, however, fairly rich faunas have been found lata may be mentioned. This zone is recognized in many indicating a Late Middle Jurassic age. These faunas have outcropping strata and borehole sections in the region been obtained from the Fortuna Mari in western and north­ between Landskrona and Helsingborg (Fig. 12), e.g. in the western Scania, deposited during a marine transgression western slope of the giant monocline forming the boundary starting in Late Bathonian and prevailing into the Oxfordian between the Tornquist Zone and the Danish Subbasin (Nor­ (Norling 1972, 1981 ; Guy-Ohlson & Norling 1988, 1994; ling 1970, 1972; Norlinget al. 1993; Guy-Ohlson & Norling Norlinget al. , 1993). The major part of the Upper Jurassic 1994 ). The entire foraminiferal fauna of the Astacolus deposits in rnainland scania is interpreted as brackish ma- semireticulata Zone, and their stratigraphical ranges, are

46 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM given in Fig. 27. Author n a mes of all the species Iisted nata spinata Zone (Fig. 27) includes variegated clays and and/or commented on are given in Index of foraminiferal claystones, calcareous, mainly dark claystone and shale, and genera and species, p. 63 . some light-coloured calcareous siltstones as well.

UPPER SINEMURIAN- LOWER PLIENSBACHIAN UPPER PLIENSBACHIAN

Marginulina spinala spinala Zone Saracenaria sublaevis Zone (Figs. 14, 27, 28) (Figs. 14, 28)

This zone is correlated with the Upper Sinemurian and the This zone rnaini y embraces the lower part of the Rydebäck Lower Pliensbachian and covers the major part of the Pan­ Member of the Rya Formation. The foraminiferal fauna of karp and Katslösa Members of the Rya Formation (p. 25). this zone is rather rich, especially in its lower part, including The earrelation with international stages is based not only some species indicating a Late Pliensbachian age. The on foraminifers, but on ammonites too, such as Asteroceras who le fauna and the stratigraphical range of various species obtusum and Uptoniajamesoni (Norling 1972, Fig. 14 here­ are given in Fig. 28. in). In the basal part of the zone, a short-ranging subspecies In the lower part of this zone the foraminiferal fauna is of Brizalina liasica has been found, spanning the Carixian­ rather scarce, including species such as Citharina inaequis­ Domerian boundary in western Europe, viz. Brizalina liasi­ trata (P late J: 12), Vaginulina list i (P late l :9), Mesodentali­ ca amalthaea (P late 1:14 ). This foraminifer is ehosen as na haeusleri (Plate 1: 17), Astacolus neoradiata, Trocharn­ subzonal denominator (Fig. 14). The foraminiferal assem­ mina gryci and Paralingulina tenera (ssp. tenuistriata, blage characterizing the Saracenaria sublaevis Zone in­ pupoides and praepupa). The co-occurrence of Marginulina cludes species such as Marginulina spinata interrupta, Par­ spinata spinata and Citharina inaequistriata, found i.e. in alingulina tenera ssp. carinata, Trisfix fiasina (Plate l :8, the lower part of the type section of the Katslösa Member is 13), Ichthyolaria terquemi, I. major, Marginulina prima pri­ of importance for an approximate location of the Sinemu­ ma, Lenticulina acutiangulata, L. turbiniformis and Vaginu­ rian-Pliensbachian boundary (Norling 1972). These two lina spuria. The rocks of the zon e are characterized by grey, foraminiferal species have therefore been ehosen to charac­ partly greenish and reddish brown, calcareous siltstones terize a narrow foraminiferal subzone including the upper­ with intervals of banded claystone, ferruginous claystones most part of the Pankarp Me m ber and the lowermost part of and conglomerates. the Katslösa Member in Scania (Upper Sinemurian, p. 25). In the upper part of the Marginulina spinata spinata Zone the foraminiferal fauna becomes richer, including TOARCIAN - AALENIAN mainly Lower Pliensbachian forms, apart from more long­ Saracenaria trigona - Cilharina clalhrata Zone 28). ranging ones (Fig. One of the most characteristic spe­ (Figs. 14, 16, 28) cies within the upper part of the zone is Astacolus denticu­ lacarinata (Plate l :20), a species occurring in the lowerrnost This zone earresponds to the upper part of the Rydebäck part of Upper Pliensbachian too. Besides, species such as Member of the Rya Formation and the lower part of the Ichthyolaria mesoliassica, I. frankei, Prodentalina insignis, Fuglunda Member (thin marine ingressional layers only) of Paralingulina ssp. subprismatica and pupa, Marginulina the Mariedal Formation (Fig. 16). This is true of drill core prima rugosa and Astacolus quadricostata are typical. sequences in western Sean i a only. In the type sections of the According to the ammonite finds at the Gantofta Brick Fuglunda Member and the Mariedal Formation no foramini­ Pit (Figs. 14, 15) and the Katslösa Member type section fers have yet been found (Norling et al. 1993). Marine influ­ (Troedsson 1951, Reyment 1959, 1969), the Marginulina ence of the basal Middle Jurassic seems to be restricted to spinata spinata Zone earresponds to the Lower Liassic western Scania. Apart from Citharina clathrata, foramini­ interval including at )east the Asteroceras obtusum and fers such as Anornalina liassica, Trisfix fiasina (Plate 1:8, Uptonia jamesoni Zones and probably still younger Earl y 13), Ichthyolaria terquemi, Saracenaria trigona, Marginuli­ Pliensbachian ammonite zones (Norling 1972). na reversa, Lenticulina vetusta and Citharina deslongs­ The main part of the Katslösa Member is characterized champsi characterize this zone. The zone has been identified by the co-occurrence of Astacolus denticulacarinata (Plate in the Rydebäck-Fortuna cores Nos. l and 4 in western sca­ l :20) and Marginulina spinata spinata, a pair of foramini­ nia. The sequence mainly consists of dark, partly variegated feral species which have been ehosen as subzonal denomi­ siltstones, with a varying content of clay, ferruginous oolites nators. This subzone roughly earresponds to the Carixian and congtornerates in the lower part, and clayey, mainly Substage. The sequence embraced by the Marginulina spi- light, uncemented silt and sand in the upper part.

47 A. GRIGELIS AND E . NORLING

HETTAN- RHAETIAN GlAN SINEMURIAN L. PLIENSBACHIAN STAGE l SUBSTAGE

HÖGANÄS FORMATION RYA FORMATION FORMATION

HELSING­ BORG DÖSHULT l PAN KARP KATSLÖSA MEMBER

Astaco/us semireticu- : lata Zone Marginu/ina spinala spinala Zone

Fora~inifera~ l : spec1es obtamed " ------" ------T ------" ------mainly from the ' ' ' Hano Bay wells : : Citharina inaequis­ Astacolus denticula : Reinholdella : triata carinata ' margarita SZ & Marginulina s.spi­ & Marginulina s.spina­ : : : nataSZ taSZ : : ' ' ' ' -- ' 1 Ammobaculites eomorphus -- 2 Gaudryina triadica -- ' ' : 3 Hyperamminoides expansus -- : 4 lnvolutina turgida -- ' 5 Pseudonodosaria pluminiricosta -- ~ 6 Variostama coclea -- : 7 Variostama coniforme -- --, 8 lchthyolaria intereastata -- --, : 9 Pseudonodosaria holocostata -- r----+ 1 O Reoohax eominutus ------' 11 Reophax horridus ------' 12 Tetrataxis inilata -- ' 13 G lomaspira gord ialis -- 14 Lenticulina bochardi : 15 Astacolus semireticulata ' 16 Ammodiscus asper ' 17 Eoguttulina liassica ' 18 Marginulina lamellosa ' ' - 19 Astacolus varians 20 Astacolus matutina ---+ 21 Haplophragmoides canui 22 lchthyolari a brizaeformis : 23 lchthyolaria involuta ' ' 24 lnvolutina li assica ' ' 25 Marginulina prima praerugosa ' ' 26 Marginulina undulata ' ' 27 Neobulimina sp. No 2 Bang ' ' 28 Nodosaria columnaris ' 29 Nodosaria kuhni 30 Nodosaria procera : 31 Nodosaria radiala 32 Reinholdella margarita ' 33 Vaginulinopsis exarata '' 34 Citharina inaequistriata ' : 35 Lagenarnmina ex gr. diflugiformis ' 36 Trochammina gryci ' ' 37 Astracolus neoradiala ' ' 38 Astracolus quadricosta 39 lchthyolaria baueri 40 lchthvolaria bicostata ' 41 lchthyolaria du bia : 42 lchthyolaria sulcata ' 43 Marginulina paulunae ' ' 44 Nodosaria dispar ' ' 45 Nodosaria oculina ' ' 46 Prodentalina vetusla ' 4 7 Pseudonodosaria multieostala ' ' 48 Vaginulina listi 49 Marginulina prima rugosa 50 Marainulina reversa : 51 Marginulina spinala spinala : ' ------r------~ 52 Mesodentalina haeusleri ' 53 Nodosaria metensis ' ' 54 Nodosaria milis ' ' 55 Prodentalina vasta ' 56 Pseudonodosaria sexeostala ' : 57 Astacolus denticula carinata

Fig. 27 . Range chart of foraminifera from Rhaetian, Hettangian, and Sinemurian strata in Sweden, including species ranging in to the post­ Sinemurian.

48 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

L. PLIENSBACHIAN U. PLIENSBACHIAN TOARCIAN AALENIAN STAGE l SUBSTAGE ' RYA FORMATION : MF FORMATION

:FUG- KATSLÖSA RYDEBÄCK :LUNDA MEMBER

5"5"(1))> -u s: :D ö>l::EzC:zl> Marginu/ina spinala spinala ; saracenaria sublaevis : :n9 :;.Q,mo~:;:;~ ct>::>~l>(l)mm Zon e Zon e l ~ - s Saracenaria trigona : ::r-~ OJ ::>N""Tl 15~ z~~~o 1 ~5·co mo o _oo :J~ ~:o m I & I Q_OJQ_ •Cl> ZI00 )> : ~"O C/) )>Q. 5>-0l:IJ Citharina clathrata J"'~3- - · ~ ~------~------l : tU~~ !!!.~ z~~__, Zon e : ~§ . :J ~g>~ ~ ~ (1) - :z O : C!> c:r~ iii.g: --1--1m-n Astacolus denticula Brizalina o :TQJ a.~~ : : Vl, ::>'§ ~~o(l carinata : liasica : : ~ -Qo & amalthaea : (O ~fl:tl~ Marginulina s. s : Subzon e : --0• Subzone ' z~s:

: : : : : 58. Astacolus breoni ' ' 59. Haplophragmoides kingakensis 60. lchth olaria mesoliassica : 61. Lenticulina gottingensis : : 62. Nodosaria apheilolocu la : 57' Astacolus denticula carinata ' : 63. Astacolus prima : 64. Citharina eugenii : : : 65. lchthyolaria nitida ' -i 66. Lenticulina subalata : : ' ' 67. Lenticulina turbiniformis : ' : ' 68. Lenticulina vetusla ' 69. Marginulina prima prima ' 70. Nodosaria quadrilatera ' : ' 71. Paralingulina tenera carinata : 72. Paralingulina tenera pupa : 73. Brizalina liasica liasica : 74. Astacolus cordiformis ' : 75. Pseudonodosaria vulgata ' : 76. Trislix liasina ' 77. Pseudonodosaria quinquecostata : 78. Brizalina liasica amalthaea ' 79. Vaginulina spuria ' : 80. lchthyolaria terquemi 81. Falsopalmula obliqua 82. lchthyolaria frankei ' : ' 83. Lenticulina acutiangulata ' : ' 84. Pseudonodosaria quadricostata ' -i 85. Vaginulina flabelloides : '' ' 86. Citharina deslongschampsi ' : ' 87. lchthyolaria major ' : ' ' -i 88. Lagena ex. gr. globosa : : : 89. Marginulina elongata : 90. Marginulina spinala interrupta : 91. Prodentalina gladiformis : : 92. Prodentalina hausmanni ' ' 93. Prodentalina insignis : ' : ' 94. Prodentalina vetustissima 95. Saracenaria sublaevis 96. Reinholdella dreheri 97. Citharina clathrata ' : : 98. Lenticulina muensteri : 99. Saracenaria trigona : 100. Anornalina liassica 101. Trochammina sablei ' 102. Reinholdella media : ~ 103. Citharina proxima ' : 104. Epistomina conica ~ 105. Epistomina parastelligera ___. 106. Garantella rudia : :

Fig. 28. Range chart of foraminifera from Pliensbachian, Toarcian, and Aalenian strata of Sweden, including species ranging into the post­ Aalenian. MF=Mariedal Formation.

49 A. GRIGELIS AND E. NORUNG

Middle Jurassic (from the Lamberti Zone) from SW Scania, though obtained from erratic boulders (Reyment 1971). ÅALENIAN f BAJOCIAN In spite of the rich microfauna of the Fortuna Mari this Beds with Citharina proxima - Reinholdella dreheri has not been sufficient for a proper delineation of the stages represented. This is partly explained by the fact that most (Figs. 16, 28) foraminiferal species of the Fortuna Mari assemblage range The Bajocian deposits of Sweden, the Fuglunda Member of across more than one stage. The relatively small core recov­ the Mariedal Formation in central Scania (Eriksdal), and the ery with the risk of contamination, and the steep dip of stra­ Vilhelmsfält Formation in NW Scania are dominated by ta in the lo w er part of the Fortuna Mari also contri bu te to the sandstone, claystones and coal arranged in eyeles deposited difficulties in defining stage boundaries. In terms of fora­ in a transitional continental-marine setting during rather miniferal zones and beds, however, an attempt to precise the warm and humid conditions. The deposits contain plant re­ chronostratigraphical earrelation is made here. mains of fems, cycadophytes, ginkgophytes and , and rootlet beds linked to the coal-seams and palaeosols Epistomina callovica - Saracenaria phaedra Zone (Nor Ii ng et al. 1993). In the type area of the Fuglunda Mem­ (Figs. 16, 29; Plate 2: l) ber, no foraminifers have been found. In western Scania, however, one core drilling, Rydebäck-Fortuna No. 4, has This zone earresponds to the lower part of the Fortuna Mari. Most of the foraminifers obtained indicate a post-Bathonian yielded a meagre fauna in thin ingressional marine beds within the Fuglunda Member (Norling 1972, Edström in age. The Upper Bathonian has been included, however, be­ Norling et al. 1993). Some of the few species found are of cause of finds of certain ostracods in the basal part of the considerable biostratigraphical importance. The co-occur­ Fortuna Mari, species such as Oligocythereis fultonica rence of Reinholdella dreheri (fairly common at some (Jones & Sherborn) and Oligocythereis woodwardi Sylves­ ter-Bradely. levels), Citharina proxima, Epistomina paras teltigera (Plate 4:5) and E. conica seems to indicate a Late Aalenian-Early Bajocian age of the thin beds containing foraminifers. Upper Jurassic Other forms to be mentioned are Anornalina liassica, Rein­ LOWER OXFORDIAN holdella media, Brizalina liasica (Plate l: 14), Trochammina sablei and a Garantella species closely related to Garantel­ Saracenaria oxfordiana - Lenticulina brueckmanni Zone la rudia, which was recorded from the Bajocian in the (Figs. 18, 29; Plate 2:3, Plate 3:7) Ukraine by Kaptarenko-Chernoussova (1956). Between the Beds with Citharina proxima and Reinholdella dreheri and The central and upper parts of the Fortuna Marl have yield­ the next overlying bed with foraminifers, the Bathonian ed a foraminiferal fauna which seems to indicate an age Glass Sand Member of the Mariedal Formation occurs, pro­ from top Callovian to Early Oxfordian. In the type section hably deposited as a transgressive prograding delta over of the Fortuna Marl (Rydebäck-Fortuna No.5, 135.2- 161.3 tidally influenced lower delta plain deposits (Edström in m) the fauna includes some 40 species. When adding togeth­ Norling et al. 1993). In the type area of the Glass Sand er foraminifers obtained from all boreholes in Scania, where Member there is a stratigraphical gap between this unit and Callovian-Oxfordian strata have been recorded, the total the succeeding rudimentary Fyledal Clay Member (Kimme­ number may be around 60. Calcareous foraminifers domi­ ridgian). In other parts of Scania, however, e.g. in the Hel­ nate in the assemblages. In the upper part of the member singborg-Landshona and Åstorp areas (Figs. 12, 20), a arenaceous forms occur as weil. Saracenaria oxfordiana is Middle Jurassic marine transgressive pulse is represented by mainly reported from Oxfordian strata, but has also been the Fortuna Mari. This unit has yielded a rich foraminiferal found in olderas weil as youngerstages (Tappan 1955, Nor­ fauna, which is treated below. ling 1972, Munk 1980, Copestake 1989). Lenticulina brueckmanni (Plate 2:3 and Plate 3:7) and Trisfix oolithica,

UPPER BATHONIAN - CALLOVIAN however, seem to be good index fossils for the Oxfordian, perhaps restricted to the Lower Oxfordian (Norling 1972, The Fortuna Mari of the Annero Formation represents major Origelis 1985b among others). The only finds of Jurassic marine transgressions from late Middle Jurassic to early planktic foraminifers in Sweden, are limited to Oxfordian Late Jurassic times, affecting NW Scania and the Hanö Bay deposits of the Hanö Bay (p. 34). Along with characteristic east of the province as weil. This is indicated by finds of a Callovian-Oxfordian benthic foraminifers there are records prolific foraminiferal fauna. Of interest in this connection of several small planktic forms showing affinity to Globuli­ are also finds of excellently preserved Callovian ammonites geina oxfordiana (Plate 5:4-8)

50 JURASSIC GEOLOG Y AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

U. BATHONIAN- 1 OXFORDIAN KIMMERIDGlAN TITHONIAN STAG E l SUBSTAGE GALLOVIAN l

ANNERO FORMATION FORMATION

NYTORP VITABÄSK FORTUNA MARL FYLEDAL CLAY MEMBER SAND CLAYS - - :;· :;· [fl :Il< c;;:: :Il : ~g.:IJo~::g~~ (/) r- (/) ll z r- -n Q) {ll C!) Q) C!) ~ o C!) o :::To.J;>,92 -zm-nQ iil c;;· :J iil .g Öl -n :J iil m :;· );! )> o :Il m m ~ () :J o 3 o C!) ""OJ C!) OJ N b~ z;?;;~~() ~ c: Q) "" o 5 Q) Qo~ ' ::J tu Qo ~ - "' s:~ :;· ffi 53· o- Q) oco· :::E"""'oO,-i::j : m 3 ;;:. el ~rnmi~z)> "O 2 ~~ §:! & c:~ ::;,- 2 §:i -!!!::T C!) ::T C!) ::T OJ ~iilOOz~zO Q) : C!) iil 2 ;>; l O -n ~· C!) ~ ' ~ n;· :J 0 ::> Z~O-n0 iil Q) :J C!) "'

' 107. Citharina maeilenia 108. Frondicularia franconica ' 109. Lenticulina quenstedti 11 O. Lenticulina tricarinella 111 . Lenticulina lingulaeformis --, 112. Vaginulinopsis epicharis ---; 113. Verneuilinoides fu sca 114. Epistomina ca llovica ---; 115. Citharinella ni kilini --' ____. 116. Triplasia emslandensis _,' - 117. Trisegmentina sp. No 1 Lutze - ' -- -- 118. Ammodiscus tenuissimus 119. Astacolus anceps 120. Astacolus irretita 121. Cornuspira eichbergensis 122. Dentalina guembeli 123. Dentalina subplana ' 124. Lenticulina fraasi 125. Marginulina nyterpensis 126. Marginulina prima fortunensis 127. Marginulina simplex ' 128. Saracenaria phaedra 129. Citharina fiabellata 130. Troeholina conica 131. Spirillina intima : 132. Spirillina tenuissima 133. Epistomina mosquensis 134. Lenticulina brueckmanni ' 135. Marginulinopsis batrakiensis : 136. Citharina tenuicostata 137. Globuligerina oxlardiana 138. Trislix oolithica ' 139. Saracenaria oxlardiana ' - 140. Troeholina solecensis 141 . Conorboides pygmaea : 142. Ammobaculites subaequalis :' 143. Troeholina remesiana 144. Gaudryina heersumensis : ------145. Marginulinopsis sculptulis : 146. Reophax helvetica : 1---- 147. Astacolus major 148. Marginulinopsis gordoni ' 149. Reophax sterkii ' 150. Reophax suprajurassica 151. Eoguttulina pisiformis : 152. Ammobacu lites coprolithiformis 153. Haplopgragmoides haeusleri 154. Pseudocyclammina sp. : 155. Textulari a jurassica 156. Verneuilinoides meentzeni 157. Ammobaculites laevigatus 158. Trochammina globigerinoides : 159. Lenticulina muendensis

Fig. 29. Range chart of foraminifera from the Upper Bathonian, Callovian, Oxfordian, Kimmeridgian, and Tithonian of Sweden, including a couple of species ranging into the Lower Cretaceous.

51 A. GRIGELIS AND E. NORLING

OXFORDIAN helvetica and Textularia jurassica along with Verneuili­ noides meentzeni. Among characteristic calcareous forms Beds with Reophax suprajurassica Astacolus cordiformis, Marginulinopsis gordoni, Lenticuli­ (Figs. 18, 20, 29) nafraasi, Eoguttulina pisiformis, and scattered epistominids These beds include the topmost part of the Fortuna Marl may be mentioned (see Fig. 29). Member and the main part of the Fyledal Clay Member, Above the Fyledal Clay a sequence of uncemented sand both belonging to the Annero Formation. The y are identified and silt follows, known as the Nytorp Sand Member of the in drill core material only (Norling 1972, Guy-Ohlson & Annera Formation. This unit has not yielded any foramini­ Norting 1988, 1993, Norlinget al. 1993). The Beds with Re­ fers. The member falls within the Kimmeridgian and /or the ophax suprajurassica are characterized by a predominance Tithonian. of arenaceous foraminifers, especially representatives of the genera Ammobaculites, Haplophragmoides, Reophax (Plate 2: 10) and Textularia. A scarce fauna of calcareous forms TITHONIAN does also occur, Lenticulina brueckmanni (Plate 2:3 , Plate Beds with Lenticulina muendensis 3:7), L. fraasi, Astacolus anceps and rare epistominids to be (Figs. 18, 22, 29, 30) mentioned. The bed denominator, Reophax suprajurassica, is abun­ The uppermost Jurassic lithostratigraphical unit in Sweden, dant at som e levets. The lithology of the sequence embraced the Vitabäck Clays, is still insufficiently known as to its con­ by these foraminiferal beds is mainly variegated clays and tent of foraminifers. As the underlying unit, the Nytorp claystones (greenish-bluish) with some intervals of brown­ Sand, the Vitabäck Clays are mainly formed in slightly more ish, ferruginous claystones, and some silty layers. The beds varied depositional environments than the Fyledal Clay. The fall within the Oxfordian according to the European ranges Vitabäck Clays represen t Jurassic-Cretaceou s transitional of the representatives of the foraminiferal assemblage beds dominated by brackish to freshwater strata with some (Fig. 29). marine influence (Erlström et al. 1991 , 1993; N orling et al. 1993). These deposits are camposed of part! y eyelic succes­ sions with clays and silts deposited in quiet waters (coastal KIMMERIDGlAN lakes) and lagoons, which is evident from the composition of the molluscan fauna (Edström et al. 1991). As to forami­ Beds with Verneuilinoides meentzeni nifers only one species of biostratigraphical importance has (Figs. 18, 20, 29) been found in core material, viz. Lenticulina muendensis, These beds embrace the uppermost part of the Fyledal Clay, originally recorded from the Middle Munder Mari of West as this member is represented in the Rydebäck-Fortuna core (Tithonian). No. 5 (Fig. 20). The rather meagre fauna of foraminifers in­ lt is obvious that ostracods and palynomorphs are better cludes both arenaceous and calcareous forms. The group of tools than foraminifers for the biostratigraphy of the Juras­ arenaceous foraminifers is represented by Ammobaculites sic/Cretaceous boundary beds in Sweden (see Christensen subaequalis, A. coprolithiformis, A. laevigatus, Reophax 1968, Edström et al.l991 , 1994, Vajda-Santivanez, 1998).

52 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

(j) ::::> U. JURASSIC M. JURASSIC o c SELECTED FORAMINIFERS AND w C1l c c c c c o Ol C1l C1l - ~ OSTRACODS FROM CALLOVIAN- -~ "O c C1l ~ c ·;::: '6.... ·s: o T5 UPPER JURASSIC STRATA IN SW w o Q) o o ..c o a: ..c SCANIA AND THE HANÖ BAY E -x C1l C1l ·ro o i=- E o o CD- [() _j S2 Neocytheridea bononiensis (o) Sorosphaera scanica Troeholina remesiana Paracypris subparallella (o) -~ Lenticulina muendensis Pseudoeye/ammina sp. Troeholina solecensis Ostracod sp. No 8 Kl ingler 1955 Epistomina mosquensis • Epistomina parastelligera • • • • Haplophragmoides haeusleri Protocythere rodewladensis (o) - Verneuilinoides meentzeni - Cytheroteron decaratum (o) - Conorboides pygmaea Gaudryina heersumensis Reophax suprajurassica Troeholina conica Lophocythere cruciata oxfordiana (o) Lophocythere scabra bucki (o) Globuligerina et. oxfordiana Epistomina callovica Triplasia emslandensis - Verneuilinoides fusca ~ Trisegmentina sp. No.1 Lutze, 1960 - Lophocythere i. interrupta (o) - Ostracod No 4 Lutze, 1960 - Ostracod No 5 Lutze, 1960 - Ostracod No 6 Lutze, 1960 -

Fig. 30. Stratigraphical ranges of selected foram inifers and ostracods from Callovian-Upper Jurassic strata in SW Scania and the Hanö Bay. Ostracods are marked with (o).

53 A. GRIGELIS AND E. NORLI NG

Comparison of the Swedish and Lithuanian foraminiferal faunas

Foraminifers are useful tools for stratigraphical earrelation graphical unit, which has yielded some forty foraminiferal and comparison of Jurassic basins. Comparison of different species. East of Scania, borehole material from the Hanö basins can be carried out when areas of foraminiferal Bay indicates a longer period with open marine conditions species distribution, pathways of migration, palaeobiogeo­ from Late Middle Jurassic into the Late Jurassic than in graphical and palaeogeographical reconstructions are con­ western Scania. The lack of good core material, however, sidered. means that no reliable estimation of the foraminiferal fauna! The stratigraphical ranges of Jurassic foraminiferal spe­ extent and range can be made. Nevertheless, the lithology of cies are fairly well-known in Western Europe (Barnard the Hanö Bay Middle Jurassic-Upper Jurassic transitional 1950, 1952, 1953, Capestake 1989, Gordon 1970, Johnson, beds bear a close resemblance to corresponding sequence in Morris & Shipp 1989, Norling 1968, 1972 to be mentioned), Lithuania. and in Eastern Europe as weil (Bielecka 1960, At the end of the deposition of the Fortuna Mari in Grigelis 1958, 1981 , 1985, Kuznetsova 1979, Pazdro 1969, Scania in late Mid-Oxfordian time, a drastic change in the Piatkova & Permiakova 1978). A comparative study of the foraminiferal fauna happened. A fauna dominated by nodo­ Jurassic-Early Cretaceous foraminifers from offshore sariids was replaced by a fauna very rich in arenaceous Eastern Canada and the East European Platform, has given foraminifers (Fig. 31). This is still more pronounced in the important knowledge about directions of species migration, Fyledal Clay (U. Oxfordian-Kimmeridgian), overlaying the especially during Late Jurassictimes in the area of the North Fortuna Mari. When campared with present-day foramini­ Atlantic (Grigelis & Ascoli 1995). feral faunas it seems as if foraminiferal assemblages domi­ A major difference between the Swedish and the Lithu­ nated by arenaceous forms frequently are indicative of con­ anian Jurassic isthat all the Jurassic series of Sweden have ditians where secretion of calcium earborrate is di fficul t, that yielded foraminifers, whereas in Lithuania the Lower Juras­ is in cool-water or low salinity conditions (Gordon 1970). sic and the Lower Middle Jurassic are devoid of marine mi­ Based on noted co-occurrence of arenaceous foraminifera crofossils. and Charophyta oogones, the cause for the sudden fauna! The basal sedimentary sequence of the Swedish Jurassic change in the Late Oxfordian of western Scania is interpret­ is represented by the Höganäs Formation (Hettangian), char­ ed as a change of deposition from a marine to a brackish en­ acterized by eyelic deltaic deposits (p. 22), an essentially vironment (Norling 1972). In recent waters Charophyta are continenta1 sequence which has yielded a meagre foramini­ restricted to fresh water and brackish conditions, and arena­ feral fauna (totally 14 species, including 5 species from the ceous foraminifers mainly to marine and brackish environ­ Rhaetian-Hettangian of the Hanö Bay wells) in thin marine ments. At the end of the Jurassic the sedimentary conditions ingressional beds (Fig. 27). in scania were not favourable to foraminifers. From the Early Sinemurian onwards during Liassic In Lithuania, marine conditions startedlater than in Swe­ times, however, marine conditions prevailed, indicated by den and thus prevailed duringa shorter time. The foramini­ the richest foraminiferal fauna of Sweden, concerning the feral faunas during this time, however, were very rich, as Jurassic, with 38 foraminiferal species recorded from the were other marine organisms. These conditions have al­ Lower Sinemurian transgressional strata, 28 from the Upper lowed a fairly detailed earrelation between foraminifer and Sinemurian and 45 from the Lower Pliensbachian, a nu m ber the classical ammonite zonation, a earrelation which has not which increased to more than 50 species at the end of Lias­ been possible for the upper Middle Jurassic and the Upper sic t i mes (Late Pliensbachian-Toarcian). Jurassic of Sweden. Jurassic ammonite finds in Sweden are The continental period that followed in the Middle Juras­ restricted to the Lower Jurassic. sic of Sweden is of course reflected in the foraminiferal Not until Late Bathonian-Early Callovian times forami­ fauna; 9 species only have been recorded from marine nifers, along with other marine organisms, seem to appear in ingressions in Aalenian-Bajocian deposits, whereas the Lithuania. From then onwards, throughout the major part of Lower Bathonian of Sweden seems to be devoid of fora­ the Late Jurassic, foraminifers formed a rich and important minifers. constituent of the marine fauna. In all the superfamily As to the Upper Bathonian and Callovian Stages, major Nodosariacea represented 59% of the fauna (140 species), marine transgressions appeared in Lithuania, as weil as in whereas Ceratobuliminacea contributed with 22% (50 spe­ south Sweden. In western Scani a marine conditions pre­ cies). The remairring part of the foraminiferal fauna be­ vailed from Late Bathonian time into the Oxfordian. During longed to Astrorhizacea, Ammodiscacea, Textulariacea, this time interval marls, Iimestones and calcareous siltstones Miliolacea, Spirillinacea, and Globigerinacea (Figs. 24, 31). referred to the Fortuna Mari were deposited, a lithostrati- The on! y stratigraphical part of the Jurassic within which

54 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

TABLE 5. Number of fo ra miniferal species in Jurassic Stages foraminiferal faunas in Lithuania and Sweden can be com- of Sweden and Lithuania. pared is the Late Bathonian- Kimmeridgian interval, be- cause the pre-Late Bathonian Jurassic of Lithuania is devoid Sweden Lith uania stages of foraminifers, and from the Tithonian (Volgian) in Sweden Rh atia n-Hettangia n 19 five forami niferal species only have been recorded. L. Sin emurian 38 For a general comparison of the Jurassic foraminiferal U. Sinemurian 18 faunas in the SE Baltic area with those of Scania, the faunas L. Pliensbachian 45 U. Pliensbachi an-Toarc. 52 have been subdivided into four main groups, vis. Nodosaria- Aa lenian-Bajocian 9 cea, Ceratobuliminacea, other calcareous foraminifera, and 22 arenaceous foraminifera. Such a comparison is valid for the Bathoc;oo L. Callovian l 8 Upper Bathonian, Call ovian, Oxfordian, and the Kimmerid- M. Callovian 28 39 gian Stages. As to these four major groups of foraminifera, U. Ca llovia n 67 the relative frequencies of species show a similar pattern in L. Oxfordian 52 both the areas for the main part of the upper Middle Juras- M. O>focd;oc 37 42 U. Oxfordian l 31 sic. One difference is the high percentage of ceratobulimina- L. Kimmeridgian 42 cean foraminifera in the Upper Bathonian (35 %) and Lower U. Kimmeridgian 42 Callovian (37 .5%) of the SE Baltic area (Fig. 31). Through- Tithonian 5 13 out the foraminifer-bearing succession of the Lithuanian Jurassic Ceratobuliminacea plays a much more important

TABLE 6. Nodocariacean, ceratobuliminacean, other calcareous, and arenaceous foraminifera in the Jurassic of Lithuania and Sweden.

Number of species in: Group of Kimmeridgian Oxfordian Callovian Upper Forarninifera u L u M L u M L Bathon.

Lithuania

Nodosariacea 25 31 19 24 19 55 31 3 6

Ce rata- 15 8 9 Il 16 12 3 3 7 bulirninacea

Other 4 3 5 6 Il 6 2 6 calcareous forarninifera

Arenaceous 2 o o o 9 2 forarninifera

TOTAL 45 44 33 41 46 82 38 8 20

Sweden

Nodosari.acea 4 3 25 21 23 28 lO 5

Cerat o- 3 3 4 3 bulirninacea

Other 4 2 2 2 2 2 2 calcareous forarninife ra

Arenaceous 11 6 2 2 2 o forarninifera

TOTAL 20 11 32 27 31 35 14 8

55 A. GRIGELIS AND E. NORUNG

RELATIVE FREQUENCY LITHUANIA AND OF FORAMINIFERAL SE BALTIC AREA SCANIA, SWEDEN

C/) C/) SPECIES WITHIN :;, o G> o FOUR MAJOR G> C/) B 41·- al -o ..... c: CHRONOSTRA- o G>·- Qj ~ ...... o G>·- .....41 EC/) l c:a> .....~ z o E ~.s z

u 55,6 ~~ l 2,2 55,0 KIMMERIDGlAN f-- 20,0 20,0 ~

70,5 ~ L -

18,2 6,8 4,5

u 57,6 54,5 ~o n 9,1 9,1 f l 58,5 ~ - OXFORDIAN l M 26,8 14 6 ~ o 9,4 6,3 6,3 l ~ L 41,3 34 8 ~ o 11 '1 7,4 3,7 67,1 74,2 ,..---'- l u l ----,14,6 73. .,.--'--t11 o l 12,9 65 6,5 - ·- 80,0 ~ ,..---'- CALLOVIAN M 7,9 5,3 5,3 8,6 5,7 5,7

~ L 37,5 37,5 1 12,5 12,5 7 1 14· 3 7 1 ~

UPPER 62,5 BATHONIAN - 35,0 30,0 30,0 25,0 l r--1 ~ ~---] o Fig. 31. Comparative hi stograms showing relative frequencies of foraminiferal species with in four major groups in Lithuania and the SE Baltic region, and in Sweden.

56 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNASIN THE NW PART OF THE EAST EUROPEAN PLATFORM

TABLE 7. Foraminiferal genera from the Jurassic of Lithuania and Sweden Ii sted in alphabetical order.

Number of species in

Genus Lithuania Sweden

Ammobaculites 2 3 Ammodiscus 2 2 Ammovertella l o Anomalina o 2 Astacolus 15 l l Briwlina o 2 Cerato/amarckina 2 o Citharina I l 8 Citharinella 4 l Conicosnirillina 2 o Cornusnira l l Cvcloevra l o Denarlina 5 2 EoJ!UtiLilina l 2 Eoistomina 35 5 Enistominita 2 l Enistomino ides 3 o Falsona/mula 2 l Frandicularia l l Garantella o l Globulina 2 o G/obu/iee rina l l Glornaspi re/la l o Hanlonhra mwides l 3 Ichthvolaria 5 Il LaQena l 3 LaPenammina o l Lenticulina 52 14 Mar 'imtlina 7 lO Marf! inulinoosis 13 2 Marsonella l o Mesodentalina o 4 Miliosnirella 2 o M ironoveila 3 o Neobulimina o l Nodobacularia l o Nodosaria 2 9 Nubeculinella IVinelloidea ?J l o Ophthalmidium 8 l Orthel/a l o Paleof!audrvina 2 o Paleomiliolina 2 o Paralineulina o l * Paulina 5 o Planularia 14 o ProdenTalina o 6 Pseudoeye/ammina o l Pseudolamarekina 4 o Pseudonodosa ria o 7 Ouinaue/oculina l o Ramulina l o Rectoeoistominoides l o Reinholdella 3 2 Reonhax l 5 Saccammina l l Saracenaria 8 6 SiJ? moilina l o Sorosohaera o l Snirillina 5 l Terrataxis o 2 TexTularia l l Tristix 3 2 Trochammi110 l 3 Troeholina 4 l Trochonirillina l o Vw!inulina 3 2 Vwzinulino 'J sis 2 2 Verneuilino ides o 2

* Many subspecies of Paralingulina tenera

57 A. GRIGELIS AND E. NORLING

role than in corresponding strata of Sweden. This does not identified, but some foraminifers recorded remain unidenti­ only concem the number of species, bu t the number of gen­ fied as to genus. Of these genera 55 are recorded from Lith­ era too. The Lithuanian Jurassic has yielded genera such as uania and 45 from Sweden (Table 7). The ratio aren­ Ceratolamarckina, Epistomina, Epistominita, Epistomi­ aceous/calcareous foraminifera of the entire Jurassic faunas noides, Mironovella, Paulina, Pseudolamarckina, Recto­ is about the same in both areas, viz. 1/3. At different strati­ epistominoides and Reinholdella. In corresponding strata! graphicallevels, however, there are in part very great differ­ units of Sweden, two ceratobuliminacean genera only, Epis­ ences, as can be seen in Fig. 31. tomina and Epistominita, have been recorded. It has also The number of species within various genera gives an been noted that the epistominid specimens recorded in the important characteristic of similarities and differences in the Swedish Jurassic usually are in a bad state of preservation, faunas . In Lithuania many more species have been identi­ whereas aragonite forms in the Lithuanian Jurassic seem to fied than in Sweden. With regard to the number of species be excellently preserved. the six darninating genera in the Jurassic of Lithuania are: From the Middle Callovian to the Middle Oxfordian Lenticulina (52), Epistomina (35), Astacolus (15), Planular­ nodosariacean foraminifers dominated in both regions. In ia (14), Marginulinopsis (13) and Citharina (11). In Swe­ the Late Oxfordian, as mentioned before, a drastic change of den the following 6 genera dominate: Lenticulina (14), the faunal composition occurred in Sweden. From then and Ichthyolaria (11), Astacolus (11), Marginulina (10), Citha­ throughout the Kimmeridgian arenaceous foraminifers were rina (8) and Pseudonodosaria (7). A similarity between dominant, represented by many different genera, whereas in Lithuania + SE Baltic, and Scania is thus a dominance of Lithuania and adjacent areas the faunas of corresponding species within Lenticulina, Astacolus and Citharina, all strata continued to have a dominance of nodosariacean nodosariacean foraminifers. Major differences are reflected foraminifera. Purther comparisons can be made by studying e.g. in the number of Epistomina species (35) in Lithuania, the histograms in Fig. 31 (see also Table 6). whereas 5 species only have been recorded in the Swedish In the Jurassic of Sweden and Lithuania, and adjacent Jurassic (Table 7). offshore areas, some 70 foraminiferal genera have been

Facies distribution, palaeogeography and palaeoecology

During the Jurassic the sedimentary basins of Western and warmer, higher salinity Tethys waters, as well as the influx Central Europe continued to subside along patterus estab­ of clastics from eastern sources (Plates 7, 8) . At the same lished in the Triassic. Throughout this area a gradual over­ time the rising sea level induced an overstepping of the stepping of the Late Triassic basin edges is evident (Ziegler basin margin. In principle, three facies provinces are visible, 1990). Thismay be related to a cyclical rise of sea level, not vi z. (l) the clastic-dominated Baltic- Polish Province, (2) least as noted in Lower Jurassic deposits along the SW mar­ the open marine colder water North Sea-North German gin of the East European Platform, e.g. in Scania (Troedsson Shale Basin, and (3) the warmer water, carbonate-shale 1951, Vossmerbäumer 1970, Norling 1972, Haq et al.l988, dominated basins of south-western Europe (Ziegler 1990). Norlinget al. 1993, Ahlberg 1994). During the Rhaetian-Lower Jurassic Lithuania formed a In Rhaetian and Hettangian times renewed transgres­ part of the Baltic-Polish Province (1), also narned the Bast­ sions of the Tethyan Sea occurred in Western Europe (Plate ern Clastic Province, whereas Scania during the same time 6). During the Rhaetian, a connection may have been estab­ interval demonstrates facies characteristic of both the lished for the first time between the Arctic and the Tethys Eastern Clastic Province and the North Sea-North German seas via the Irish Sea and the Rockall-Faroe Rift (Ziegler Shale Basin (l and 2) . 1982). Tethys-derived marine incursions reached also into In the Baltic-Polish Province sedimentation during the Polish Trough via the East Carpathian Gateway during Aalenian time was restricted to the Polish Basin, where con­ the Rhaetian (Senkowiczowa & Szyperko-Sliwczynska tinental clastics were deposited initially (Plate 9). In Late 1975). Aalenian time the Tethyan Sea advanced north-westwards In Western and Central Europe post-Hettangian Lower resulting in deposition of shallow marine sh ales in the south­ Jurassic facies patterns were strongly intluenced by the ern and central parts of the Polish Basin, and accumulation interference of the colder, lower salinity Arctic and the of sandy, shaly successions in its northern part, including

58 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM parts of Scania, whereas no Aalenian deposits have been foraminifers have been the most important groups for the recorded in Lithuania (Grigelis et al. 1985, Norling 1972, dating and biozonatian of the strata. The thickness of the Ju­ Ziegler 1990, Norling & Grigelis 1996). rassic in Lithuania and adjacent areas varies from some few In Bajocian time a regression eaused a renewed restric­ metres in northem Lithuania to c. 240- 250 metres at the tian of marine environments to the axial zones of the Polish Polish horder. Trough (Dadlez et al. 1973). This was followed by a Late In the Early and Middle Jurassic, into the Middle Callo­ Bajocian transgression, w hi ch invaded much of the p latform vian, a continental regime prevailed in the Eastern Clastic areas in Poland and persisted throughout the Hathonian Province. Now and then slow subsidence resulted in minor (Plates 10, 11). Along the northem margin of the Baltic­ basins that were filled with sand and clay deposits, in Polish Province, however, in an area including both Lithua­ places rich in plant fossils. Certain beds rich in plant debris nia and Scania, thin marine ingressional beds of Bajocian were transformed to seams of brown coal. During the and Hathonian age only have been recorded (pp. 11, 28, 38). Middle Jurassic the first indices of marine influence Within the Baltic-Polish Province an Early Callovian appeared. The oldest marine ingressional beds recorded in regression was followed by a gradual transgression that Lithuania are of Late Hathonian age, beds which have yield­ peaked during the Early Oxfordian (Plates 12, 13, 14). In the ed a poor foraminiferal fauna and a few lamellibranchs. Early Callovian sedimentation was mostly restricted to the In the beginning of Callovian time the entire Lithuanian axial parts of the Polish Trough, which were occupied by a area, with the exception of its north-eastern part, was sub­ shallow sea arm connected with the Tethyan shelves. This merged by the sea transgressing from the south (Plate 12). embayment was separated from the North German Basin by A marine period Iasted then almost to the very end of the a land mass connecting the Lusatian High with the Pom­ Jurassic. Thus, at the end of the Middle Jurassic, in Mid­ peckj Uplift and the eastern parts of the Ringköbing-Fyn Callovian time, palaeogeographical conditions changed High. During the Late Callovian this barrier was trans­ great! y. Wide transgressions of the North German and Polish graded by the sea (Ziegler 1990). At the same time much of basins started from the southwest. From Callovian time Eastem Europe became inundated resulting in marine con­ throughout the Late Jurassic sandy, and clayey calcareous nections with the Lvov-Lublin and the Moscow Basins sediments were deposited. The sea was rich in various pro­ (Grigelis et al. 1992). By the Early Oxfordian boreal faunas tozoans and invertebrate organisms. Ammonites were living migrated via the North Danish Basin into the Baltic-Polish in the sea, and the first planktic foraminifers appeared Province, and in its southern parts mixed with Tethyan relat­ (Grigelis 1958), indicating open marine conditions. The sea ed taxa. This connection with the Arctic and Tethyan faunal bottom was occupied by various brachiopods, echinoids and provinces was maintained during the Kimmeridgian and crinoids. During the Oxfordian reef-forrning corals and Tithonian and was interrupted during the latest Tithonian bryozoans were characteristic of the fauna. Occasionally, only (Plates 15, 16). In the axial parts of the Danish-Polish siliceous sponges appeared indicating cold water influence. Basin, sedimentation was more or less continuous during the The prolific fauna obtained indicates that the marine Tithonian and Berriasian (Ziegler 1990). Within the Pennos­ basin was of shelf type, with normal salinity, oxygen and candian Border Zone and further to the east into the Baltic rich in calcium carbonates. As characteristic features of the region, however, Late Kimmerian tectonic movements re­ marine Jurassic succession (Callovian-Upper Jurassic) in sulted in gaps in sedimentation (Guy-Ohlson & Norling Lithuania may be mentioned: dark grey to blackish, calcar­ 1988, Grigelis et al. 1992, Marek & Grigelis 1998; Plate 17 eous, argillaceous, fossiliferous sediments, deposited in a herein). sea much warmer than the present day elimate in the area. The basin formed a part of the North German-Polish Basin LITHUANIA with connection to the Tethyan Sea. Relative dating and earrelation of pre-Callovian Jurassic In the eastern Baltic, sedimentation during the Jurassic units in Lithuania are mainly based on lithostratigraphical period resulted in thick deposits with various fossils. From a criteria. The dating and earrelation of Middle Callovian and lithological and genetic point of view, these deposits can, in younger units are based mainly on ammonite and foramini­ general, be subdivided into two major successions, the old­ feral zonation, w hi ch allow this part of the Lithuanian Juras­ er one having an alluvial to lacustrine character, the young­ sic to be widely correlated within the boreal palaeogeo­ er one being marine. The Lower and Middle Jurassic succes­ graphical realm. sion of the Eastern Baltic has yielded plant remains and Within the marine sedimentary sequence of the Lithua­ palynomorphs, so me of the m being useful for relativedating nian Jurassic the Callovian, Oxfordian, Kimmeridgian and and biostratigraphy. The marine Callovian and Upper Juras­ Volgian Stages have been established. They are divided into sic strata contain a rich and varied fauna. Ammonites and lithostratigraphical and biostratigraphical units. Major parts

59 A. GRIGELIS AND E. NORLING of the sequence can be seen in the Papile region of NW Lith­ Central European Basin (Plates 10, 11). To the west, the uania (Fig. 3), where 15 exposures are known. The Jurassic Ringköbing-Fyn High existed as a vast denudation area. In sequence of the Papi!e region is a reference section of the Scania, the depositional environments were dominated by Jurassic in the East European Platform. lt also represents the non-marine (alluvial, lacustrine) and sea-margin (lagoonal, stratotype section of the Middle and Upper Callovian and intertidal) settings. The same is true of the Norwegian­ the Lower Oxfordian of the South Baltic area. Danish Basin and the Central Graben of the North Sea (Nor­ ling et al. 1993). At that time shallow marine conditions were limited to the Central European Basin (Jubitz et al. SWEDEN 1988). As in the North Sea Graben system, areas within the In Scania and offshore, a mainly non-marine Upper Triassic­ Seanian part of the Tomquist Zone were subjected to vol ­ Hettangian sequence is followed by a marine comprising the canism from the Middle Jurassic and onwards. In Central remaining part of the Lower Jurassic (P lates 6, 7, 8). The n a Scania, which is dominated by gneiss and a patchy thin non-marine sequence followed, representing the major part Jurassic sedimentary cover, at !east 70 Mesozoic basaltic of the Middle Jurassic (P lates 9, l O, 11 ). From top Hatho­ necks have been recorded (Norin 1933, 1934, Bergström nian throughout the Callovian and the main part of the Ox­ 1981 , Norling & Bergström 1987, Norling et al. 1993, fordian, marine sediments were deposited in western Scania Bylund & Halvorsen 1993). The bulk of volcanics in the and in the Hanö Bay, whereas the central part of Scania is Central North Sea is dated to the Bajocian and Hathonian on devoid of strata from this time interval. The same is true of the basis of biostratigraphical criteria. Radiometric age de­ the north-western part of Scania (Helsingborg- Höganäs terminations, however, yield a wider range, which may be a area, the Ängelholm Trough excluded), where post-Liassic function of secondary alteration of the analysed rocks sediments, once deposited, were eroded away during Creta­ (Ritchie et al. 1988, Latin et al. 1989, Ziegler 1990). ceous- Tertiary inversion movements. Upper Oxfordian, In Callovian time sedimentation in Scania was again in­ Kimmeridgian and Tithonian strata of Scania were deposit­ fluenced by marine conditions. This is recorded in borehole ed in brackish-marine and freshwater environments such as sections in western Scania and the Hanö Bay east of the lagoons and coastal plains. province. In the Vomb Trough of Central Scania, however, The Rhaetian to Early Jurassic transgressions of the CaJlovian strata are missing. Tethys, which reached northwards into the Central Graben In Late Jurassic times an increasing influence of marine of the North Sea and the northern part of the D anis h Embay­ conditions led to the formation of shallow marine clays and ment did not affect Scania until Hettangian time (Norling & silts over vast areas in the Central European Basin, as weil Bergström 1987). There seems to be one exception, the as in the Norwegian- Danish Basin. A narrow pathway Hanö Bay east of Scania, where finds of Rhaetian foramini­ between the Fennoscandian Shield and the Ringköbing-Fyn fers indicate the presence of marine sediments (Norling & High linked the two basins, but was still influenced by Skoglund 1977, Norlin g et al. 1993, and present paper, brackish conditions during most of the Late Jurassic (Plates Fig. 12, p. 23). The first major transgression in South Swe­ 13-16). den appeared in the Earl y Sinemurian. Fromthen on marine The Rhaetian and Hettangian deposits of Sweden have conditions prevailed throughout the Early Jurassic with the yielded a fairly rich, weil-preserved rnaerafossil plant flora, exception of a short break in Late Sinemurian (see p. 25). which, along with pollen and spores, has been of great im­ The deposition of Jurassic sediments in Sweden was portance for earrelation and dating. The same is true of the strongly influenced by tectonic activities within the Torn­ Middle Jurassic non-marine deposits. The Early Jurassic quist Zone. The sedimentary record is reflected by numer­ marine conditions in Sweden resulted in fairly rich maero­ ous provenance shifts, disconformities and evidence of and microfaunas, of which ammonites, foraminifers and transgressions and regressions. In addition, the elimate was ostracods have been used for zonation, earrelation and a major factor controlling weathering, erosion and deposi­ dating. Other organisms such as brachiopods, belemnites tion (Ahlberg in Norlinget al. 1993). and biva1ves are also important representatives of the Earl y During Bajocian-Bathonian times the marine influence Jurassic marine faunas, but these groups have not yet been decreased in Scania as a result of renewed faulting at the studied in detail. The most useful tools for dating the margin of the East European Platform. The tectonic uplift Middle Jurassic non-marine deposits have been pollen and led to a general regression over vast areas and the develop­ spores. For the Bajocian, plant macrofossils too have been of ment of sedimentary facies similar to the Rhaetian deposits. importance. The most! y marine deposits of top Hathonian to A narrow depositional area across Scania acted as a commu­ Oxfordian ages have yielded fairly rich foraminiferal fau­ nicating !ink between the Norwegian-Danish Basin and the nas, as described above, whereas no ammonites of use in

60 JURASSIC GEOLOG Y AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM biostratigraphy have been recorded. Kimmeridgian and two stages, however, ostracods and palynomorphs have Tithonian deposits of Scania have also yielded foramini­ been the most reliable tools in biostratigraphy. feral faunas, mainly of brackish-marine character. Forthese

Foraminiferal biogeography and palaeoecology

The boreal real m occupied the northern part of the N orthem dominated, e.g. Epistomina, Garantella and Reinholdella Hemisphere (Hallarn 1975). The Jurassic foraminiferal fau­ species. When occurring alone the genus Reinholdella may nas of Lithuania and Scania Iived in shelf sea environments indicate waters with low oxygen content (Murray 1989). favourable to benthic foraminifers. In both the areas nodo­ This is for instance the case at certain levels, representing sariacean taxa dominated the fauna most of the time. short marine incursions within the essentially non-marine Though there are great similarities between the faunas there Fuglunda Member, which spans the Aalenian-Bajocian are also differences. One difference between the foraminif­ boundary in W Scania. eral faunas of Late Middle Jurassic and Late Jurassic ages in In both Lithuania and Sweden the top Bathonian-Callo­ Lithuania and Sweden is the following: Though there is no vian stratigraphical interval is characterized by a transgres­ major difference in the number of genera in the two regions, sive sequence, which is also the case of the North Sea the Lithuanian fauna seems to be much more diversified at a (Morris & Coleman 1989, Grigelis & Norling herein). specific level. The differences may be due to a provinciality The foraminiferal assemblage of this stratigraphical related to tectonic plate movements and more of the influx interval in western Scania (see Fig. 29) has much in com­ of warm water from the Tethyan Sea via the Polish Basin mon with the foraminiferal fauna in the Bathonian-Callo­ into the Eastem Baltic area, than to Scania. The Seanian vian boundary beds in the Inner Moray Firth of Scotland waters on the other hand bad more connections with Arctic (Beatrice Field area), with species in common such as Epi­ waters than the Lithuanian basins. All the major fauna! stomina parastelligera, Frondicularia franconie a, Lenticuli­ changes during the Jurassic can be related to changes in the na muensteri, and Marginulinopsis batrakiensis. In both environments of deposition. areas sediments as weil as the faunas indicate marginal to During the Earl y Jurassic an overall progressive increase shallow marine environments. At the margin of the marine in diversity of the foraminiferal associations happened Heather Formation in the Inner Moray Firth the continental throughout Western Europe, w h ich was related to the marine Brora Coal Formation is present. In Scania the onshore transgressions starting in the Late Triassic (Rhaetian). In Barhonian deposits are represenred by the sub-continental general, transgressions generated new appearances of taxa Glass Sand of the Mariedal Formation. Open marine con­ and regressions resulted in species . Weil docu­ nections east of Scotland and the Mid North Sea High via mented transgressions in the Jurassic of Sweden mark the northern Denmark to Scania and further eastwards seem to arrival of new species and subspecies as a result of evolu­ be obvious (Morris & Coleman 1989, Grigelis & Norling tionary appearances and/or migration, whereas regressions herein). and time of l owered sea levelappear to equate to extinctions Deposits of corresponding age in Lithuania and the (Norling 1968, 1972, Hallam 1961 , 1987, Copestake 1989). southern part of the Baltic Syneclise, Beds with Ophthal­ Throughout the Early Jurassic the foraminiferal assemblag­ midium infraoolithicum and Lenticulina okrojanzi contain a es were dominated by nodosariacean taxa. more varied nodosariacean fauna than those further to the A characteristic feature of the Aalenian in northern west, together with other foraminiferal genera such as Oph­ Europe is the widespread development of strongly regres­ thalmidium and several ceratubuliminaceans such as Episto­ sive facies, which concerns deposition in both onshore and mina, Epistominoides, Reinholdella and Paulina. The great­ offshore basins. er variety of nodosariaceans in the Baltic Basin suggests a Characteristic foraminiferal associations were more more stable marine environment than in Scania. The fairly mixed than in the Early Jurassic and included species such rich ceratobuliminacean fauna may indicate open marine as Citharina proxima, Citharina clathrata, Reinholdella shelf conditions. A closer connection with the Tethyan Sea dreheri, Lenticulina varians and Trochammina sablei (Nor­ via the Polish Basin may al so be a reason for the difference ling 1972, Morris & Coleman 1989). At certain horizons between Lithuania and South Sweden, as to foraminiferal within the Aalenian-Bajocian of Scania the meagre fauna of faunas at that time. According to Oravecz-Scheffer (1987), calcareous benthic foraminifers, other than nodosariaceans, species of Ophthalmidium show a preference for protected

61 A. GRIGELIS AND E. NORLING micritic cavities within reef bodies. He & Nor! i ng (1991) rine to brackish-marine conditions, indicated by the occur­ arrived at a similar conclusion as to the presence of Ophthal­ rence of an arenacean foraminiferal fauna together with midium in Upper Triassic shelf sea environments in Sichu­ Charophyta oogones at some levels. A cold water influence an, China. on the Swedish Upper Jurassic environments from the During the Middle and Late Callovian the foraminiferal Arctic Sea in the north is most Iikely to have had an effect faunas in Lithuania and Sweden showed close similarities as on the foraminiferal fauna too. Arenaceous foraminifers as to the representation of nodosariacean foraminifers, cerato­ indicators of reduced salinity, and in certain cases deeper buliminaceans, other calcareous foraminifers and arena­ water conditions, have been commented on by several stu­ ceous forms (see Fig. 31). During the Oxfordian, however, a dents, including Gordon (1970), Norling (1972), Barnardet remarkable increase of ceratobuliminacean foraminifers al. (1981), Shipp (1989) and Gregory (1989). occurred in Lithuania and the SE Baltic Basin, paraHel to a During the Tithonian regressions in both Lithuania and dominating nodosariacean fauna, a combination interpreted South Sweden eaused a drastic decrease in the foraminifer­ as indicating open high-marine conditions, still more pro­ al fauna and reduced connections to open marine basins. nounced by the appearance of planktic foraminifers (Orige­ As to the biogeography of Jurassic foraminifera a delin­ lis 1958). Jurassic planktic foraminifers probably spread eation of provinces, similar to those distinguished for am­ from the Tethys on! y in times of unusually favourable tem­ monites and belemnites, is difficult. Regarding the northern parature conditions (Gordon 1970) . hemisphere, a distinction can be made instead, between In the Oxfordian of South Sweden, on the other hand, the fauna! assemblages characteristic of the Boreal-Atlantic nodosariacean and ceratobuliminacean foraminifera gradu­ region, and the Tethyan Sea (e.g. Gordon 1970, Grigelis & ally decreased, whereas arenaceous foraminifers increased Ascoli 1995). In the South Baltic area treated in the present to constitute more than fifty per cent of the fauna in the Late paper, the marine microfaunas now and then show indica­ Oxfordian (Fig. 31). The difference in fauna! composition tions of influence both from the Tethyan Sea (e.g. spread of between Lithuania and Scania became still more pro­ planktic assemblages to restricted parts of the Boreal nounced in the Kimmeridgian. The Late Jurassic faunal Realm) and from Arctic waters in connection with the initial change in South Sweden is interpreted as a change from ma- opening of the Atlantic.

The lithologic-palaeogeographical maps

In the years 1975 to 1986 the present authors were invo1ved before the fall of the Berlin wall and the reunion of Eastern in the IGCP Project Accession No. 86, entitled: "East Euro­ and Western Germany. Because of the dissolution of vari o u s pean Platform, SW Border" with the brief key title "Project institutes, including geological ones, and printing offices of Tornquist". Apart from some 900 publications, Project Torn­ fonner GDR, the complete geological atlas with the many quist resulted in an atlas of geological maps of northern and maps, resulting from Project Tornquist, was never printed central Europe, mostly lithologic-palaeogeographical maps, and distributed widely as originally planned. bu t also maps of structural geology. For the present publication we have singled out 12 maps, Project Tornquist, with Professor K.B. Jubitz, Zentral­ previously published as inset maps covering the Jurassic institut ftir Physik der Erde, Berlin as the internationallead­ System. To all these maps, both of us have contributed with the er, engaged geologists from l O countries, viz. Czechoslova­ basic information from Sweden, Lithuania, the Russian En­ kia, England, Denmark, German Demoeratic Republic dave of Kaliningrad, and offshore regions of o ur countries. (GDR), the Netherlands, Poland, Roumania, Sweden, the The maps of the Hettangian-Sinemurian, Pliensbachian, Soviet Republics of Estonia, Latvia, Lithuania, Belorussia, Toarcian, Aalenian, Bajocian and the Hathonian (Plates 6- Ukraine, Moldavia, and Western Germany (FRG). The head 11) are inset maps on the head map of the Pliensbachian maps of the atlas produced, two sheets for each stratigraph­ (2 sheets). The international compilator of those maps has ical leve!, covering the main part of northern Europe from been Professor Ryszard Dadlez, Instytut Geologiczny, 15 selected horizons of the Phanerozoic, are on the scale Warsaw, Poland. l: 1.5 Mill. E very sheet coup le has smaller in set maps, on The maps of the Callovian, Oxfordian, generalized Ox­ the scale 1: lO 000 000, illustrating the lithology and palaeo­ fordian thicknesses, Kimmeridgian, Portlandian, and Juras­ geography of various stratigraphical stages or, concerning sic structural units (Plate 12-17), are inset maps on the head certain maps, of stratigraphical series. map of the Oxfordian (2 sheets), having Professor Olaf Most of the maps were printed and sent to the national Michelsen, Aarhus University, Denmark, as the internation­ compilators of each country involved in Project Tornquist al compilator.

62 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Index of foraminiferal genera and species lncluding stratigraphical ranges of species (L: in Lithuania, S: in Sweden)

A B acutiangulata, Lenticulina baltica, Marginulinopsis alceste, Astacolus baltica, Trochammina Ammobaculites coprolithiformis (Schwager) (S: Kimmeridgian) barremiana, Gave/inel/a Ammobaculites elenae Dain (L: U. Oxfordian- L. Kimmeri dgian) bartensteini, Conorotalites Ammobaculites eomorphus Kristan-Toll man n (S: Rh aetian) bartoszycaensis, Planularia Ammobaculites irregularis (GOmbel) (L L. Kimmeridgian) batrakiensis, Marginulinopsis Ammobaculites laevigatus Lozo (S: U. Kimmeridgian) baueri, lchthyolaria Ammobaculites subaequalis Mjatliuk (S: Oxfordian - Kimmerid- beierana, Planularia gian) belorussica, Citharina Ammobaculites sp. belorussica, Lenticulina Ammodiscus asper Terqu em (S: Hettangian - L. Sine murian) bicostata, lchthyolaria Ammodiscus tenuissimus Grzybowski (S: Cal lovian- Oxfordian) bigoti, Nubeculinella Ammovertel/a tauragensis Grigelis (L: top U. Callovian) bochardi, Lenticulina anceps, Astacolus breoni, Astacolus angustissima, Planularia brestica, Lenticulina "Anomalina " /iassica lssler (S: Aalenian- L. Bat honian) brizaeformis, lchthyolaria anterior, Epistomina caracolla Brizalina liasica liasica (Te rquem) (S: Pliensbachian - Toarcian) antiqua, Hechtina Brizalina liasica (Terquem) ssp. amalthaea (B rand) (S: base U. apheilolocula, Nodosaria Pliensbachian) areniforme, Ophthalmidium brueckmanni, Dentalina arkelli, Epistomina brueckmanni, Lenticulina asper, Ammodiscus brumale, Citharina Astacolus alceste Grigelis (L: M . Cal lovian) bulbifera, Orthel/a Astacolus anceps (Terquem) (S: Ca llovian - Kimmeri dgian) bulbiformis, Lenticulina Astacolus breoni (Terquem) (S: L. Pl iensbachian) buskensis, Marginulina Astacolus calloviensis (Mjatli uk) (L: M. Ca ll ovian- U. Cal lovian) Astacolus colligatum (Bruckmann) (L: U. Ca llovian) c Astacolus cordiformis (Terquem) (S: Pliensbachian - Kimmeri d- callovica, Epistomina gian) calloviensis, Astacolus Astacolus dalinkevichiusi Grigelis (L: M. Ca llovian) canui, Haplophragmoides Astacolus denticulacarinata (Fra nke) (S: Pli ensbach ian) caracolla, Epistomina Astacolus dubius (Paal zow) (L: Oxfordian) ca rinata, Paralingulina tenera Astacolus gerassimovi (Umanskaja) (L: L. Kimmeridgian) catascopium, Lenticulina Astacolus hamatus Grigelis (L: L. Volg ian) Ceratolamarckina parvula Grigelis (L: U Ca llovian) Astacolus irretita (Schwager) (S: Callovian - L. Oxfordian) Ceratolamarckina speciosa (Dain) (L: L. Oxfordian) Astacolus limataeformis (M itjanina) (L: M. Callovian- U. Ca ll o- chanica, Citharina vian) chmielewskii, Lenticulina Astacolus major (Borneman n) (S: M. Oxfordian) Citharina belorussica Mitjanina (L: L. Oxfordian - M. Oxfordian) Astacolus matutina (D'Orbigny) (S: L. Sinemuri an) Citharina brumale Grigelis (L: Oxfordian) Astacolus neoradlata Neuweiler (S: Sinem urian - Pliensbachian) Citharina chanika (Mjatliuk) (L L. Oxfordian- M. Oxf ordian) Astacolus odoratus Grigelis (L: L. Kimmeridgian) Citharina clathrata (Terquem) (S: U. Pliensbach ian- Aalen ian) Astacolus opinatus Grigeli s (L: Kimmeridgian) Citharina culter (Furssenko & Poljenova) (L: U. Kimmeridgian- Astacolus pizhmensis (Jak ovleva) (L: L. Kimmeridgian) L. Volgian) Astacolus prima (D'Orbigny) (S Pliensbachian) Citharina deslongschampsi (Terquem) (S: U. Pliensbachian) Astacolus quadricostata (Terquem) (S: Sinemurian - Pliensbachian) Citharina eugenii (Te rquem) (S: Pliensbachian) Astacolus repandus (Kaptarenko) (L: M. Oxfordian- L. Kimmerid- Citharina fiabellata (GOmbel) (S: Cal lovian - Oxfordian) gian) Citharina heteroplevra (Terquem) (L: M. Cal lovian - U. Ca ll ovian) Astacolus russlensis (Mjatliuk) (L: Kimmeridgian) Citharina inaequistriata (Terquem) (S: Sinemurian) Astacolus semireticu/ata Fuchs (S: Hettangian - L. Si nemurian) Citharina ex gr. fiabe/loides (Terq uem) (L: U. Kim meridgian) Astacolus varians (Borneman n) (S: Hettangian - Oxf ord ia n) Citharina /epida (Sc hwager) (L: U. Oxf ordian) Astacolus sp. No. 1 Grigelis Citharina macilenta (Terquem) (S: top Bathonian - L. Oxfordian) Astacolus sp. No. 2 Grigelis Citharina mosquensis (Uhlig) (L: M. Callovian) attenuata, Lenticulina Citharina paralle/a (Bi elecka & Pozaryski) (L: L. Kimmeridgian - L. Volgian) Citharina proxima (Terquem) (L: U. Bathonian) (S: Aalenian ­ Bajocian)

63 A. GRIGELIS AND E. NORUNG

Citharina raricostata (Furssenko & Poljenova) (L: U. Kimmeridgian dreheri, Reinholdella - L. Volgian) dubia, lchthyolaria Citharina sokolovae (Mjatliuk) (L: Oxfordian) dubia, Lenticulina Citharina tenuicostata Lutze (S: L. Oxfordian) dubius, Astacolus eitharina zaglobensis (Bielecka & Pozaryski ) (L: U. Ki mmeridgian - L. Vo lgian) E Citharinella goldapi (Bielecka & Kuznetsova) (L: Kimmeridgian) eichbergensis, eornuspira eitharinella moelleri (Uh lig) (L: M. Callovian- U. Ca llovian) eichwaldi, Lenticulina eitharinella nikitini (Uh li g) (L: M . Ca llovian- U. Cal lovian) elenae, Ammobacu!ites (S: U. Callovian) elevata, Troeholina eitharinella schellwieni (Bruckmann) (L: base U C allovia n) elongata, Spirlllina Citharinella uhligi (Furssenko & Poljenova) (L: U. Kimmeridgian) elschankaensis, Epistomina clathrata, Citharina emslandensis, Triplasia claviformis, Nodosaria engelsensis, Saracenaria coclea, Variostama ensis, Dentalina colligatum, Astacolus Eoguttulina !iassica (Strick land) (S: Hettangian - Si nemurian) columnaris, Nodosaria Eoguttulina pisiformis Gordon (S: U. Oxfordian- Kimmeridgian) compressaeformis, Lenticulina eominutus, Reophax comptula, Marginulinopsis eomorphus, Ammobaculites conica, Epistomina epicharis, Vaginu!inopsis conica, Troeholina Epistomina arkel/i (Bi elecka & Kuznetsova) (L: Kimmeri dgian) eonicospirillina polessica Mitjanina (L: L. Oxfordian) Epistomina callovica Kaptarenko (L: L. Callovian ) (S: Ca llovi an ) eonicospirillina testata Grigelis (L: L. Oxfordian) Epistomina c.caracolla (Roemer) (S: Berriasian- L. Ba rremian) coniforme, Variostama Epistomina caracolla anterior Bartenstein & Brand (S : Va langinian) eonorboides lamplughi (Sherlock) (S: Hauterivian-Aibian) Epistomina conica Terquem (S: Aalenian, L. Oxfordian) eonorboides pygmaea Lutze (S: Oxfordian) Epistomina coronata Terquem (L: U. Bathonian) eonorotalites bartensteini (Bettenstaedt) (S: Barremian) Epistomina dneprica Kaptarenko (L: top U. Call ovian) coprolithiformis, Ammobaculites Epistomina elschankaensis Mjatliuk (L: M. Ca llovian- L. Oxf or- cordiformis, Astacolus dian) cornucopiae, Saracenaria Epistomina gorodistchensis (Dain) (L U. Kimmeridgian- eornuspira eichbergensis Kubler & Zwingli (S: Ca llovian - L. Volgian) L. Oxfordian) Epistomina gracilis Dain (L: L. Oxfordian ) coronata, Epistomina Epistomina ignicula Grigelis (L: U. Kimmeridgian) crassata, Paralingulina Ep is tomina imitabilis Grigelis (L: U. Kimmeridgian) crebra, Reinholdella Epistomina interfusa Grigelis (L:L. Volgian) crepidularis, Marginulinopsis Epistomina intermedia Mjatliuk (L: L. Oxfordian) cribrocostata, Marginulina Epistomina mosquensis Uhlig (L: M. Cal lovian- L. Oxfordian) culter, Citharina (S: U. Ca ll ovian - L. Oxfordian) cultratiformis, Lenticulina Epistomina multialveolata Gri gelis (L: Oxf ordian) eyelammina sp . Epistomina nemunensis Grigelis (L: Oxfordian) eyelogyra tubicomprimata (Danich) (L: U. Bathonian) Epistomina nuda Terquem (L: U. Bathonian) Epistomina oriunda Grigelis (L: U Kimmeridgian) D Epistomina paralimbata Grigeli s (L: L. Oxfordian- M . Oxfordian) daiva, Lenticulina Epistomina parastelligera (Hofker) (L: Oxfordian) (S: Aalenian, dalinkevichiusi, Astacolus Oxford i an) decipiens, Lenticulina Epistomina perfidiosa Grigelis (L: M . Oxfordian) deeckei, Planularia Epistomina porcellanea Bruckmann (L: M. Callovian- U. Callo­ Dentalina brueckmanni Mjatliuk ( L: U. Callovian) vian) Dentalina ensis Wisn iowski (L: U. Ca llovian) Epistomina planiconvexa Bielecka & Styk (L: top U. Ca ll ovian) Dentalina guembeli Sc hwager (S: Ca ll ovian - Oxfordi an) Epistomina praereticulata Mjatliuk (L U. Ki m meri dgian - Dentalina subplana Terquem (S: Ca llovian - L. Oxfordian) L. Vo lgian) Denta!ina turgida Schwager (L: base U. Ca llovia n) Epistomina praetatariensis (Umanskaja) (L: L. Kimmeridgian) denticulacarinata, Astacolus Epistomina radiata Grigelis (L: top Callovian - L. Oxfordian) deslongschampsi, Citharina Epistomina regularis Te rquem (L: U. Bathonian) difflugiformis, Lagenarnmina ex gr. Ep istomina rjasanensis (Umanskaja & Kuznetsova) (L: U. Cal lovian dilatata, Planularia - Oxfordian) dimidia, Vaginulina Epistomina stellicostata Bielecka & Pozarys ki (L: U. Kimmeridgian) distorta, lchthyolaria Epistomina stelligeraeformis Mjatliuk (L: L. Oxfordian) dividens, Gaudryina dneprica, Epistomina Epistomina tatariensis (Dain) (L: U. Kimmeridg ian) Dorothia gradata (Bert helin) (S: A lbian) Epistomina turgidula Pazd ro (L: U. Ba thonian)

64 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Epistomina uhligi Mjatliuk (L: Oxfordian) H Epistomina ventriosa Espitalie & Sigal (L: Kimmeridgian) habilis, Marginulinopsis Epistomina volgensis Mjatliuk (L: L. Oxfordian - base M. Oxfor- haeusleri, Haplophragmoides dian) (S L. Oxfordian) haeusleri, Mesodentalina Epistominita sudaviensis Grigelis (L: L. Oxfordian) Haplophragmoides canui Cushman (S: L. Sinemurian, U. Jurassic) Epistominita sp. Haplophragmoides haeusleri Ll oyd (S: Kimmeridgian) Epistominoides minutus Grigelis (L: U. Bathonian - L. Callovian) Haplophragmoides kingakensis Tappan (S: L. Pliensbachian) Epistominoides sp. Hechtina antiqua (Reuss) (S : Hauterivian - Barremian) erucaeformis, Marginulinopsis Hedbergella planispira (Tappan) (S: Albian) eugenii, Citharina harpaformis, Vaginulinopsis exarata, Vaginulinopsis hebetata, Lenticulina heiermanni, Lenticulina F helvetica, Reophax Falsopalmula ex gr. obliqua (Terquem) (S: U. Pliensbachian) heteropleura, Citharina Falsopalmula subparallella (Wisniowski) (L: U. Ca ll ovian) holocostata, Pseudonodosaria feifeli, Planularia hoplites, Lenticulina feriata, Saracenaria horridus, Reophax f/abe/lata, Citharina hortulani, Spirillina flabelloides, Citharina Hyperamminoides expansus elongatus Kristan-Tollmann flexuosa, Planularia (S: Rhaetian) folium, Marginulinopsis fortunensis, Marginulina prima foveata, Mironave/la lchthyolaria baueri (Burbach) (S: Sinem urian - Pliensbachian) fraasi, Lenticulina lchthyolaria bicostata (D'Orbigny) (S: Sinemurian - Pli ensbachian) frankei, lchthyolaria lchthyolaria brizaeformis (Bornemann) (S: L. Sinemurian) Frondicularia franconica GLimbel (S: top Bathonian - Oxfordian) lchthyolaria distorta (Bruckmann) (L: U. Bat honian- M. Callovian) furssenkoi, Paulina lchthyolaria dubia (Bornemann) (S: Sinemurian - L. Plien sbach ian) furssenkoi, Tristix lchthyolaria franconica (Gumbel) (L: M. Callovian- U. Callovian) fusca, Verneuilinoides (S: top Bathonian - Callovian) lchthyolaria frankei (B rand) (S: U. Pliensbachian) G lchthyolaria inopinata Grigelis (L: U. Callovian) galinae, Glomospirella lchthyolaria intereastata (Kristan-Tol lmann) (S: Rhaetian - Garantella rudia Kaptarenko (S: Bajocian) Hettangian) Garantella sp. lchthyolaria involuta (Te rquem) (S: L. Sinemurian) Gaudryina dividens Grabert (S: Aptian- Albian) lchthyolaria major (Bornemann) (S: U. Pliensbachian) Gaudryina heersumensis Lutze (S: Oxfordian) lchthyolaria mesoliassica (Brand) (S: L. Pliensbachian) Gaudryina triadica (Kristan-Tollmann) (S: Rhaetian) lchthyolaria nitida (Terquem) (S: Pliensbachian) Gave/inel/a barremiana Bettenstaedt (S: Barremian - Aptian) lchthyolaria sulcata (Bornemann) (S: Sinemurian - L. Pliens­ Gave/inel/a intermedia (Berthelin) (S: Albian) bachian) gemina, Mironave/la lchthyolaria suprajurensis (Mjatliuk) (L: M. Ca ll ovian- U. Callo- gerassimovi, Astacolus vian) globigerinoides, Trochammina lchthyolaria terquemi (D 'Orbigny) (S: Plien sbachian) globosa, Lagena lchthyolaria varians (Wisniowski) (L: U. Callovian) globosa, Lingulogavelinella ignicula, Epistomina Globulina oolithica (Terquem) (L: U. Kimmeridgian) illustris, Lenticulina Globulina venusta Grigelis (L: U. Callovian) imitabilis, Epistomina Globuligerina oxfordiana (Grigelis) (L: L. Oxfordian) (S: Oxfordian) inaequistriata, Citharina Glomospira gordialis (Jones & Parker) (S: Rhaetian - Toarcian) infima, Spirillina Glomospirella galinae Scharovskaja (L: base U. Callovian) inflata, Tetrataxis goldapi, Citharinella inflata, Trochammina gordialis, Glomospira infraoo/ithicum, Ophthalmidium gordoni, Marginulinopsis infravolgensis, Lenticulina gorodistchensis, Epistomina inopinata, tchthyolaria gottingensis, Lenticulina insignis, Prodentalina gracilis, Epistomina intercostata, lchthyolaria gracilis, Saracenaria interfusa, Epistomina gradata, Dorothia intermedia, Epistomina granodisca, Trochospirillina intermedia, Gave/ine/la gryci, Trochammina involuta, lchthyolaria guembeli, Dentalina lnvolutina liassica Terquem (S: L. Sinemuri an) guttus, Planularia lnvolutina turgida Kri stan (S: Rha etian) guyaderi, Planularia involvens, Lenticulina

65 A. GRIGELIS AND E. NORLING

irregularis, Ammobaculites Lenticulina nostra Grigelis (L: M. Oxfordian) irretita, Astacolus Lenticulina aachensis aachensis (S ig al) (S: Hauterivian - Aptian) Lenticulina okrojanzi Mjatliuk (L: L. Callovian) Lenticulina ovato acuminata (Wisniowski) (L: M. Callovian) jurassica, Marsonella Lenticulina papillaecostata Bi elecka & Styk (L: M. Ca ll ovian- U. jurassica, Quinqueloculina Cal lovian) jurassica, Textularia Lenticulina paracultrata Grigeli s (L: base U. Cal lovian) Lenticulina parainflata Grigelis (L: M. Callovian- U. Callovian) K Lenticulina polonica (Wisniowski) (L: top M. Callovian- U. Ca ll o- kanevi, Palaeomiliolina vian) kimeridgensis, Miliospirella Lenticulina praepolonica Kuznetsova (L: M. Callovian- U. Ca ll o- kingakensis, Haplophragmoides vian) klaipedica, Troeholina Lenticulina prussica Gri gel is (L: L. Kimmeridgian) kostromensis, Planularia Lenticulina pseudocrassa Mjatliuk (L: base M. Ca ll ovian) kuebleri, Spirillina Lenticulina quenstedti (Gumbel) (L: U Oxfordian) (S: U. Batho- kurshensis, Paulina nian - Oxfordian) kuznetsovae, Lenticulina Lenticulina quenstedti (Gumbel) ssp. evaluta Paalzow (S: U. Cal lo- vian - L. Oxfordian) L Lenticulina sambica Grigelis (L: M. Oxfordian- L. Kimmeridgian) labecula, Lenticulina Lenticulina schreiteri (Eichenberg) (S Va langini an-Barrem ian) laevigatus, Ammobaculites Lenticulina sig/a Grigelis (L: M. Oxfordian- U. Oxfordian) Lagena ex gr. globosa (Montagu) (S: U. Pliensbachian) Lenticulina simplex (Kubler & Zwingli) (L: Oxf ordian) Lagena minutissima Kubler & Zwingli (L: top M. Callovian) Lenticulina subalata (Reus s) (S: Pliensbachian, Ca ll ovian-Oxfor- Lagenarnmina ex gr. difflugiformis (Brady) (S: Sinemurian) dian) lahuseni, Pseudonodosaria Lenticulina sublenticularis (Sc hwager) (L: M. Oxfordian - Kimme- lamellosa, Marginulina ridgian) /amellosa, Planularia Lenticulina subtilis (Wisniowski) (L: base U. Ca ll ovian) laminosa, Planularia Lenticulina tricarinella (Reus s) (S: top Bathonian - L. Oxfordian) lamplughi, Conorboides Lenticulina tumida Mjatli uk (L: M. Cal lovian- U. Ca llovia n) Lenticulina acutiangulata (Terquem) (S: Pliensbachian - L. Toar- Lenticulina turbiniformis (Terquem) (S: Pli ensbachian) cian) Lenticulina tympana Grigelis (L: L. Oxfordian) Lenticulina attenuata (Kubler & Zwingli) (L: Oxfordian) Lenticulina uhligi (Wisniowski) (L: M. Callovian- L. Oxfordian) Lenticulina belorussica (Mitjanina) (L: L. Oxfordian) Lenticulina undosa Beliajevs kaja (L: L. Kimmeri dgian) Lenticu/ina bochardi (Terquem) (S: Rhaetian - Pliensbachian) Lenticulina uralica (Mjatliuk) (L: U Kimmeridgian) Lenticulina brestica (Mitjanina) (L: L. Oxfordian- M. Oxfordian) Lenticulina vetusta (D"Orbigny) (S: Plien sbachian) Lenticulina brueckmanni (Mjatliuk) (L: L. Oxfordian - base M. Ox- Lenticulina vistulae Bielecka & Pozaryski (L: Kimmeridgian) fordian) (S: L. Oxfordian) Lenticulina sp. Lenticulina bulbiformis Grigelis (L: L. Oxfordian- M. Oxfordian) Lenticulina sp. No. 2 Grigelis Lenticulina catascopium (Mitjanina) (L: M . Callovian- U. Ca llo- Lenticulina sp. No. 3 Grigelis vian) Lenticulina sp. No. 4 Grigelis Lenticulina chmielewskii Grigelis (L: top U. Callovian) Lenticulina sp. No. 5 Grigelis Lenticulina compressaeformis (Paalzow) (L: Oxfordian) Lenticulina sp. No. 6 Gri gel is Lenticulina cultratiformis Mjatli uk (L: M. Callovian) lepida, Citharina Lenticulina daiva Grigelis (L: U. Kimmeridgian) liasina, Tristix Lenticu/ina decipiens (Wisniowski) (L: U. Ca ll ovian) liasica amalthaea, Brizalina Lenticulina dubia (Paa lzow) (L: Oxfordian) liasica liasica, Brizalina Lenticulina eichwaldi Grigelis (L: base M. Callovian) liassica, "Anomalina" Lenticulina fraasi (Schwager) (S: Cal lovian - Kimmeridgian). liassica, Eoguttulina Lenticulina gottingensis (Bornemann) (S: L. Pliensbachian) /iassica, lnvolutina Lenticulina hebetata (Schwager) (L: Oxfordian) limataeform is, Astacolus Lenticulina heiermanni Bettenstaedt (S: Hauterivian-Aptian) lingulaeformis, Lingulina Lenticulina hoplites (Wisniowski) (L: M. Callovian- U. Cal lovian) Lingulina lingulaeformis (Schwager) ( S top Bathonian - Oxfor- Lenticulina illustris Grigelis (L: U. Kimmeridgian) dian) Lenticulina infravolgaensis (Furssenko & Poljenova) (L: U. Kimme- Lingulogavelinel/a globosa (Brotzen) (S: Albian) ridgian) listi, Vaginulina Lenticulina involvens (Wisniowski) (L: U. Ca ll ovian) lithuanica, Lenticulina Lenticulina kuznetsovae Urnanskaja (L L. Kimmerid gian) lithuanica, Miliospirella Lenticu/ina labecula Grigelis (L: U. Bathonian) Lenticulina lithuanica (Bruckmann) (L: U. Ca ll ovian) M Lenticulina muendensis Martin (S: Tithonian) macilenta, Citharina Lenticulina muensteri (Roemer) (U. Pliensbachian - Oxfordian) major, Astacolus

66 JURASSIC GEOLOGY AND FORAM INI FERAL FA UNAS IN THE NW PA RT OF THE EAST EUROP EAN PLATFORM

major, lchthyolaria minutus, Epistominoides margarita, Reinholdella mitis, Nodosaria marginata, Paulina Mironave/la foveata Ku znetsova & Urnanskaja (L: U. Kimmerid- Marginulina buskensis Bielecka & Pozaryski (L: U. Kimmeridgian) gian) Marginulina cribrocostata Grigelis (L: base U. Cal lovian) Mironave/la gemina Dain (L: L. Vo lgian) Marginulina elongata D'Orbigny (S: U. Plien sbachian) Mironave/la mjatliukae Dain (L: U. Kimmeridgian) Marginulina lamellosa Terquem & Berthelin (S: Hettangian - L. mosquensis, Citharina Pliensbachian) mosquensis, Epistomina Marginulina nyterpensis Norling (S: Ca ll ovian - L. Oxfordian) moelleri, Citharinella Marginulina pauliniae Terquem (S: Sinemurian - Pliensbachian) multialveolata, Epistomina Marginulina prima D'Orbigny ssp. fortunensis Norling (S: Callo- multicostata, Planularia vian - L. Oxfordian) muendensis, Lenticulina Marginulina prima prima D'Orbigny ( S: Pl ie nsbachian) muensteri, Lenticulina Marginulina prima D'Orbigny ssp. rugosa Bornemann (S: U. Sine­ mutabilis, Nodosaria murian - L. Pliensbachian) Marginulina prima D'Orbigny ssp. praerugosa N0rvang (S: L. Sine- N murian) nana, Troeholina Marginulina reversa (Blake) (S: U. Sinemurian- L. Toarcian) Neobulimina sp. No. 2 Bang (S: L. Sinemurian) Marginulina robusta Reuss (L: U. Kimmeridgian) nemunensis, Epistomina Marginulina simplex (Terquem) (S: Callovian - Oxfordian) neoradiata, Astacolus Marginulina spinata interrupta Terquem (S: U. Pliensbachian) nikitini, Citharinella Marginulina spinata spinata Terquem (S: U. Sinemurian - L. nitida, lchthyolaria Plien sbachian) Nodobacularia tenua (Bykova) (L: U. Callovian) Marginulina striatocostata Reuss (L: L. Volgian) Nodosaria apheilo!ocula Tappan (S: L. Pliensbachian) Marginulina undulata Terquem (S: L. Sinemurian) Nodosaria claviformis Terquem (L: L. Ca llovian) Marginulinopsis baltica Grigelis (L: U. Kimmeridgian) Nodosaria columnaris Franke (S: L. Sinemurian) Marginulinopsis batrakiensis (Mjatliuk) (L: M. Ca llovian - U Ca l- Nodosaria dispar Franke (S: Sinemurian - Pliensbachian) lovian) (S: U. Callovian - L.Oxf.) Nodosaria kuhni Franke (S: L. Sinemurian) Marginulinopsis camptu/a (Schwager) (L: L. Oxfordian- M. Oxfor- Nodosaria metensis Terquem (S: Sinemurian - L. Pliensbachian) dian) Nodosaria minuta Cordey (L: base U. Cal lovian) Marginulinopsis crepidulaeformis (Gumbel) (L: L. Kimmeridgian) Nodosaria mitis (Terquem & Berthelin) (S: Sinemurian - Pliensba­ Marginulinopsis erucaeformis (Wisniowski) (L: U. Callovian) chian) Marginulinopis folium (Wisniowski) (L: U. Ca llovian) Nodosaria mutabi/is Terquem (L: M. Ca ll ovian- U. Cal lovian) Marginulinopsis gordoni (Norling) (L: L. Kimmeridgian) (S: U. Ox- Nodosaria oculina (Terquem & Berthelin) (S: Sinemurian - Pliens- fordian - L. Kimmeridgian) bachian) Marginulinopsis habilis Grigelis (L: L. Kimmeridgian) Nodosaria procera Franke (S: L. Sinemurian) Marginulinopsis otiosa Grigelis (L: L. Kimmeridgian) Nodosaria quadrilatera (Terquem) (S: Pliensbachian) Marginulinopsis posthybrida Grigelis (L: U. Callovian) Nodosaria radiata (Terquem) (S: L. Sinemurian) Marginulinopsis primaformis (Mjatliuk) (L: L. Oxfordian- M. Ox- nostra, Lenticulina fordian) Nubeculinella bigoti Cushman (L: Oxfordian) Marginulinopsis procera (Kaptarenko) (L: U. Oxfordian- L. Kim- nuda, Epistomina meridgian) nytorpensis, Marginulina Marginulinopsis scu/ptulis (Schwager) (S: Oxfordian) Marginulinopsis striatocostata (Reuss) o Marssonella jurassica Mitjanina (L: M. Ca llovian) aachensis oachensis, Lenticulina matutina, Astacolus obliqua, Falsopalmula matutina, Mesodentalina oculina, Nodosaria media, Reinholdella odoratus, Astacolus meentzeni, Verneuilinoides okrojanzi, Lenticulina Mesodentalina haeusleri (Sc hick) (S: U. Sinemurian - Pli ensba- oolithica, Globulina ch ian) oolithica, Tristix Mesodenta!ina matutina (D'Orbigny) (S: Lias) Ophthalmidium arenitarme (Bykova) (L: M. Callovian- U. Cal lo- Mesodentalina tenuistriata (Terquem) (S: Lias) via n) meso!iassica, /chthyolaria Ophthalmidium infraoolithicum (Terquem) (L: U. Bathonian) metensis Nodosaria Ophthalmidium sagittum (Bykova) (L: L.Oxfordian) mjatliukae, Mironave/la Ophthalmidium saratensis (Danich) (L: U. Bathonian) milioliniforme, sigmailina Ophthalmidium strumosum (Gumbel) (L: L. Oxfordian- M . Oxfor- Miliospirella kimeridgensis Grigelis (L: Kimmeridgian) dian) Miliospirella lithuanica Grigelis (L: U. Callovian) Ophthalmidium stuifense (Paalzow) (L: U. Oxfordian) minuta, Nodosaria Ophthalmidium tenuissimum (Paalzow) (L: L. Oxfordian) minutissima, Lagena opinatus, Astaco!us

67 A. GRIGELIS AND E. NORUNG

orbiculata, Paulina Planularia multicostata Ku znetsova (L: Kim meridgian) orbiculata, Saccammina Planularia vaginuliniformis (Paa lzow) (L: Oxfordian) oriunda, Epistomina plumiricostata, Pseudonodosaria Orthel/a bulbifera (Paalzow) (L: Oxfordian) polessica, Conicospirillina otiosa, Marginulinopsis poljessica, Ramulina ovato acuminata, Lenticulina polonica, Lenticulina oxfordiana, Globuligerina porcellanea, Epistomina oxfordiana, Saracenaria posthybrida, Marginulinopsis praepolonica, Lenticulina p praepupa, Paralingulina tenera Pa/aeogaudryina terra (Bykova & Azbel) (L: t op U. Cal lovian) praereticulata, Epistomina Palaeogaudryina varsaviensis (Bielecka & Pozaryski) (L: Kimmerid- praerugosa, Marginulina prima gian) praetatariensis, Epistomina Palaeomiliolina kanevi (Ka ptarenko) (L: U. Bathonian) pravoslavlevi, Saracenaria Palaeomiliolina rawiensis (Pazdro) (L: U. Bathonian) prima, Astaco/us papillaecostata, Lenticulina prima prima, Marginulina paracultrata, Lenticulina primaformis, Marginulinopsis parainflata, Lenticulina procera, Marginulinopsis paralimbata, Epistomina procera, Nodosaria para/le/a, Citharina proxima, Citharina Paralingulina crassata (Gerke) (L: U. Callovian) prussica, Lenticulina Paralingulina tenera (Bo rnemann) ssp. carinata Norvang Prodentalina gladiformis (Franke) (S U. Plie nsbac hi an) (S: U. Sinemu ri an- L. Pl iensbachian) Prodentalina hausmanni (Bornemann) (S: U. Pliensbachian) Paralingulina tenera (Bornemann) ssp. praepupa Norvang Prodentalina insignis (F ranke) (S U. Pliensbachian) (S: U. Sinemurian- L. Pliensbachian) Prodentalina terquemi (D'Orbigny) (S: L. Jurassic) Paralingulina tenera (Bornemann) ssp. pupa Terquem (S: Pliens­ Prodentalina vasta (Franke) (S: U. Sinemurian- L. Pliensbachian) bachian) Prodentalina vetusta (D'Orbigny) (S: L. Sine m urian- Pl iensbachian) Paralingulina tenera (Bornemann) ssp. pupoides No rvang Prodentalina vetustissima (D'Orbigny) (S: U. Pliensbachi an) (S: L. Sinemurian) pseudocrassa, Lenticulina Paralingulina tenera (Bornemann) ssp. subprismatica Franke Pseudoeye/ammina sp. (S: forms characterist ic of Kimmeri dgian (S: U. Sinemurian- L. Pliensbachian) - Tithonian strata) Paralingulina tenera tenera (Bornemann) (S: U. Si nemurian ­ Pseudolamarekina pseudorjasanensis Dain (Pol and: Kimmeridgian) Pli ensbachia n) Pseudola ma rekina rjasanensis (Uh lig) (L: M. Ca ll ovia n - U. Cal lo- Paralingulina tenera (Bornemann) ssp. tenuistriata Norvang vian) (S: L. Sinemurian) Pseudolamarekina suvalkensis Gri gelis (L: Oxfordian) Paralingulina wolinensis Bielecka (L: U. Kimmeridgian) Pseudolamarekina sp. parastelligera, Epistomina Pseudonodosaria holocostata Kristan-Tol lmann (S: Rhaetian- Het­ parvula, Ceratolamarckina tangian) paula, Paulina Pseudonodosaria lahuseni (Uhlig) (L: M. Ca ll ovian - U. Ca ll ovia n) Paulina furssenkoi Grigelis (L: L. Oxfordian- M . Oxfordian) Pseudonodosaria multicostata (Bornemann) (S: Sinemu ri an - Paulina kurshensis Grigelis (L: Kimmeridgian) Pl iensbachian) Paulina marginata (Lloyd) (L: Kimmeridgian) Pseudonodosaria plumiricostata (K ristan-Tollmann) (S: Rhaetian- Paulina orbiculata Grigelis (L: L. Kimmeridgian) Hettangian) Paulina paula (Pazdro) (L: U. Bathonian) Pseudonodosaria quadricostata Norli ng (S: Pliensbachi an) perfidiosa, Epistomina Pseudonodosaria quinquecostata (Bornemann) (S: Pli ensbachian) phaedra, Saracenaria Pseudonodosaria sexcostata (Bornemann) (S: U. Sinemurian - pisiformis, Eoguttulina Pliensbachian) pizhmensis, Astacolus Pseudonodosaria vu/gata (Bornemann) (S: Pl iensbachian - Oxfor- planiconvexa, Epistomina dian) planispira, Hedbergella pseudorjasanensis, Pseudolama rekina Planularia angustissima (Wisn iowski) (L: U. Ca llovian) pupa, Paralingulina tenera Planularia bartoszycaensis Bielecka & Kuznetsova (L: L. Kimmerid- pupoides, Paralingulina tenera gian) pygmaea, Conorboides Planularia beierana (G umbel) (L: L. Kimmeridgian) Planularia deeckei (Wisn iowski) (L: U. Ca ll ovian) Q Planularia dilatata (Wisniowski) (L: M. Ca ll ovian) quadricostata, Astacolus Planularia feifeli Paalzow (L: M. Oxfordian- L. Kimmeridgian) quadricostata, Pseudonodosaria Planularia flexuosa (Bruckmann) (L: M . Ca llovia n - U. Callovian) quinquecostata, Pseudonodosaria Planularia guttus (Mitjanina) (L: U. Callovian) quenstedti, Lenticulina Planularia guyaderi Grigelis (L: L. Volgian) quenstedti ssp. evoluta, Lenticulina Planularia kostromensis Umanskaja (L: L. Kimmeridgian) Quinqueloculina jurassica (Bi elec ka & Styk) (L: Kimmeri dgian) Planularia laminosa (Schwager) (L: U. Oxfordian)

68 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

R solecensis, Troeholina radiata, Epistomina spinata interrupta, Marginulina Ramulina poljessica (Mitjanina) (L: base M. Ca llovian) spinata spinata, Marginulina raricostata, Citharina Spirillina elongata Bielecka & Pozaryski (L: Kimmeridgian) rawiensis, Palaeomiliolina Spirillina hortulani Grigeli s (L: U. Ca ll ovian) Rectoepistominoides scientis Grigelis (L: L. Oxfordian) Spirillina infima (S trick land) (S: Ca ll ovian - Kimmeridgian) regularis, Epistomina Spirillina kuebleri Mjatliuk (L: L. Oxf ordian) Reinholdella crebra Pazdra (L: U. Bathonian - L. Ca ll ovian) Spirillina tenuissima Gumbel (S: Ca ll ovian - Kimmerid gian) Reinholdella dreheri (Bartenstein (S: U. Plien sbach ian - Aa lenian) spuria, Vaginulina Reinholdella margarita (Terquem) (S: L. Sinemuri an) stellicostata, Epistomina Reinholdella media Kaptarenko (S: Aalenian - L. Bajocian) stelligeraeformis, Epistomina remesiana, Troeholina sterkii, Reophax Reophax eominutus (Kristan-Tollm ann) (S: Rhaetian- Hettangian) striatocostata, Marginulina Reophax helvetica Haeusler (S: Oxfordian -L. Kimmeridgian) strumosum, Ophthalmidium Reophax horridus (Schwager) (S: Rhaetian - Hettang ian) stuifense, Ophthalmidium Reophax sterkii Haeusler (S: Oxfordian) subaequalis, Ammobaculites Reophax suprajurassica Haeusler (S: Oxford ian) suba/ata, Lenticulina repandus, Astacolus subfiliformis, Verneuilinoides reversa, Marginulina sublaevis, Saracena ria reversa, Vaginulina sublenticularis, Lenticulina rjasanensis, Epistomina subparallela, Falsopalmula rjasa nensis, Pseudolamarekina subplana, Dentalina robusta, Marginulina subprismatica, Paralingulina tenera rudia, Garantella subsuta, Saracenaria rugosa, Marginulina prima subtilis, Lenticulina russiensis, Astacolus sudaviensis, Epistominita sulcata, /chthyola ria s suprajurassica, Tristix sablei, Tro chammina suprajurensis, lchthyolaria Saccammina orbiculata Grigeli s (L: top Cal lovian) suvalkensis, Pseudolamarekina sagittum, Ophthalmidium sambica, Lenticulina T Saracena ria cornucopiae (Sc hwager) (L: U. Cal lovian- L. Kimm- tatariensis, Epistomina meridgian) (S: U. Bathonian- Oxfordian) tauragensis, Ammovertella Saracenaria engelsensis Kosyreva (L: U. Cal lovian) tenui, Nodobacularia Saracenaria feriata Grigelis (L: L. Kimmeridgian) tenuicostata, Citharina Sa racenaria gracilis Kosyreva (L: M. Cal lovian) tenuissima, Spirillina Saracenaria oxfordiana Tappan (S: U. Jurassic) tenuissimum, Ophthalmidium Saracenaria phaedra Tappan (S: Ca ll ovian - L. Oxfordian) tenuissimus, Ammodiscus Saracenaria pravoslavlevi Furssenko & Poljenova (L: L. Volgian) tenuistriata, Mesodentalina Saracenaria sub/aevis (Franke) (S: U. Pliensbachian) tenuistriata, Paralingulina tenera Saracenaria subsuta (Beli ajevskaja) (L: L. Kimmeridgian) terquemi, lchthyolaria Saracenaria trigona (Terquem) (S : Toarcian) terquemi, Prodentalina Saracenaria tsaramandrosoensis Espitalie ' & Sigal (L: M. Oxfor- terra, Palaeogaudryina dian) testata, Conicospirillina saratensis, Ophthalmidium Tetrataxis inflata Kri sta n ( S: Rha etian - Hettangian) scanica, Sorosphaera Textularia jurassica Gumbel (L: top U. Callovian) (S: Kimmerid- schreiteri, Lenticulina gian) scientis, Rectoepistominoides transversarii, Troeholina sculptulis, Marginulinopsis triadica, Gaudryina schellwieni, Citharinella tricarinella, Lenticulina semireticulata, Astacolus trigona, Sa racenaria sexcosta ta, Pseudonodosaria Triptasia ernstandensis Bartenstein & Brand 195 1 (S Ca ll ovian, sig/a, Lenticulina L. Cretaceous) Sigmoilina milioliniforme (Paa lzow) (L: M . Oxfordian- U. Oxfor- Trisegementina sp . No.1 Lutze (S: M. Callovian) dian) Tristix furssenkoi Kaptarenko (L: L. Kimmeridgian) simplex, Lenticulina Tristix fiasina (Berthelin) (S: Pli ensbachian - Aalenian) simplex, Marginulina Tristix oo/ithica (Terquem) (S: Oxfordian) Sorosphaera scanica Norling (S: U Kimmeridgian) Tristix suprajurassica (Paa lzow) (L: L. Kimmeridgian) speciosa, Ceratolamarckina Tristix temirica Dain (L: U. Kimmeridgian) sokolovae, Citharina Tristix tutkowskii Kaptarenko (L: L. Oxfordian)

69 A. GRIGELIS AND E. NORLING

Trochammina baltica Grigelis (L top U. Ca ll ovia n) v Trochammina globigerinoides Haeusler (S: U. Kimmeridgian) Vaginulina dimidia Grigelis (L: M. Callovian- U. Callovian) Trochammina gryci Tappa n (S: Sinemurian) Vaginulina listi (Bornemann) (S: Sin emurian - Plie nsbachian) Trochammina ex. gr. inflata (Montagu) (S: M. Jurassic) Vaginulina fiabe/loides (Terquem) (S: Pli ensbachian, Callovian) Trochammina sablei Tappan (S: Toa rcian - Aa leni an) Vaginulina spuria (Terqu em & Berthelin) (S U. Sinemurian - Troeholina conica (Sch lumberger) (S: Cal lovian - Oxfordian) Pliensbachian) Troeholina elevata Paalzow (L L. Oxfordian) Vaginulina sp. Troeholina klaipedica Grigelis (L base U. Ca llovian) vaginuliniformis, Planularia Troeholina nana Kaptarenko (L: U. Bathonian - L. Ca ll ovian) Vaginulinopsis epicharis Loebli ch & Tappan (S: Callovian) Troeholina remesiana (Chapman) (S: Oxfordian- basal Creta- Vaginulinopsis exarata (Terquem) (S: L. Sinemurian) ceous) Vaginulinopsis harpaformis (Mjatliuk) (L M. Callovian) Troeholina solecensis Bielecka & Pozaryski (S: U. Jurassic) varians, Astacolus Troeholina transversarii Pa alzow (L: Oxfordian) varians, lchthyolaria Trochospirillina granodisca Gri gelis (L: U. Bathonian) Variostama coclea Kri stan-Tollmann (S: Rhaetian) tsramandrosoensis, Saracenaria Variostama coniforme Kristan-Tollmann (S: Rha etian) tubicomprimata, eyelogyra varsoviensis, Palaeogaudryina tumida, Lenticulina ventriosa, Ep istomina turbiniformis, Lenticulina venusta, Globulina turgida, Dentalina ve tu sta, Len ticulina turgida, lnvolutina vetusta, Prodentalina turgidula, Epistomina Verneuilinoides fusca (Lutze) (S: U. Ca ll ovian) tutkowskii, Tristix Verneuilinoides meentzeni (Kiingler) (S: Kimmeri dgian) tympana, Lenticulina Verneuilinoides subfiliformis (Bartenstein) (S: Hauteri vian-Aibian) vistulae, Lenticulina u volgensis, Epistomina uhligi, Citharinella vu/gata, Pseudonodosaria uhligi, Epistomina uhligi, Lenticulina w undosa, Lenticulina wolinensis, Paralingulina uralica, Lenticulina z zaglobensis, Citharina

70 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFO RM

Index of ammonites

A G acu/eatum, Kosmaeeras gemmatum, Kosmaeera s a/temans, Amoeboceras g/osense, Amoeboceras athleta, Peltoceras Amalthaeus margaritatus De Montfort H Amoeboceras a/temans (Buch) henrici, Quenstedtoceras Amoeboceras anglicum (Sa lfeld) heterocostatus, Oecotraustes Amoeboceras glosense (Bigot & Bra sil) hypophantica, Pavlovia Amoeboceras kitchini (Sa lfeld) Amoeboceras regulare Spath Amoeboceras rosenkrantzi Spath ibex, Tragophylloceras Amoeboceras serratum (Sowerby) anglicum, Amoeboceras Amioceras semicostatum (Yo ung & Bird) ;amesoni, Uptonia Arietites bucklandi (Sowerby) jason, Kosmaeeras Asteroceras obtusum (Sowerby) Aulacostephanus autissiodorensis Ziegler K Aulacostephanus eudoxus (D'Orbigny) kitchini, Amoeboceras Aulacostephanus eu/epidus (Sch neider) Kosmaeeras aculeatum (Eich wald) Aulacostephanus mutabi/is (S owerby) Kosmaeeras castor (Reinecke) Aulacostephanus moeshi (Oppel) Kosmaeeras compressum Quenstedt autissiodorensis, Aulacostephanus Kosmaeeras gemmatum Phill ips Kosmaeeras duncani (Sowerby) B Kosmaeeras jason Reineeke banksi, Erymnoceras Kosmaeeras obductum Buckman boidini, Pectinatites Kosmaeeras omatum (Sc hlotheim) bucklandi, Arietites Kosmaeeras pollucinum Te isseyre Kosmaeeras proniae Tei sseyre c Kosmaeeras transitionis Nikitin Cardioceras eardatum (Sowerby) Cardioceras densiplicatum Boden L Cardioceras laevigatum Boden lamberti, Quenstedtoceras Cardioceras tenuiserratum (Oppel) laevigatum, Cardioceras Cardioceras tenuistriatum Borissyak leachi, Quenstedtoceras Cardioceras zenaidae llovaysky /epidula, Rasenia carinatum, Eboraciceras carinatum, Quenstedtoceras M castor, Kosmaeeras margaritatus, Amalthaeus Clydoniceras discus (Sowerby) mariae, Vertumniceras compressum, Kosmaeeras moeshi, Aulacostephanus cordatum, Cardioceras mutabilis, Aulacostephanus coronatum, Erymnoceras o D obductum, Kosmaeeras Dactylioceras tenuicostatum (Young & Bird) obtusum, Asteroceras davoei, Prodactylioceras Oecotraustes heterocostatus (Rehbinder) densiplicatum, Cardioceras Oecotraustes paradoxus (Roemer) discus, Clydoniceras omatum, Kosmaeeras duncani, Kosmaeeras Oxynoticeras oxynotum (Q uenstedt) oxynotum, Oxynoticeras E Eboraciceras carinatum (Eichwald) p eudoxus, Aulacostephanus paradoxus, Oecotraustes eulepidus, Aulacostephanus Pavlovia hypophantica llowaysky Erymnoceras banksi Sowerby Pectinatites boidini (L'Oriol) Erymnoceras earonatum (Brugiere) Peltoceras athleta (Phil lips) evoluta, Rasenia Pleuroceras spinatum (Brugiere) pollucinum, Kosmaeeras

71 A. GRIGELIS AND E. NORLING

Prodactylioceras davoei (Sowerby) T proniae, Kosmaeeras tenuicostatum, Oacty!ioceras tenuiserratum, Cardioceras Q tenuistriatum, Cardioceras Quenstedtoceras carinatum (Eichwa ld) Tragophylloceras ibex (Quenstedt) Quenstedtoceras henrici Douville transitionis, Kosmaeeras Quenstedtoceras !amberti (Sowerby) Quenstedtoceras !eachi (Sowerby) u Uptania jamesoni (Sowerby) R Rasenia evaluta Spath v Rasenia lepidula (Oppel) Vertumniceras mariae (D 'Orbigny) regu!are, Amoeboceras rosenkrantzi, Amoeboceras z zenaidae, Cardioceras s semicostatum, Arnioceras serratum, Amoeboceras

72 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

REFERENCES

Ahlberg, A., 1994: Deposition and diagenesis of the Rhaetian­ tion). Sveriges geologiska undersökning Ca 6, 1- 560. Stock­ Hettangian succession (Triassic- Jurassic) in southem Sweden. holm. Lund Publications in Geology 123, 16 pp. Erlström, M., Guy-Ohlson, D. & Sivhed, U., 1991: Upper Jurassic Barnard, T. , 1950a: Foraminifera from the Lower Lias of the Dor­ - Lower Cretaceous petrography and stratigraphy at Eriksdal, set Coast. Quarterly Journal of the Geological Society of Lon­ Scania, southern Sweden. Sveriges geologiska undersökning don 105, 347-391. Ca 78, 1- 59. Uppsala. Barnard, T., 1950b: Foraminifera from the Upper Lias of Byfield, Erlström, M. , Guy-Ohlson, D. & Sivhed, U. , 1993 : Palaeoecology Northamptonshire. Quarterly Journal of the Geological Soci­ and sedimentary environments of the Jurassic- Cretaceous tran­ ety of London 106, 1-36. sition beds in Sweden. Geobios, MS 17, 671-678. Paris. Barnard, T., 1953: Foraminifera from the Upper Oxford Clay Erlström, M. , Thomas, S.A., Deeks, N & Sivhed, U. , 1997: Struc­ (Jurassic) of Redcliff Point, near Weymouth, England. Pro­ tural and tectonic evolution of the Tornquist Zone and adjacent ceedings ofthe Geologica/Association 64, 183-197. sedimentary basins in Scania and the southern Baltic Sea area. Barnard,T., Cordey, W.G. & Shipp, D.J., 1981: Forarninifera from Tectonophysics 271, 191-215. the Oxford Clay (Callovian- Oxfordian of England). Revista Feldman-Olszewska, A. , Grigelis, A. & SimkeviCius, P., 1998: Espanola Micropaleontologia 13, 383-462. Lower and Middle Jurassic. In Marek, S. & Grigelis, A. (Eds.): Bergström, J., 1981: Kristianstadstrakten genom årmiljonerna (The 1998: Structural Evolution of the Permian- Mesozoic Camplex Kristianstad region during million of years). Skånes natur­ of Northeastern Poland, Lithuania and adjacent Baltic areas, vårdsförbunds årsskrift, 7-16. Lund. 13-16. Warszaw. Bielecka,W. , 1960: Stratygrafia mikropaleontologiczna dolnego Gazdzicka, E., Grigelis, A. & Simkevicius, P., 1998: Upper Juras­ malmu okolic Chrzanowa. (Micropaleontological stratigraphy sic. In Marek, S. & Grigelis, A. (Eds.): 1998: Structural Evolu­ of the Lower Malm in the vieini ty of Chrzanow.) Instytut Geo­ tion of the Permian-Mesozoic Camplex of Northeastern ?o­ logiczny, Prace 33, 1-155. Warszawa. land, Lithuania and adjacent Baltic areas, 16-18. Warszaw. Boudagher-Fadel, M.K. , Banner, F.T. & Whittaker, J.E., 1997: The Gordon, W.A., 1962: Some foraminifera from the Ampthill Clay, Earl y Evolutionary History of Planktonic Foraminifera. British Upper Jurassic of Cambridgeshire. Palaeontology 4:4, 518- Micropaleontological Society Publications Series, 1-269. 537. London. Chapman & Hall. London. Gordon, W.A. , 1965: Foraminifera from the Corallian Beds, Upper Bölau, E., 1959: Der Slidwest- und Slidostrand des Baltischen Jurassic of Dorset, England. Journal of Palaeontology 39:5, Schildes. Geologiska Föreningens i Stockholm Förhandlingar 829-863. London. 81, 167-230. Stockholm. Gordon, W.A. , 1970: Biogeography of Jurassic Foraminifera. Geo­ Brotzen, F. & Norling, E., 1966: Mesozoikum. In Beskriving till logical Society of America Bulletin 81:6, 1689- 1703. Colo­ agrogeo1ogiska kartbladet Kävlinge. Sveriges geologiska un­ rado. dersökning Ad 6, 13-21. Stockholm. Gregory, F.J. , 1989: Palaeoenvironmental interpretation and distri­ Brlickmann, R., 1904: Die Foraminiferen der Litauisch-Kurischen bution of the Lower Kimmeridgian foraminifera from the Jura. Schriften der königlichen Physikalisch-Ökonomischen Helmsdale-Brora Outlier, northeast Scotland. In D.J. Batten & Gesel/sehaft zu Königsberg in Preussen 45, 1-36. M.C. Keen (Eds.): Northwest European Micropalaeontology Bylund, G. & Ha1vorsen, E. , 1993: Palaeomagnetic study of and Palynology, 173-192. British Micropalaeontological Soci­ Mesozoic basalts from Scania, southernmost Sweden. Geo­ ety Series. Ellis Horword Ltd. Chichester. physical Journal Internationa/114, 138-144. Grigelis, A. , 1958: Globigerina oxfordiana sp. n. - nachodka glo­ Copestake, P. , 1989: Jurassic. In Jenkins, D.G. & Murray, J.W. bigerin v verchnejurskich otlozheniyach Litvy (Globigerina (Eds.): Stratigraphical Atlas of Fossil Foraminifera, 125-128. oxfordiana sp.n. - Globigerina finds in the Upper Jurassic of Copestake, P. & Johnson, B., 1989: The Hetrangian to Toarcian Lithuania). Nauchnye Doklady Vysshei Shkoly, Seriya Geolo­ (Lower Jurassic). In Jenkins, D.G. & Murray, J. W. (Eds.): 29- go-geograficheskich Nauk 3, l 09- 110. Moscow. 188. Grigelis, A. , 1960: Stratigrafiya jurskich otlocheniy Juzhnoy Pri­ Christensen, O.B., 1968: Some deposits and microfaunas from the baltiki po dannym mikropaleontologii (Jurassic stratigraphy of Upper Jurassic in Scania. Sveriges geologiska undersökning the South Baltic area based on rnicropaleontological data). Ca 632, 1-46. Stockholm. Nauchnyje Soobshchenya lnstytuta Geologii i Geografii Aka­ Dadlez, R., Dayzcak-Calikowska, K. , Kopik, J. & D4browska, Z., demii Nauk (Scientific reports , Institute of Geology and Geog­ 1973: Jura do1na. Jura srodkowa. Budowa Geologiczna Polski. raphy of the Academy of Sciences), Vol. XII, 87-97. Vilnius. Tom I. Stratygrafia. Cz. 2. Mezozoik, 141-486. Wydawnictwa Grigelis, A. , 1977: Klassifikatsya i istoricheskoye pazvitiye nadse­ Geo1ogiczne. Warszawa. meistva Nodosariacea (Foraminifera) (Classification and hi s­ Dalinkevicius, J. , 1934: Papiles juros profilio ir rektonikos k1au­ torical development of the superfarnily Nodosariacea (Forami­ simu (On the Jurassic sequence and its leetonic pattern in nifera). Paleontologicheskiy Zhurna/1, 8-16. Moscow. Papile). Kosmos 15,294-304. Kaunas. Grigelis, A., 1978: Morphology and classification of the Ceratobu­ Dalinkevicius, J., 1937: Keletas nauj4 duomen4 ap ie Lietuvos jurq liminacea. Journal of Foraminiferal Research 8 (4), 275-285. (Some new data on the Jurassic in Lithuania). Gamta 11:2 (6), Washington. 76-83. Kaunas. Grigelis, A., 1980a: Chronozony i filozony - ich sushchnost', Erdmann, E., 1911-15: De skånska stenkolsfälten och deras schodstvo i pazlichye (Chronozones and phylozones - their es­ tillgodogörande. (The coal tieids of Scania and their exploita- sentials, similarities, and dissirnilarities). lzvestiya Akademii

73 A. GRIGELIS AND E. NORUNG

Nauk SSSR, Seriya Geologischeskaya 4, 95-103. Moscow. Stratotypes of the East Baltic Area). Geological Society of Grigelis, A., 1980b: Baltiyskaya jura: Foraminifery i zonal'naya Lithuania, 1-28. Vilnius. stratigrafi ya (The Baltic Jurassic. Foraminifers and Zonal Stra­ Guy, D. , 1971: PalynologicaJ investigations in the Middle Jurassic tigraphy). Doctoral thesis (pre-print). Institut Geologii, tom l , of the Vilhelmsfält boring, southern Sweden. Publicationfrom 1-492, and tom 2, 1-46, 1-Xl plates. Vilnius. the Institute of Mineralogy, Palaeontology and Quaternary Grigelis, A. (Ed.), 1982a: Biostratigrafi ya verchnejurskich otlozhe­ Geology, Lund University 168, 1- 104. Lund. niy SSSR po foraminiferam. (Foraminiferal biostratigraphy of Guy-Ohlson, D. , 1981 : Rhaeto-Liassic palynostratigraphy of the the Upper Jurassic of the USS R). Makslas Publishers, l- 171. Valhall Bore No. l , Scania. Geologiska Föreningens i Stock­ Vilnius. holm Förhandlingar 103, 233-248. Stockholm. Grigelis, A. (Ed.), 1982b: Geologya respublik Sovetskoy Pribaltiki Guy-Ohlson, D., 1985: Palynology of Swedish Upper Jurass ic sed­ (Geology of the Soviet Baltic Republics). Nedra Publishers, 1- iments. Palynology 9, 243-244. 340. Leningrad. Guy-Ohlson, D., 1986: Jurassic palynology of the Vilhelmsfålt Grigelis, A. , 1983: Foramini ferovyie zony verchney jury Bo­ Bore No. l , Scania, Sweden. Toarcian-Aalenian. Publication real'nogo poyasa i znatcheni ye zoogeografii dlia ich korreli at­ from the Section of Palaeobotany, Swedish Museum of Natural sii (Upper Jurassic foramini feral zo nes of the Boreal Realm History, 1- 127. Stockholm. and their role for zoogeography and correlation). Mezozoy So­ Guy-Ohlson, D. , 1989: Spore and pollen assemblage zonati a n of vetskoy Arktiki, 95- 103. Novosibirsk. Swedish Bajocian and Hathonian sediments. Tn D.J. Batten & Grigelis, A., 1985a: Jurskiye forami ni fery Jugo-Zapadnoy Pribalti­ M.J. Keen (Eds.): No rthwest European micropalaeotology and ki (Jurassic Foraminifera from the south-west Baltic area). palynology, 70- 91. Ellis Horwood Ltd, Chichester. Makslas Publishers, 1-240. Vilnius. Guy-Ohlson, D., 1990: Pliensbachian palynology of the Karindal Grigelis, A. , 1985b: Zonal 'naya stratigrafi ya Baltiiskoy jury po bore No.l , NW Scania, Sweden. Revue of Palaeobotany and foraminiferam (Zonal foraminiferal strati graphy of the Baltic Palynology 65, 2 17-228. Jurassic). Nedra Publishers, 1- 131. Moscow. Guy-Ohl son, D. & Norling, E., 1988: Upper Jurassic litho- and Grigelis, A. (Ed.), 199 l a: Geologiya i geomorfologiya Baltiiskogo biostratigraphy of NW Scania, Sweden. Sveriges geologiska morya (Geology and geomorphology of the Baltic Sea). undersökning Ca 72, 1-37. Uppsala. Nedra Publishers, 1-420. Leningrad. Guy-Ohlson, D. & Norling, E. , 1994: Jurassic sequences in Swe­ Grigelis, A., 199lb: Papile Jurassic outcrops. In Guide to Geolog­ den. Geobios M. S. 17, 275- 286. Paris. ical Excursions, 67-70. Vilnius. Guy-Ohlson, D. & Norling, E. , 1996: The significance of Late Grigelis, A., 1993: Lithostratigraphy and geological development Palaeozoic reworked spores in Mesozoic sediments in Sweden. of the Jurassic - Palaeogene bas i n s in Lithuania. Second Baltic Tn Landscapes and Life. Studies in honour of Urve Miller. Stratigraphic Conference, May 9-14, 1993. Abstracts. Vilnius. Journal of the European Network of Scientific and Technical Grigelis, A. , 1994: Lithostratigraphy of the Jurassic in Lithuania. Ca-operation for Culturat Heritage. PACT 50, 3-14. Belgium, Geologija 17, 132- 138. Vilnius. Rixensart. Grigelis, A. , 1995: Mesozoic and Palaeogene Stratigraphy of the Hall am, A., 1961: Cyclothems, transgressions and fauna! change in south-eastern part of the Baltic Sea. Prace Paristwowego lnsty­ the Lias of North West Europe. Tra nsactions of the Geological tutu Geologicznego CXLIX. Proceedings of the 3rd Baltic Ma­ Society of Edinburgh 18, 132-174. rine Geological Conference, "The Baltic", 43-46. Warszawa. Hallam, A., 1975: Jurassic Environments. Cambridge Earth Sci­ Grigelis, A. & Ascoli, P. , 1995: Middle Jurassic-Early Cretaceous ence Series, 1-270. Cambridge University Press. Foraminiferal Zonatio n and Palaeoecology of Offshore Eastern Hallam, A., 1987: Radiationsand extinctions in relation to environ­ Canada and the East European Platform. Geological Survey mental change in the marine Lower Jurassic of northwest Canada, Open File No. 3099, 1- 16. Europe. Palaeobiology 13, 152-168. Grigelis, A. & Gorbatchik, T. , 1980: Morphology and taxonomy of Haq, B.U., Hardenbol, J. & Vail, P.R. , 1988: Mesozoic and Ceno­ Jurassic and Early Cretaceous representatives of the Super­ zoic chronostratigraphy and eyeles of sea-leve! change. In C. K. family Gobigerinacea (Favusellidae). Journal of Foraminiferal Wilgus, B.S. Hastings, C.G. St C. Kendall, H.W. Posamentier, Research JO (3), 180- 190. Washington. C.A. Ross & J.C. Van Wagoner (Eds.): Sea-level Changes -An Grigelis, A. & Bl azhchi shin , A. , 1992: Early Jurass ic, Middle lntegrated Approach. Special Publications of Social Economy, Jurassic, and Late Jurassic of the North Sea and the Baltic Sea. Palaeontology and Mineralogy 42, 7 1- 108. Tu Isa. In M.N. Alekseev (Ed .. ): Palaeogeographic Atlas of the Shelf He, Y. & Norling, E. 199 1: Upper Triassic Foraminifera and Stra­ Regions of Eurasia for the Mesozoic and the Cenozo ic. The tigraphy of Mianzhu , Sichuan Province, China. Sveriges geolo­ Robertson Group and the Geological lnstitute, Academy ofSci ­ giska undersökning Ca 76, l-48. Uppsala. ences of the USSR. Llandudno, . Sheets 11.1 Jenkins, D.G. & Murray, J.W. (Eds.), 1989: Stratigraphical Atlas of & 11.2. Fossil Foraminifera. British Micropalaeontological Society Grigelis, A. & Kadiinas, V. (Eds.), 1994: Lietuvas geologij a (Geol­ Series, 1-593. Second Edition. Elli s Horword Ltd, Chichester. ogy of Lithuania). Science & Encyclopedia, 1-447. Vilnius. Jubitz, K.-B ., Znosko, J. & Franke, D. , 1988: Lithologic-palaeo­ Grigelis, A., Monkevich, K. & Vi shniakov, I. (Eds.), 1985: Sedi­ geographic map of the Pliensbachian. International Geological mentatsiya i paleogeograftya mezozoya v zapadnoy chasti Vos­ Correlation Programme (IG CP), Project No. 86. Scale tochno-Evropeyskoy platformy (Mesozoic sedimentation and l : l 500 000. Two sheets with inset ma ps (l: l O 000 000) of all palaeogeography in the western part of the East European P lat­ Lower Jurassic Stages plus the Bajocian and the Bathonian. form). Nauka i Technika, 1- 215. Minsk. International ca-ordinator: R. Dadlez, Poland. Swedish ca­ Grigelis, A. & Suveizdis, P. , 1993: Pabaltijo permo - paleogena ordinators: E. Norling & U. Sivhed. Lithuanian ca-ordinator A. stratotipu katalogas (Catalogue of Permian - Palaeogene Grigelis. Berlin.

74 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Kaptarenko-Chernoussova, O. K. , 1956: Pro novi rodi foraminifer z Norin, R. , 1934: Zur Geologie der Siidschwedischen Basalte. radini Epistominid. (On a new genus of Foraminifera of the Meddelanden från Lunds geologisk-mineralogiska institution family Epistominidae). Dopovidi Akademii Nauk Ukrainskoy 57, 1-175. SSR 2, 157-161. Norling, E.,1966: On the Genus lchthyolaria WEDEKIND 1937. Klingspor, I., 1976: Radiometri cage-determinations of basalts, do­ Sveriges geologiska undersökning C 613, 1-24. Stockholm. lerites and related syenite in Skåne, southern Sweden. Geolo­ Norling, E. , 1968: On Liassic nodosariid foarminifera and their giska Föreningens i Stockholm Förhandlingar 98, 195-216. wall structures. Sveriges geologiska undersökning C 623, 1- Stockholm. 76. Stockholm. Kristan, E., 1957: Ophthalmididae und Tetrataxinae (Foraminifera) Norling, E., 1970: Jurassic and Lower Cretaceous stratigraphy of aus dem Rhät der Roben Wand in Nieder-Österreich. Jahrbuch the Rydebäck-Fortuna borings in southern Sweden. Geologis­ der Geologiseken Bundesanstalt, JOO (2), 269-298. Wien. ka Föreningens i Stockholm Förhandlingar 92,261-287. Stock­ Kristan-Tollmann, E. , 1964: Die Foraminiferen aus dem Rhä• holm. tischen Zlambachmärgeln der Fischerwiese bei Aussee im Norling, E., 1972: Jurassic stratigraphy and foraminifera of west­ Salzkammergut. Jahrbuch der Geologiseken Sundesanstalt JO, ern Scania, southern Sweden. Sveriges geologiska undersök• 1- 189. Wien. ning Ca 47, 1-120. Stockholm. Kumpas, M.G., 1980: Seismic stratigraphy and tectonics in the Norling, E., 1973: Biostratigraphy of the Hanö Bay Boreholes Nos. Hanö Bay, southern Baltic. Stockholm Contributions in Geolo­ 104/13-1 & 104/14-2. Geological Survey Report to OPAB gy 34, 35-168. Stockholm. (Oljeprospektering AB). Stockholm. Kuznetsova, K.I., 1979: Stratigrafiya i paleogeograflya pozdney Norling, E. , 1981: Upper Jurassic and Lower Cretaceous geology jury Boreal'nogo poyasa po foraminiferam. (Upper Jurassic of Sweden. Geologiska Föreningens i Stockholm Förhandling• Stratigraphy and Palaeogeography of the Boreal Realm, based ar 103, 253- 269. Stockholm. on Foraminifera). Trudy Geologicheskogo lnstituta Akademii Norling, E., 1982: Längs stigar mot det förgångna. Berggrunds­ Nauk SSSR 332, 1-127. Moscow. geologiska strövtåg i Kullabygden (Along tracks towards the Kuznetsova, K.I., Grigelis, A.A., Adjamian, J., Jarmakani, E. & past. A geological walk in the Kullen District, NW Scania). Hallaq, L., 1996: Zonal Stratigraphy and Foraminifera of the Skånes Natur 69, 21-40. Lund. Tethyan Jurassic (Eastern Mediterranean). 1- 256. Gordon & Norling, E., 1984: Kimmerian tectonics, stratigraphy, and palaeo­ Breach Publishers. UK. geography of Scania. Geologiska Föreningens i Stockholm Larsen, G., Buch, A., Christensen, O. & Bang, I. , 1968: Öresund. Förhandlingar 106, 393-394. Stockholm. Helsingör-Helsingborg-Linien. Geologisk Rapport. Danmark Norling, E., 1985: Mesozoic and Tertiary geological evolution of geologiske undersögelse, Rapport J, 1-90. Copenhagen. Scania. Terra Co g nita 5, 103-104. Paris. Latin, D.M., Dixon, J.E. & Fitton, J.G., 1990: Rift-related magma­ Norling, E. , 1993: Den postpaleozoiska berggrunden i Baltikum tism in the North Sea Basin. In D.J. Blundeli & A. Gibs (Eds.): (The post-Palaeozoic Geology of the Baltic Region). Berg- och Tectonic Evolution of the North Sea Rifts. Oxford University Da/bladet. Geologklubbens Tidning Nr. 2-3, 14, 19-22. Stock­ Press. holm. Loeblich, A.R. Jr. & Tappan, H. , 1988: Foraminiferal genera and Norling, E. , 1994: Bedrock of the Swedish continental shelf. the ir classification. l. Foraminiferal Genera and The i r Classifi­ National Atlas of Sweden. Geology, Fig. M13, 38-43. SNA. cation, 1-970. II. Ptates 1- 847. Van Nostrand Reinhold, New Printed in . York. Norling, E., Ahlberg, A., Edström, M. & Sivhed, U., 1993: Guide Lund, J., 1977: Rhaetic to Lower Liassic palynology of the onshore to the Upper Triassic and Jurassic geology of Sweden. Sve­ southeastern North Sea Basin. Danmarks geologiske under­ riges geologiska undersökning Ca 82, 1-72. Uppsala. sögelse, II Raekke 109, I -128. Copenhagen. Norling, E. & Bergström, J., 1987 : Mesozoic and Cenozoic tecton­ Marek, S. & Grigelis, A. (Eds.), 1998: Atlas: Structural evolution ic evolution of Scania, southern Sweden. Tectonophysics 17, of the Permian-Mesozoic complex of Northeastern Poland, 7-19. Elsevier, Amsterdam. Lithuania and adjacent Baltic areas. 1-24, Pis I-XIV. Mapsin Norling, E. & Grigelis, A. , 1996: En öst-västlig geotravers genom the scale l :2 000 000. Polish Geologicallnstitute & the Lithu­ Östersjöområdets juraavlagringar (An East-West Geotraverse anian Institute of Geolog y. through the Jurassic of the Baltic Sea). Geologiskt forum J J, Moberg, J.C., 1888: Lias i Sydöstra Skåne. Sveriges geologiska 26-29. Stockholm. undersökning C 99, 1-86 Stockholm. Norling, E. & Skoglund, R., 1977: Der Siidwestrand des Ost­ Morris, P.H. & Coleman, B.E., 1989: The Aalenian to Callovian europäischen Tafel im Bereich Schwedens. Zeitschrift fur (Middle Jurassic). In D.G. Jenkins & J.W. Murray (Eds.): Angewandte Geologie 23, 449-458. Berlin. Stratigraphical Atlas of Fossil Foraminifera, 189-236. British Norling, E. & Wikman, H., 1990: Beskrivning till berggrundskar­ Micropalaeontological Series, John Wiley & Sons, New York. tan Höganäs NO/ Helsingborg NY (Description to accompany Munk, C.H., 1980: Feinstratigrafische und mikropalaeontologische the geological map, sheet Höganäs NE/ Helsingborg NW). Untersuchungen auf Foraminiferenfaunen im Mittieren und Sveriges geologiska undersökning Af 129, 1-123. Uppsala. Oberen Dogger (Bajocien-Callovien) der Frankenalb. Er/ang­ Oravecz-Scheffer, A. , 1987: Triassic Foraminifera of the Trans­ er Geologisekes Abhandlungen 105, 1-72. Erlangen. danubian Central Range. lnstitutum Geologicum Hungaricum, Murray, W.J. , 1989: An outline of the fauna! changes through the Series Palaeontologica, Fasc. 50, 1-333. (In Rungarian and Phanerozoic. in Stratigraphical Atlas of Fossil Foraminifera, English). Budapest. 570-574. See Jenkins, D.G. & Murray, J.W. Pakuckas, C., 1932: Papiles oksfordo ir kelovejo amonit4 fauna Norin, R., 1933: Mineralogische und petrographische Studien an (Die Ammonitenfauna des Oxford und Kellaway von Papile). den Basalten Schonens Geologiska föreningens i Stockholm Vytauto Didf.iojo Universiteto Matematikos-gamtas Fakulteto förhandlingar 55, 101- 149. Darbai Vi (2), 3-87. Kaunas.

75 A. GRIGELIS AND E. NORLI NG

Pakuckas, C., 1933: Papiles juros stratigrafine apZ\'alga remiantis Sivhed, U., 1980: Lower Jurassic ostracods and stratigraphy of amonit4 fauna ( Review of the Jurassic stratigraphy in Papile western Skåne, southern Sweden. Sveriges geologiska under­ based on the ammonite fauna). Vytauto Didziojo Universiteto sökning Ca 50, 1-85. Uppsala. Matemalikos gamtas Fakulteto Darbai Vll (4), 447-484. Kau­ Siv hed, U., 1984: Litho-and biostratigraphy of the Upper Triassic­ nas. Middle Jurassic in Scania, southern Sweden. Sveriges geolo­ Pazdro, 0., 1969: Middle Jurassic Epistominidae (Foraminifera) of giska undersökning C 806, 1-28. Uppsala. Poland. Studia Geol. Polonica 27, 1-92. Warszawa. Sivhed, U. & Wikman, H. , 1986: Beskrivning till berggrundskartan Pazdrova, 0., 1969: Hathonian Globigerina in Poland. Annales De Helsingborg SV (Description to accompany the bedrock map La Societe Geologique De Pologne, 39 ( 1-3), 41-56. Krak6w. Helsingborg NW). Sveriges geologiska undersökning Af 149, Peteraitis, Y., 1992: Mal.oji Lietuva ir Tvanksta/ Lithuania Minor 1-108. Uppsala. and Tvanksta. Science & Encyclopedia. 1-456. Vilnius. Stirpeika, A. , 1968: Novyie dannye o pozdnepermskich i ranne­ Piatkova, D.M. & Permiakova, M.N. , 1978: Foraminifery i ostrak­ mezozoyskich kontinental 'nych obrazovaniyach Pajavonsko­ ody jury Ukrainy. Paleontologicheskiy spravochnik (Jurassic Kybartaiskogo rajona (Jugo-Zapadnaya Litva) (New data on Foraminifera and Ostracoda of the Ukraine. PaleontologicaJ the Late Permian and Early Mesozoic continental deposits of Guide). Naukova Dumka Publishers, 1-289. Kiev. Pajavonys - Kybartai area (SW Lithuania). Lietuvas jaunl.f:)11 Pierikowski, G., 1991a: Eustatically-controlled sedimentation in mokslinink11 geolog11 mokslimis konferencijos medZiaga, 13- the Hettangian-Sinemurian of Poland and Sweden. Sedimen­ 15. Geologijos institutas, Vilnius. tology 38, 503-518. Tallbacka, L. , 1974: Weil H-l Hanö Bay area. Final Weil Report. Pierikowski, G. , 199 Jb: Liassic sedimentation in Scania, southern OPAB. Stockholm. Sweden. Hettangian-Sinemurian of the Helsingborg area. Tappan, H., 1955: Foraminifera from the Arctic Slope of Alaska. Facies 24, 39-86. Erlangen. Part 2. Jurassic Foraminifera. Geological Survey Professional Reyment, R.A., 1959: On Liassic ammonites from Skåne, southern Paper 236-B, 1- 135. Washington. Sweden. Stockholm Contributian in Geology 2, 103- 157. Tralau, H. , 1966: Botanical investigations of the fossil flora of Stockholm. Eriksdal in Fyledalen, Scania. Sveriges geologiska under­ Reyment, R.A., 1969: Upper Sinemurian (Lias) at Gantofta, Skåne. sökning C 611, 1-36. Stockholm. Geologiska Föreningens i Stockholm Förhandlingar 91, 208- Tralau, H., 1968: Botanical investigations into the fossil flora of 216. Stockholm. Eriksdal in Fyledalen. II. The Middle Jurassic microflora. Reyment, R.A. , 1971 : Callovian ammonites (Lamberti Zone) Sveriges geologiska undersökning C 633, 1-185. Stockholm. found in an erratic concretion near Svedala, Scania. Bulletin of Troedsson, G. , 1947: Berggrunden inom Helsingborgs stad (The the Geologicallnstitute of Uppsala University 3, 19-25. Upp­ bedrock geology of the town of Helsingborg). Geologiska För• sala. eningens i Stockholm Förhandlingar 69, 385-432. Stockholm. Ritchie, J.D., Swallow, J.L., Mitchell, J.G. & Morton, A.C., 1988: Troedsson, G. , 1951: On the Höganäs Series of Sweden (Rhaeto­ Jurassic ages from extrusives and intrusives within the Forties Lias). Lunds universitets årsskrift N.F Avd. 2, 1-268. Lund. igneous province. Scottish Journal of Geology 24, 81-88. Vajda-Santivanez, Y. , 1998: Cretaceous palynofloras from southern Rolle, K., Frandsen, J.O. & Surlyk, F., 1979: Jurassic environments Scandinavia. Lund publications in Geology, No. 135, 1-129. in the Fennoscandian Border Zone. Symposium on "Sedimen­ Lund. tation Jurassique W. Europien". Ass. Sed. Fr. Pub l. Spec. J, Vakharameev, Y.A. , Grigelis, A.A. & Mikhailov, LA. , 1971: 15-31. Paris. Nachodka srednejurskoy flory v papil'skoy svite Juzhnoy Rotkyte, L., 1987: Ammonity i zonal'naya stratigrafiya verchne­ Pribaltiki (Discovery of a Middle Jurassic flora in the Papile jurskich ot1ozheniy Pribaltiki (Upper Jurassic ammonites and Formation, Southern Baltic). Sovietskaya Geologya 3, J 20- zonal stratigraphy in the Baltic area). Makslas Publishers, l­ 123. Moscow. l 19. Vilnius. VienoZinskiene, A. & Kisnerius, J. , 1978: Stratigrafiya verchnetri­ Senkowiczova, H. & Szyperko-Sliwczynska, A., 1975: Stratigra­ asovych (retskych) - jurskich (dosrednekelloveyskych) konti­ phy and paleogeography of the Trias. Geologicallnstitute Bul­ nental 'nych otlozheniy zapadnoy chasti Juzhnoy Pribaltiki letin 252, 131-147. Warsaw. (Stratigraphy of the Upper Triassic (Rhaetian) and the Jurassic Shipp, D.J., 1989: The Oxfordian to Portlandian. In Jenkins D.G & (pre-Mid Callovian) continental sequence of the western South Murray, J.W. (Eds.): Stratigraphical Atlas of Fossil Foramini­ Baltic Region). ln Baltic Phanerozoic Stratigraphy, 127-138. fera , 237-262. Zinatne, Riga. Silas, V. & Sambora, H., 1990: Mal.osios Lietuvos kultliras pedsa­ Vossmerbäumer, H. , 1970: Untersuchungen zur Bildungsgeschich­ kai Kaliningrado srityje (Tracks of the Lithuanian Minor cul­ te des Unteren Lias in Schonen (Schweden). Geologica et ture in the Kaliningrad District). Minfis Publishers, 1-427. Palaeontologica 4, 167- 193. Marburg. Vilnius. Ziegler, P.A., 1982: Triassic Rifts and Facies Patterns in Western Simkevicius, P. , 1973: Piet4 Pabaltijo apatines-virsutines (apatinis and Central Europe. Geologische Rundschau 71(3), 747- 772. kelovejis) juros ir triaso ir vidurinio kelovejaus ribini4 sluok­ Stuttgart. sni4 molingos frakcijos difraktometrinis tyrimas (X-ray analy­ Ziegler, P.A. , 1990: GeologicaJ Atlas of Western and Central Eu­ sis of day fraction from the Lower Callovian and the Upper Ju­ rope. Shell Internatianale Petroleum Maatschappij B. V. , 1-240 rassic and some Triassic and Callovian deposits of the South text, plus atlas with 56 enclosures. Second edition. Baltic Region). Lietuvas aukStuj11 mokykl11 darbai. Geologija, Geograftja JO , 263-267. Vilnius. Simkevicius, P. , 1999: Jurassic of the Southeastern Baltic. Lithol­ ogy and clay minerals, 1- 170. Institute of Geology. Vilnius.

76 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

PLATES

Plate l. Lower Jurassic foraminifera from Scania, Sweden.

Plate 2. Middle and Upper Jurassic foraminifera from Scania, Sweden.

Plate 3. Middle and Upper Jurassic foraminifera from Lithuania, the Kaliniograd Enclave, and the SE part of the Baltic Sea.

Plate 4. Middle and Upper Jurassic foraminifera from Lithuania, the Kaliniograd Enclave, and the SE part of the Baltic Sea.

Plate 5. Middle and Upper Jurassic foraminifera from Lithuania and Sweden.

Ptates 6-17. Lithologic-palaeogeographical maps of Jurassic Stages in N. Europe.

Plate 6. Hettangian-Sinemurian.

Plate 7. Pliensbachian.

Plate 8. Toarcian.

Plate 9. Aalenian.

Plate 10. Bajocian.

Plate 11. Bathonian.

Plate 12. Callovian.

Plate 13. Oxfordian.

Plate 14. Generalized Oxfordian thicknesses.

Plate 15. Kimmeridgian.

Plate 16. Portlandian.

Plate 17. Jurassic Structural Units.

77 A. GRIGELIS AND E. NORLING

Plate l. Lower Jurassic foraminifera from Scania, Sweden

l. Ichthyolaria sulcata (Bornemann, 1854). Side view. Katslösa Exposure, 762 m. Rya Formation, Lower Sinemurian-Upper Sinemurian transitional beds. EN 972:5. 80 X.

2. Nodosaria metensis terquem, 1864. Side view. Öresund Bl, 33.5-33.8 m, Döshult Member, Rya Formation, Lower Sinemurian. EN 971:5. 65 X.

3. Nodosaria mitis (Terquem & Berthelin, 1875). Örby E6 Viaduct Exposure, sample 5, Döshult Member, Rya Formation, Lower Sinemurian. EN 35:2. 110 X.

4. Nodosaria dispar Franke, 1936. Side view of specimen with broken apertural neck. Öresund B l, 21.8 m, Döshult Member, Rya Formation, Lower Sinemurian. EN 971:8. 80 X.

5. Paralingulina tenera (Bornemann, 1854) ssp. substriata N!

6. Mesodentalina matutina (D'Orbigny, 1849). Side view. Katslösa Exposure, 762 m. Base Pankarp Member, Rya Formation, Upper Sinemurian. EN 972:20. 57 X.

7. Vaginulinopsis exarata (Terquem, 1866). Side view. Katslösa Expos u re, 782 m. Pankarp Member, Rya Formation, basal Upper Sinemurian. EN 972:9. 65 X.

8. Trist ix tiasina (Berthelin, 1879). Side view. Rydebäck-Fortuna-1, 65 m. Rydebäck Member, Rya Formation, Upper Pliensbachian. EN 972:3. 160 X.

9. Vaginulina listi (Bornemann, 1854). Side view. Kävlinge-930, 31-32 m, Rydebäck Member, Rya Formation, Pliensbachian. EN 972:19. 80 X.

l O. Astacolus semireticulata (Fuchs, 1970) emended Norling, 1972. Side view. Örby E6 Yiaduct Exposure, sample 6. Döshult Member, Rya Formation, Lower Sinemurian. EN SEM 49: l. l 00 X.

Il. Mesodentalina matutina (D 'Orbigny, 1849). Side view of microspheric speciemen. Katslösa Exposure, 762 m, base Pankarp Member, Rya Formation, Upper Sinemurian. EN 973:8. 40 X. 12. Citharina inaequistriata (Terquem, 1863). Side view. Gantofta Brick Pit, topDöshult Member, Rya Formation, Lower Sinemurian. EN 87: l. 72 X.

13. Tristix tiasina (Berthelin, 1879). Side view. Rydebäck-Fortuna-1 , 40.5 m, Rydebäck Member, Rya Formation, Upper Pliensbachian. EN 973:4. 160 X.

14. Brizalina liasica (Terquem, 1858) ssp. amalthea Brand, 1937. Side view. Kävlinge-928, 67.3 m, Rydebäck Member, Rya Forma­ tion, Pliensbachian (Carixian/Domerian boundary). EN 97: l. 195 X.

15. Nodosaria aphaeilolocula Tappan, 1955. Micrograph of isolated chambershowinga hi spid chamber wall and a smooth, broken, intedocular tube. Kävlinge-930, 65.4-66.3 m. Katslösa Member, Rya Formation, Lower Pliensbachian. EN 37:2. 205 X.

16. Subspherical form referreble to Saccammina Carpenter, 1869 or Thurammina Brady, 1879. Side view. Fredriksberg E6 Viaduct Exposure, Helsingborg Member, Höganäs Formation, Hettangian. EN 98:3, 40 X.

17. Mesodentalina haeusleri (Schick, 1903). Side view of broken specimen. Katslösa Exposure, 774 m. Pankarp Member, Rya Forma­ tion, Upper Sinemurian. EN 92: 6. 74 X.

18. Marginulina prima D'Orbigny, 1849 ssp. praerugosa Nprvang, 1957. Side view. Örby E6 Viaduct Exposure, sample 10. Döshult Member, Rya Formation, Lower Sinemurian. EN 971:4. 65 X.

19. Marginulina prima D'Orbigny, 1849 ss p. praerugosa Nprvang, 1957. Side view. Örby E6 Yiaduct Exposure, sample 6. Döshult Member, Rya Formation, Lower Sinemurian. EN 971:1. 95 X.

20. Astacolus denticulacarinata (Franke, 1936). Side view. Kävlinge-930, 44-45 m. Katslösa Member, Rya Formation, Lower Pliens-­ bachian. EN 96: l. 100 X.

21. Marginulinopsis radiata (Terquem, 1864). Side view. Kävlinge-930, 44-45 m. Katslösa Member, Rya Formation, Lower P1eins­ bachian. EN 971:13. 160 X.

78 JURASSIC GEOLOG Y AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

PLATE 1

79 A. GRIGELIS AND E. NORLING

Plate 2. Middle and Upper Jurassic foraminifera from Sweden

l. Saracenaria phaedra Tappan, 1955. Side view. Rydebäck-Fortuna-5, 157 m. Fortuna Mari, Annero Formation, Upper Batho­ nian/Callovian. EN 105 :5. 144 X.

2. Lenticulina attenuata (KUbler & Zwingli, 1870). Side view. Rydebäck-Fortuna-5, 147 m. Fortuna Mari, Annero Formation, Lower Oxfordian). EN 973:27. 90 X.

3. Lenticulina brueckmanni (Mjatliuk, 1939). Side veiw of slightly corroded specimen. Rydebäck-Fortuna-5, 147m. Fortuna Mari, Annero Formation, Lower Oxfordian. EN 973:28. 70 X.

4. Lenticulina quenstedti (GUmbel, 1862) var. evaluta Paalzow, 1917. Oblique apertural view. Rydebäck-Fortuna-5, 147m. Fortuna Mari, Annero Formation, Lower Oxfordian. EN 11:8. 180 X.

5. Astacolus colligatum (BrUckmann, 1904). Side view. Rydebäck-Fortuna-5, 150m, Fortuna Mari, Annero Formation, Callovian. EN 973:15. 120 X.

6. Lenticulina tricarinella (Reuss, 1863). Oblique dorsal view. Rydebäck-Fortuna-5, 149.5 m, Fortuna Mari, Annero Formation, Lower Oxford ian. EN 30:4. l 05 X.

7. Lenticulina tricarinella (Ruess, 1863). VentraJ view. Woodham Quarry, Dorset, UK. Mariae Zone, Lower Oxfordian. EN 30:5. 110 x.

8. Marginulina nytarpens is Norling, 1972. Rydebäck-Fortuna-5, 157 m, Fortuna Mari, Annero Formation, Upper Bathonian/Callovian. EN 973:30. 95 X.

9. Haplophragmoides kingakensis Tappan, 1955. Side view. Kävlinge-928, 30m. Katslösa Member, Rya Formation, Lower Pliens­ bachian. EN 99:6. 205 X.

10. Reophax helvetica (Haeusler, 1881). Rydebäck-Fortuna-5, 138.5 m. Top Fortuna Mari, Annero Formation, Middle Oxfordian. EN 973: 11. 110 X.

Il. Ditto, from the same sampl e. EN 973:12. 110 X.

12. Saracenaria cornucopiae (Schwager, 1865). Side view. Rydebäck-Fortuna-5, 147 m. Fortuna Mari, Annero Formation, Lower Oxfordian. EN 40:2. 240 X.

13. Citharinella nikitini (Uhlig, 1883). Side view. Rydebäck-Fortuna-5, 157 m. Fortuna Mari, Annero Formation, Upper Bathonian/ Callovian. EN 40:3. 70 X.

14. Citharina macilenta (Terquem, 1868). Side view. Rydebäck-Fortuna-5, 148m, Fortuna Mari, Annero Formation, Lower Oxfordian. EN 28:2. 60 X.

15 . Epistomina volgensis Mjatliuk, 1939. Dorsal view, Rydebäck-Fortuna-5, 147m. Fortuna Mari, Annero Formation, Lower Oxfor­ dian. EN 41 :3. 80 X.

16. Paralingulina ex.gr. lingulaeformis (Schwager, 1865). Side view. Rydebäck-Fortuna-5, 157 m, Fortuna Mari, Annero Formation, Upper Bathonian/Callovian. EN 105:3. 200 X.

80 JURASSIC GEOLOG Y AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

PLATE 2

81 A. GRIGELIS AND E. NORLING

Plate 3. Middle and Upper Jurassic foraminifera from Lithuania, the Kaliniograd Enclave, and the SE part of the Baltic Sea

l. Ophthalmidium infraoolithicum (Terquem, 1874). Side view. Kybartai-29, 391.5 m, sample 152. Liepona Formation, Upper Batho­ nian, SW Lithuania. AG SEM 0509. 75 X.

2. Ophthalmidium sagittum (Bykova, 1948). Side view. Jotija borehole, 148.8 m, sample 12. f\zuolija Formation. Lower Oxfordian, SW Lithuania. AG SEM 0508. 120 X.

3. lchthyolaria suprajurensis ( Mjatliuk, 1961). Side view. Papilt~-1 Outcrop, layer k, 8.25-8.30 m. Papartim~ Formation, Erymnoceras earonatum Zone, Middle Callovian, NW Lithuania. AG SEM 0510. 55 X.

4. Lenticulina papillaecostata Bielecka & Styk, 1981. Side view. Ladushkin-55, 466.5 m, sample 16. Skinija Formation, Upper Callovian. SW part of the Kaliningrad Enclave. AG SEM 0506. 47 X.

5. Lenticulina polonica (Wisniowski, 1890). Side view. Nida-2k, 246.7-250.6 m, sample 30. Papartine Formation, Middle Callovian, W Lithuania. AG SEM 051 l . 93 X.

6. Lenticulina involvens (Wisniowski, 1890). Nida-2k, 216m, sample 25. Skinija Formation, Upper Callovian, W Lithuania. AG SEM 0512. 96 X.

7. Lenticulina brueckmanni (Mjatliuk, 1939). A) Side view; B) Oblique apertural view. Zalgiriai- 1, 158.6 m, sample 283/81- f\zuolija Formation, Lower Oxfordian, W Lithuania. AG SEM 0520 and 0522. 47 X.

8. Lenticulina hebetata (Schwager, 1865). Side view. C 8-l/82 borehole, sample 26. f\zuolija Formation, Lower Oxfordian, SE Baltic Sea. AG SEM 0501. 93 X.

9. Saracenaria co rnucopiae (Schwager, 1865). Side view. Smiltyne-3P boreho le, 97 m, sample l 05. Skinija Formation, Upper Callo­ vian, W Lithuania. AG SEM 0521. 80 X.

10. Planularia deeckei (Wisniowski, 1890). Side view. Ladushkin-55, 487.2 m. Skinija Formation, Upper Callovian, Kaliningrad Enclave. AG SEM 0528. 87 X.

11. Citharina mosquensis (Uhlig, 1883). Side view. C8-l/82 borehole, 400 m, sample 35, Skinija Formation, Upper Callovian, SE Baltic Sea. AG SEM 0527. 86 X.

12. Citharina parallella (Bielecka & Styk, 1954). Side view. Oziorsk-1, 444.1 m, sample 29, Tarava Formation, Lower Kimmeridgian, SE Kaliningrad Enclave. AG SEM 0524. 50 X.

13. Citharinella schellwieni (Briickmann, 1904). Side view. C8-1!82 borehole, 400 m, sample 35 , Skinija Formation, Upper Callovian, SE Baltic Sea. AG SEM 0504. 53 X.

14. Marginulinopsis batrakiensis (Mjatliuk, 1939). Side view. Dauglaukis-8, 179m, sample 16, Skinija Formation, Upper Callovian, W Lithuania. AG SEM 0513. 130 X.

15. Marginulinopsis gordoni (Norling, 1972). Side view. Oziorsk-1, 444.1 m, sample 29. Tarava Formation, Lower Kimmeridgian. AG SEM 0525. 45 X.

16. Pseudolamarekina rjasanensis (Uhlig, 1883). A) Dorsal view; B) VentraJ view. Stoniskiai-lk borehole, 227-230.4 m, sample 39. Skinija Formation, Upper Callovian. AG SEM 0503. 80 X.

82 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

PLATE 3

83 A. GRIGELIS AND E. NORLING

Plate 4. Middle and Upper Jurassic foraminifera from Lithuania, the Kaliniograd Enclave, and the SE Baltic Sea

J. Epistomina planiconvexa Bielecka & Styk, 1981. A) Dorsal view; B) VentraJ view. C 8-1/82 borehole, 375m, sample 30, Azuolija Formation, Lower Oxfordian, SE Baltic Sea. AG SEM 0502 and 05022. 85 X.

2. Epistomina porcellanea Briickmann, 1904. A) Dorsal view; B) VentraJ view. C 8-1182 borehole, 400 m, sample 35, Skinija Forma­ tion, Upper Callovian, SE Baltic Sea. AG SEM 0505 and 05052. 80 X.

3. Epistomina mosquensis Uh li g, 1883. A) Dorsal view; B) VentraJ view. C 8-1182 borehole, 415 m, sample 38, Skinija Formation, Upper Callovian, SE Baltic Sea. AG SEM 0507 and 05072. 100 X.

4. Epistomina volgensis Mjatliuk, 1953. A) Dorsal view; B) VentraJ view. Jotija borehole, 148.8 m, sample 12, Afuolija Formation, Lower Oxfordian, SW Lithuania. AG SEM 0515 and 05152. 85 X.

5. Epistomina parastelligera (Hofker, 1954). A) Dorsal view; B) VentraJ view. Stoniskiai-lk borehole, 206.4-207.9 m, sample 34, Azuolija Formation, Lower Oxfordian, W Lithuania. AG SEM 0516 and 05162. 90 X.

6. Epistomina ventriosa Espitalie & Sigal, 1963. A) Dorsal view; B) VentraJ view. Majakovskoye-2 borehole, 355m, sample 3, Tarava Formation, Lower Kimmeridgian, SE Kaliningrad Enclave. AG SEM 0526 and 05262. 70 X.

7. Spirillina tenuissima (Giimbel, 1862). Side view. Jotija borehole, 132.3 m, sample 6, Afuolija Formation, Lower Oxfordian, SW Lithuania. AG SEM 0517. 130 X.

84 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

PLATE 4

85 A. GRIGELIS AND E. NORLING

Plate 5. Callovian and Oxfordian foraminifera from Lithuania and Sweden l. Paulinafurssenkoi Grigelis, 1977. A) Dorsal view; B) VentraJ view. Jotija boreho1e, 132.3 m, sample 6, Lower Oxfordian, SW Lithuania. AG SEM 514. 100 X.

2. Troeholina klaipediea Grigelis, 1985. A) Dorsal view; B) VentraJ view. Vilkyciai-18, 157.7 m, sample 193 . Upper Callovian, W Lithuania. AG SEM 519. 100 X.

3. Troeholina transversarii Paalzow, 1932. A) Dorsal view; B) VentraJ view. Stoniskiai-1 k, 187.3 m, Middle Oxfordian, W Lithuania. AG SEM 518. 85X.

4. Globuligerina oxfordiana (Grigelis, 1958). Topotype. Dorsal view. Jotija borehole, 143m, sample 10. Lower Oxfordian, SW Lithuania. AG SEM 522. 250 X

5. Ditto. VentraJ view. Shatrishche-2, sample 80 l, Middle to Upper Oxfordian, Rjasan, Central Russia. AG SEM 523. 250 X.

6. Globuligerina cf. oxfordiana (Gri geli s, 1958). VentraJ view. Han ö Bay l 04/14-2, 790 m, Oxfordian. Han ö Bay, E Sean i a. EN 195 b. 400 X.

7. Ditto. Ob1ique dorsal view. EN 195 a 380 X.

8. Globuligerina cf. oxfordiana (Gri geli s, 1958). Part of surface enlarged to show nonperforate pustules and scattered pores. EN 195 a. 2 400 X.

86 JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

PLATE 5

87 A. GRIGELIS AND E. NORLING

Plates 6-11

Lithologic-palaeogeographical maps produced for the International GeologicaJ Correaltion Programme, IGCP Project No. 86 SOUTH-WEST BORDER OF THE EAST EUROPEAN PLATFORM

Editorial Board: K.-B. Jubitz, former German Demoeratic Republic, GDR (Project leader), J. Znosko, Poland (Vice project leader), D. Franke, GDR (Secretary). General ca-ordinator: G. Beutler, GDR International scientific ca-ordinator: R. Dadlez, Poland

Authors: Denmark: O. Michelsen GDR: W. Nöldeke, R. Tessin, G. Beutler Germany: F. Kackel Netherlands: M.J.M. Bless Poland: R. Dadlez, M. Franczyk, K. Dayczak-Calikowska Roumania: M. Lupu Former Union of Soviet Socialist Republics: A. Grigeli s, I. Yishnyakov, L. Rotkyte, M. Shimkevitchius, K. Monkevich, T. Moyseyeva, Y. Glushko, Y. Dulub, G. Pomyanovskaya, J. Sandler, L. Romanov. Sweden: E. Norling, U. Sivhed United Kingdom: M. Kubala

All the ma ps are inset map s on the sea! e l: l O 000 000 linked to the head map of the Pliensbachian l: l 500 000. Plate 6. Hetlangian - Sinemurian, Lower Jurassic Plate 7. Pliensbachian, Lower Jurassic Plate 8. Toarcian, Lower Jurassic Plate 9. Aalenian, Middle Jurassic Plate l O. Bajocian, Middle Jurassic Plate Il. Bathonian, Middle Jurassic

88 '- c JJ )> en en o G) m o or G) -< )> z o o"Tl JJ )> s: z "Tl m JJ )> r "Tl )> c z )> en z ~ I m z :z:

~ JJ ~ o "Tl ~ I m m )> HETTANGlAN/SINEMURIAN en ~ 1:10 000 000 m Secondary direction of c --+- clastic influx oJJ "U C:=JShallow part of the shelf ·- o-· O·m isopach m )> z Alternating marine and 11 Conglamerate Limestene 200 Maximallhickness (m) "U L_____j intermediate environments ~ ~ r ~ Conlinental environmenl (fluvial, j_ _1_ _l Presentextent Sandstone c::..:.::::JCoal "Tl deltaic, lacustrine, marshy) c=] a b a - proved, b - supposed o JJ Alternating intermediate and Boundary between areas of different "U s: l ~-_ --~C laystone, shale Ooids of Fe-oxides/-hydroxides r conlinental environments ~ palaeogeographical conditions ~ C:=JDenudation areas ~~~~~~ ~Calcareous marlslone q Main direction of clastic influx ~ Carpathian front m (J)

00 1..0 \.0 o

16" ' 28 " 32 " crd~· \20" J'?: _s } o

~- r "'l' ?.v () se> }// 2! 1iJ

)>

G) :Il G) m r (f) )> z o m z o :Il r z G)

PLIENSBACHIAN 1:10 000 000 Secondary direction of - clastic influx Alternating marine and intermediate

~ ~ - o- o-m isopach C=:JShallow part of the shetf OJ environments l Conlinental evironment ---_ --Claystone, shale ~ (fluvial, deltaic lacustrine, marshy) ~""'"'"'!tntermediate environment Alternating intermediate and

~~~~~~~~Ca lcareous maristene 200 Maximal thickness (m) L______j (paral1c,brack1sh-lagoonal, lldal) conlinental environments

u-::fj Alternating marine and Limestene l Sandy _L_L_ -"- "-- Present extent C=:JDenudation areas ~ ~ intermediate environments ~ limestene b a- proved, b- supposed Conlinental environment (fluvial, Ooids of Fe-oxidesl Boundary between areas of different "'U c=J Sandslene ro-l r deltaic, lacustrine, marshy) ~ -hydroxides palaeogeographicalconditions ~ Alternating marine and Main direction of -=--=--=-1Siltstone Carpathian front m conlinental environments 1 c> clastic influx ~ -...,J (_ c J) )> (f) (f) o G) m er o ro G) -< )> z o o01 J) )> s: z 01 m J) )> r 01 )> c z )> (f) z -l I m z :z:

~ J) -l o 01 -l I m m )> TOARCIAN (f) 1:10 000 000 -l Secondary direction of m clastic influx c --- J) o - o- O-misopach -u m )> Alternating marine and intermediate z C=:JShallow marine environment environmentsl Conlinental evironment [-- -_ -::._[ Claystone, shale 200 Maximal thickness (m) L] (fluvial, deltaic lacustrine, marshy) -u r lntermediate environment Alternating intermediate and r---l r---l Limestene "- Present extent ~ (paralic, brackish-lagoonal, tidal) L____.d conlinental environments a 01 ~ ~ b a - proved, b- supposed o Alternating marine and Ooids of Fe-oxides/ Boundary between areas of different "'U J) ~ Denudation areas Lc,______j C=:J ~ s: intermediate environments ~ -hydroxides palaeogeographicalcondi tions r r---l Conlinental environment (fluvial, Main direction of ~ c=J Sandstone c> Carpathian front m L____.d deltaic, lacustrine, marshy) clastic influx ~ /' CXl \.0 \.D N 16' ./."- • \20' 28' 32'

:{..;·, l ,r

)>

G) JJ G) m !:: (f) )> z o m / z o l JJ / Bohe r \ z \ ...__ G) \ l

AALENIAN 1:10 000 000 Secondary direction of - clastic influx

c::=JShallow marine environment - o- o-m isopach

Jl lntermediate environment [:=:=JSandstone 200 Maximal thickness (m) L___j (paralic, brackish-lagoonal, tida!)

Alternating marine and L 1 _L _L_ Presentextent

171 ~ --l ---_Clayslone, shale Ooids a b a - proved, b- supposed ~ 1ntermed1ateenwonments ~ Conlinental environment (fluvial, 8oundary belween areas of differenl -u ~ Ooids of Fe-oxidesl -hydroxides r--, ~~~~~~~~Ca lcareous marislene CJ - - - palaeogeographical condilions r L___j deltaic lacustrine, marshy) ~ q Main direction of claslic influx Carpalhian fronl m c::=JDenudation areas r:ciil Limestene ~ ~ (/) o(/) Gl m o ro Gl -< )> z o o"Tl :n )> s: z m"Tl :n )> r "Tl )> c z )> (/) z _, I m z :i! j! :n_, o "Tl _, I m BAJOCIAN m --+- Secondary direction of )> 1:10 000 000 clastic influx (/)_, m ·-o-· O-misopach c :n c::=JShallow marine environment Denudation areas 200 ss (m) o Coal Maximal thickne c::=J ~ "C m lntermediate environment Cumulalive thickness of )> r---J Sandstone (500) (paralic, brackish-lagoonal, tidal) ~ Basic extrusive rocks z L____j L_:_'_:__j Bajocian and Balhonian "C Alternating marine and r r---J r-=-=-=l Claystone, shale ~ , Present extent Ooids L____j intermediate environments a b proved upposed ~ L -=-=-=J ~ a - , b -s "Tl -u Conlinental environment (fluvial, Boundary between areas of different o ~~~~~~~~Calcareous maristene c:::::.=:JOoids of Fe-oxides/ -hydroxides r :n deltaic lacustrine, marshy) --- palaeogeographicalconditions ):>: s: Alternating intermediate and "-- II"IIl Limestene q Mai n direction of clastic influx m conlinental environments ~ Carpathian front _. ~ o 1.0 w 1.0..,.

(l

l> Q JJ Q m r en "- ~"--~ ~ l> ~~ ~ z 1',. o

9>_... m _... z -? o 9>-? JJ c ~ z o;»U' Q U'// .

BATHONIAN Secondary direction of 1:10 000 000 - clastic influx ·- o- · O·m isopach ~ Shallow marine environment ~ Denudation areas f.I.I-I.l~ Sandy limestene 200 Maximal thickness (m) lntermediate environment Cumulalive thickness of Sandslene Basic extrusive rocks (500) L:=J(paralic, brackish-lagoonal , tidal) c=J Bajocian and Balhonian Alternating marine and , "-- Present extent l~~~~~~~Clay stone, shale -'-' c:::::::JOoids a b a- proved, b -s upposed L] intermediate environments "U r Conlinental environment (fluvial, Boundary between areas of different

~ ~ Ooids of Fe-oxides/ ·hydroxides ~_:-~~~~Calcareous maristene ~ palaeogeographicalconditions deltaic lacustrine, marshy) ~ m ~ Alternating intermediate and Limestene q Main direction of clastic influx Carpathian front l_____J conlinental environments ~ ~ JURASSIC GEOLOGY AND FORAMINIFERAL FAUNAS IN THE NW PART OF THE EAST EUROPEAN PLATFORM

Ptates 12-17

Lithologic-palaeogeographical maps, thickness map, and map of Jurassic structural units produced for the International GeologicaJ Correlation Programme, IGCP Project No. 86 SOUTH-WEST BORDER OF THE EAST EUROPEAN PLATFORM

Editorial Board: K.-B. Jubitz, former German Demoeratic Republic, GDR (Project leader), J. Znosko, Poland (Vice project leader), D. Franke, GDR (Secretary) General ca-ordinator: G. Beutler, GDR Intern ational scientific ca-ordinators: O. Michelsen, G.K. Pedersen, Denmark

Authors: Former Czechoslovakia: M. Eli as Denmark: O. Michelsen Germany: F. Kockel, A. Zeiss GDR: D. Bach Netherlands: M.J.M. Bless Poland: J. Dembowska, Z. Dabrowska, T. Niemczycka Roumania: M. Lupu Sweden: E. Norling Former Union of Soviet Socialist Republics: V.G. Dulub, V. V. Glushko, A.A. Grigelis, T. I. Moysejeva, G.M. Pomyanovskaja, L.F. Romanov, L.M. Rotkyte, J.M. Sandler, I. B. Vishnyakov United Kingdom: G.A. Kirby, A. Whittaker

All the maps are inse t maps on the scale l : l O 000 000 linked to the head map of the Oxfordian l: l 500 000. Plate 12. Callovian, Middle Jurassic Plate 13. Oxfordian, Upper Jurassic Plate 14. Generalized Oxfordian thicknesses, Upper Jurassic Plate 15 . Kimmeridgian, Upper Jurassic Plate 16. Portlandian, Upper Jurassic Plate 17. Jurassic structural units

95 \.0 m /.Ci· \20' 32' 12' 16' Joq{,i;_o

ff)f EN(o~:A~ kV

)> Gl :Il Gi m r (/) )> z o m

...... z , o :Il r \ z J Gl / .... o__.,.....---.... o ( ......

CAL LOVIAN 1:10 000 000 r--J Comparatively deep part l___j of the shelf Areas with alternating Shallow part of the shelf r--J Limestone ..... Direction of transgression CJ l___j enwonments ~ Areas with inadequate knowledge Littoral plains r--J ·-o-· O-m isopach CJ l___j of lithology and environment CJ Brackish areas C:=JSands tone ~ Dolostone -'--L-'----- Present extent ~ r Main direction of clastic influx Boundary between areas of different ""' Lakes and swamps (limnic) ~---_ --~Clays tone, shale c::> CJ --- palaeogeographical conditions ~ Secondary direction of m Denudation areas ~~~~~~~~~Calcareous marlstone ---. Carpathian front CJ clastic influx ~ 1\) 16' 20.• 20' 32' :t:· l '-- ~[Y~';A ty c IAN :Il '\'. )> (/J (/J f:l o l G) (/ m o il or rv G) -< )> z o o-n :Il )> zs: -n m :Il )> r

c~ z )> (/J z -i I \', m __..;\'-.:.'o....._ z :;;: \ "! ' ...... ~ ' :Il /,\ ~1 ' -i ...... / \ ' o -n -i I m m OXFORDIAN q Main direction of clastic influx )> 1:10 000 000 (/J Shallow part of the shelf Secondary direction of -i c=J m clastic influx c with knowedge -- :Il Litteral plains Areas inadequate l L t /D t c=J ~ ~ 0 1 Direction of transgression o L_____j of lithology and environment l mes one os one ~ ~ "U m )> 0 0 Sandy limestene Brackish areas : ° Conglamerate l 0 00 l ~ O-m isopach z c=J Oolitic limestene ·-o-· ~ "U r Lakes and swamps (limnic) Sandstone [:=J IYYYYlBasic extrusive rocks ..L..L..L_L_ Present extent ~ ~ -n "'U o Boundary between areas of different :Il e~~:~~~i~~e:~eas~---=._-=--1 Claystone, shale Anhydrite, gypsum r [Il ~ s: ~ palaeogeographical conditions ~ ILJ Areas with alternating environments ~~~~~~~~~Calcareous marlstone ------· Synsedimentary fault Carpathian front m ~ ...... w w '-l \D 00 32 " 'O~ l l 6 . ~«·.• 120" l ' 2 " ~- l)" {./<;:i 1 ., • . F . }Y·· r-..., -::::~y-- /1 " :V;SJ~~~o / c "1.~;;;.0 S C A N D\1A N " \ ::r \ Grampian \ \p\. ) ~ _!Ygh 0\ ., f 56" "' ~~ (> /l;1, /

,.... / f,',, l .9/' '- - - - 100 ~ 1 O' o l -- \ -2oo, )> oo.r~_o.:;. G) "". "'" :Il /-, ] ? !.l N G) / l\ ~ m \. z ..... ' ..... o ~" " m ' " '~o, ' z ,_o ..... " o l ....., " " ..... :Il ( ~ " l (o','~ \. > ", 'z " " _) '\ 'j ",_;\ G) \ / / o · / " '-'-- L_..._...... ' ' \ ---- 0-- ' r " ~ '\ GENERALIZED OXFORDIAN THICKNESSES 1:10 000 000

CJ o-soom ~-;go~=lsopachs (primary thickness in metres)

>500m 40- 60 Local information on thickness (in metres) -o r CJ Denudation areas ~ Carpathian front ~m

""" ,v) 12' 16' 4:· 20' 28 ' \ 32' \~ X' ~o l <... c :Il /-"\;}) fi"Nt(o~:~& )> (/) ~ (") 1/ ~(/ G) ~L oU m o ro G) -< )> z o o'Tl :Il )> s: z 'Tl m :Il )> r 'Tl )> c z )> (/) z __, I m z :;;: -u )> :Il__, o 'Tl __, I m m )> KIMMERIDGlAN (/) 1:10 000 000 __, m CJ Comparatively deep part of the shelf c o:Il CJ Shallow part of the shelf [=:=J Sandstone ~ Anhydrite, gypsum -u m ~ )> z Litteral plains q Main direction of clastic influx 4oo Maximal thickness (m) CJ j·=--=--=-1Siltstone -u r Secondary direction of Brackish areas j-::_-_-::_j Claystone, shale ~ ..L..J..__J___j Present extent ~ CJ clastic influx -o o'Tl Boundary between areas of different r :Il Denudation areas ~~~~~~~~~Ca lcareous maristene Direction of transgression s: CJ ~ palaeogeographical conditions m~ Areas with inadequate knowledge r---1 O-misopa ch ...... F:r: :r:k J[J[ j Limestene l Dalostene --o- · Carpathian front L___j of lithology and environment ~ U1 lO lO A. GRIGELIS AND E. NORLING PLATE 16

~'f](_ < ·-'---

0 <::( c .Q C\J - ~ ~ I U) ~ U) c

N J}// '­ ~~- CA. AJ c Q :Il f )> (/) o(/) 56" Gl m t; er o .--- t 0 i/ Gl -< )> / \ / z ' \ o / 'Tl l / o :Il l ././ )> \ -./ s: ,....____ _....,.,... z - 'Tl m :Il Up R -'- B \A S l N )> .--- '\ ~ \ o"'/)'>:..__ c z ...... ~" )> "-- (/) ' z ...... -i I ...... m v z .fr<; ...... :;E l/) . ' ...... l JURASSIC STRUCTURAL UNITS (/) -i 1:10 000 000 m c :Il o 'U -- , m )> ( J Basin z '--~ 'U --, .--- ...... ( ___ 1 High , Massit ~ 'Tl r:IJ-u o Carpathian front ~s: ~ "'-! m

-...,J o

SGU Sveriges Geologiska Undersökning ISSN 1103-3 363 Box 670 ISBN 91-7158-621-0 (Sweden) 751 28 UPPSALA ISBN 9986-615-21-6 (Lithuania) - , .. ,. , , ·· ••----1- 1nnn