Labeo Lunatus) Ecological Risk Screening Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Rainbow Sharkminnow (Epalzeorhynchos Frenatum) ERSS
Rainbow Sharkminnow (Epalzeorhynchos frenatum) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, June 2012 Revised, November 2018 Web Version, 2/1/2019 Photo: Drachenschwertträger36/Wikimedia. Licensed under Creative Commons BY-SA 2.0 Germany. Available: https://commons.wikimedia.org/wiki/File:Z%C3%BCgelfransenlipper.jpg. (November 8, 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Asia: Mekong, Chao Phraya and Xe Bangfai basins [Kottelat 1998] and Maeklong basin [Yang and Winterbottom 1998].” 1 “[In Cambodia:] Occurs in the Mekong River [Kottelat 1998]. Known from Tonlé Sap and Phnom Penh [Kottelat 1985].” “[In Laos:] Occurs in the Mekong and the lower Xe Bangfai [Kottelat 1998]. Found in Ban Hang Khone, a village on an island in the middle of the mainstream Mekong River just below the Great Khone Waterfalls in Khong District, Champasak Province [Baird 1998].” “[In Thailand:] Occurs in the Maeklong [Vidthayanon et al. 1997], Mekong and Chao Phraya basins [Vidthayanon et al. 1997; Kottelat 1998]. Known from Chiang Mai and the Tachin (Samut Sakhon) River [Suvatti 1981]; also from Phra Nakhon Si Ayutthaya, Nakhon Sawan, Ubon Ratchathani, Kanchanaburi, Nakhon Ratchasima, Phrae and Phitsanulok [Monkolprasit et al. 1997].” From Vidthayanon (2012): “It has also been reported from Viet Nam.” Status in the United States Tuckett et al. (2017) caught 1 individual of Epalzeorhynchos frenatum in the wild in Florida but within 500m of an aquaculture facility. According to Chapman et al. (1994), Epalzeorhynchos frenatum (listed as Labeo frenatus) was imported to the United States for the ornamental trade in 1992. -
FEEDING ECOLOGY of Pachypterus Atherinoides (Actinopterygii; Siluriformes; Schil- Beidae): a SMALL FRESHWATER FISH from FLOODPLAIN WETLANDS of NORTHEAST INDIA
Croatian Journal of Fisheries, 2020, 78, 105-120 B. Gogoi et al. (2020): Trophic dynamics of Pachypterus atherinoides DOI: 10.2478/cjf-2020-0011 CODEN RIBAEG ISSN 1330-061X (print) 1848-0586 (online) FEEDING ECOLOGY OF Pachypterus atherinoides (Actinopterygii; Siluriformes; Schil- beidae): A SMALL FRESHWATER FISH FROM FLOODPLAIN WETLANDS OF NORTHEAST INDIA Budhin Gogoi1, Debangshu Narayan Das2, Surjya Kumar Saikia3* 1 North Bank College, Department of Zoology, Ghilamara, Lakhimpur, Assam, India 2 Rajiv Gandhi University, Department of Zoology, Fishery and Aquatic ecology Laboratory, Itanagar, India 3 Visva Bharati University, Department of Zoology, Aquatic Ecology and Fish Biology Laboratory, Santiniketan, Bolpur, West Bengal, India *Corresponding Author, Email: [email protected] ARTICLE INFO ABSTRACT Received: 12 November 2019 The feeding ecology of Pachypterus atherinoides was investigated for Accepted: 4 May 2020 two consecutive years (2013-2015) from floodplain wetlands in the Subansiri river basin of Assam, North East India. The analysis of its gut content revealed the presence of 62 genera of planktonic life forms along with other animal matters. The organization of the alimentary tract and maximum Relative Mean Length of Gut (0.511±0.029 mm) indicated its carnivorous food habit. The peak gastro-somatic index (GSI) in winter-spring seasons and summer-rainy seasons indicated alteration of its feeding intensity. Furthermore, higher diet breadth on resource use (Levins’ and Hurlbert’s) with zooplankton compared to phytoplankton and Keywords: total plankton confirmed its zooplanktivore habit. The feeding strategy Diet breadth plots also suggested greater preference to zooplankton compared to Feeding strategy phytoplankton. The organization of its gill rakers specified a secondary Pachypterus atherinoides modification of gut towards either carnivory or specialized zooplanktivory. -
Evidence of Hidden Diversity and Taxonomic Conflicts in Five Stream Fishes from the Eastern Zimbabwe Highlands Freshwater Ecoregion
A peer-reviewed open-access journal ZooKeys 768: 69–95Evidence (2018) of hidden diversity and taxonomic conflicts in five stream fishes... 69 doi: 10.3897/zookeys.768.21944 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion Albert Chakona1,2, Wilbert T. Kadye2, Taurai Bere3, Daniel N. Mazungula1,2, Emmanuel Vreven4,5 1 South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, South Africa, 6140 2 Department of Ichthyology and Fisheries Science, Rhodes University, P.O. Box 94, Grahamstown, South Africa, 6140 3 School of Wildlife, Ecology and Conservation, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi, Zimbabwe 4 Royal Museum for Central Africa, Section of Vertebrates, Ichthyology, Leuvensesteenweg 13, 3080, Tervuren, Belgium 5 KU Leuven, Department of Biology, Laboratory of Biodiversity and Evolutio- nary Genomics, Deberiotstraat 32, 3000 Leuven, Belgium Corresponding author: Albert Chakona ([email protected]) Academic editor: N. Bogutskaya | Received 30 October 2018 | Accepted 25 April 2018 | Published 19 June 2018 http://zoobank.org/9621930C-8C43-40D0-8554-684035E99FAA Citation: Chakona A, Kadye WT, Bere T, Mazungula DN, Vreven E (2018) Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion. ZooKeys 768: 69–95. https://doi.org/10.3897/zookeys.768.21944 Abstract -
Ornamental Fish Species Potentials of Ikpa River in Akwa Ibom State, Nigeria
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.6, 2013 Ornamental Fish Species Potentials of Ikpa River in Akwa Ibom State, Nigeria. Imaobong Emmanuel Ekpo Department of Fisheries and Aquatic Environmental Management, University of Uyo, P. M. B. 1017, UYO – 520001, Akwa Ibom State – Nigeria. Corresponding address: [email protected] ; +234-8026073996. Abstract Fish species were investigated for 12 calendar months from March 2009 – February 2010 forthnightly using traps, gillnets and cast nets from three sampling stations in Ikpa River. Ornamental fish species were sorted out from the pooled samples. The findings revealed that of the 2307 fish specimens sampled, 1074 specimens made up of 38 species and 19 families were of indigenous ornamental fish. The highest contributing family in terms of number of species is Cichlidae (10 species) whereas Schilbeidae (593 specimens; 55.21%) is the highest contributor in terms of total number of specimens sampled. This is followed by Mochokidae and Mormyridae with 4 species each and Cichlidae with 158 specimens (14.70%). At the species level, the highest contributor is Physalia pellucida (577 specimens; 53.72%) and is followed by Erpetoichthys calabaricus (60 specimens; 5.59%). The least contributors were Heterobranchus bidorsalis, Periophthalmus barbarus and Pelvicachromis pulcher (1 specimen; 0.09%). Twelve families recorded only one species each. These great potentials of ornamental fish have been left unexploited and hence, undeveloped. -
Phylogeny of the Damselfishes (Pomacentridae) and Patterns of Asymmetrical Diversification in Body Size and Feeding Ecology
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430149; this version posted February 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology Charlene L. McCord a, W. James Cooper b, Chloe M. Nash c, d & Mark W. Westneat c, d a California State University Dominguez Hills, College of Natural and Behavioral Sciences, 1000 E. Victoria Street, Carson, CA 90747 b Western Washington University, Department of Biology and Program in Marine and Coastal Science, 516 High Street, Bellingham, WA 98225 c University of Chicago, Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, 1027 E. 57th St, Chicago IL, 60637, USA d Field Museum of Natural History, Division of Fishes, 1400 S. Lake Shore Dr., Chicago, IL 60605 Corresponding author: Mark W. Westneat [email protected] Journal: PLoS One Keywords: Pomacentridae, phylogenetics, body size, diversification, evolution, ecotype Abstract The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages with ecological and economic importance for coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 330 of the 422 damselfish species. -
Fish, Various Invertebrates
Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations ................................................. -
Chromis Katoi, a New Species of Damselfish from the Izu Islands, Japan, with a Key to Species in the Chromis Notata Species Complex (Perciforms: Pomacentridae)
aqua, International Journal of Ichthyology Chromis katoi, a new species of damselfish from the Izu Islands, Japan, with a key to species in the Chromis notata species complex (Perciforms: Pomacentridae) Hiroki Iwatsubo1 and Hiroyuki Motomura2* 1) Kagoshima Museum of Aquatic Biodiversity, Kagoshima MS Building, 11-21 Nishisengoku, Kagoshima 892-0847, Japan 2) Kagoshima University Museum, 1-21-30 Korimoto, Kagoshima 890-0065, Japan *Corresponding author: E-mail: [email protected] Received: 09 May 2018 – Accepted: 31 May 2018 Keywords Schwanzflosse bei erwachsenen Tieren (im Gegensatz zu Western Pacific Ocean, damselfishes, new species, einem breiten, waagerechten Band, das beide Lappen der Chromis kennensis, Chromis notata, Chromis pura, Chromis Schwanzflosse bei notata aufweisen), die gelbe Farbe des yamakawai, Chromis westaustralis ganzen Körpers bei Jungtieren (im Gegensatz zum gräulichen bis bräunlichen Farbton während des ganzen Abstract Lebens bei notata); außerdem hat die neue Art weniger we- Chromis katoi n. sp., a new damselfish (Pomacentridae) iche Rückenflossenstrahlen, mehr röhrenförmige Seiten- belonging to the Chromis notata species complex, is de- linien-Schuppen, Brustflossenstrahlen und Kiemen- scribed on the basis of 11 specimens collected at a depth of blättchen sowie eine größere Rumpftiefe und Prä- 18 m off Hachijo Island, Izu Islands, Japan. The new Analflossenlänge. Angefügt ist ein Bestimmungsschlüssel species is similar to C. notata in having an indistinct white für die Arten des C.-notata-Komplexes. blotch at the end of the dorsal-fin base, and 4 or 5 and 11 or 12 scale rows above and below the lateral line, respec- Sommario tively, but differs in having the spinous portion of the dor- Chromis katoi n. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Parasitofauna of Five Freshwater Fishes in a Nigerian Freshwater Ecosystem
Croatian Journal of Fisheries, 2014, 72, 17 – 24 View metadata, citation and similar papers at core.ac.uk V. C. Ejere et al.: Parasites of Fish in the Warribrought River to you by CORE http://dx.doi.org/10.14798/72.1.682 CODEN RIBAEG ISSN 1330-061X PARASITOFAUNA OF FIVE FRESHWATER FISHES IN A NIGERIAN FRESHWATER ECOSYSTEM Vincent Chikwendu Ejere 1, Oscar Ifeanyi Aguzie 1, Njoku Ivoke 1, Felicia Nkechi Ekeh 1, Ngozi Evelyn Ezenwaji 1, Uwakwe Simon Onoja 2, Joseph Effiong Eyo 1* 1 Department of Zoology and Environmental Biology, P.O. Box 3146, University of Nigeria, Nsukka, Enugu State, Nigeria 2 Department of Home Sciences and Nutrition, University of Nigeria, Nsukka, Enugu State, Nigeria * Corresponding Author, E-mail: [email protected] ARTICLE INFO ABSTRACT Received: 13 May 2013 The parasitic fauna of freshwater fishes of the Warri River, Delta State, Received in revised form: 3 December 2013 Nigeria, with reference to their prevalence, intensity and differences in Accepted: 3 December 2013 metazoan parasites between fish sexes, was investigated. A total of 85 Available online: 10 December 2013 fish samples comprising of 21 Tilapia zillii (Cichlidae: Perciformes), 23 Syn- odontis clarias (Mochokidae: Siluriformes), 23 Chrysichthys nigrodigitatus (Claroteidae: Siluriformes), 16 Hepsetus odoe (Hepsetidae: Characiformes) and 2 Clarias anguillaris (Clariidae: Siluriformes) collected from the Warri River, Delta State, Nigeria, were subjected to parasitological examination. The overall metazoan parasite prevalence was 32.9%. The metazoan para- sites recovered were mainly the acanthocephalans: Neoechinorhynchus prolixum , Pomphorhynchus spp., Acanthocephalus spp. and unidenti- fied acanthocephalan, and nematodes: Camallanus polypteri, Capillaria pterophylli, C. -
Meristic and Morphometric Characteristics of Crossocheilus Diplochilus (Heckel, 1838) from the Poonch Valley of Jammu and Kashmir, India
World Journal of Zoology 9 (3): 184-189, 2014 ISSN 1817-3098 © IDOSI Publications, 2014 DOI: 10.5829/idosi.wjz.2014.9.3.8570 Meristic and Morphometric Characteristics of Crossocheilus diplochilus (Heckel, 1838) from the Poonch Valley of Jammu and Kashmir, India 1Neeraj Kumar Sharma, 22Javaid Iqbal Mir, Nitya Nand Pandey, 2Mohd. Shahbaz Akhtar, 11Amir Bashir and Ravindra Singh 1Department of Zoology, Tehri Campus, Hemwati Nandan Bahuguna Garhwal University, Tehri Garhwal-249199, India 2Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal 263136, India Abstract: The present study aims to describe the meristic and morphometric characteristics of Crossocheilus diplochilus from a tributary of Indus River basin, India. Altogether 41 specimens ranging from 10.0 - 17.0 cm total length (TL) and 12.16 - 41.22 g body weight (BW) were used for the study of the morphometric and meristic characteristics using different local fishing gears. The morphometric characteristics on the head express greater variation in head height (SD=7.46) than those from the body in pre-anal fin length (SD=4.14). The highly correlated body parameter in relation to total length was standard length (r=0.996) and distance from anal fin to caudal fin base was found least correlated (r=0.804) and strong correlations were observed between head length and pre-orbital length (r=0.931) and least correlation between head length and head height (r=0.829). Even though the values of correlation coefficient (r) vary between 0.804 (distance from anal fin to caudal fin base) and 0.996 (standard length), they are all strongly significant (P<0.001). -
IN Lake KARIBA ~As Development Ad Ndon)
• View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons THE A leA JOU L OF (Afr. J Trop. Hydrobiol. Fish) Yo. 1 1994 ASPECTS OF THE BIOLOGY OF THE lAKE TANGANYIKA SARDINE, LIMNOTHRISSA n illustrated key to the flinji. (Mimeographed MIODON (BOULENGER), IN lAKE KARIBA ~as Development Ad ndon). R. HUDDART ision des Synodontis Kariba Research Unit, Private Bag 24 CX, CHOMA, Zambia. e Royal de I'Afrique 'en, Belgium. 500p. Present address:- ~). The ecology of the 4, Ingleside Grove, LONDON, S.B.3., U.K. is (Pisces; Siluoidea) Nigeria. (Unpublished ABSTRACT o the University of Juveniles of U11lnothrissa 11liodon (Boulenger) were introduced into the man-made Lake Kariba in ngland). 1967-1968. Thirty months of night-fishing for this species from Sinazongwe, near the centre of the Kariba North bank. from 1971 to 1974 are described. Biological studies were carried out on samples of the catch during most of these months. Limnological studies were carried out over a period of four months in 1973. Li11lnothrissa is breeding successfully and its number have greatly increased. [t has reached an equilibrium level of population size at a [ower density than that of Lake Tanganyika sardines, but nevertheless is an important factor in the ecology of Lake Kariba. The growth rate, size at maturity and maximum size are all less than those of Lake Tanganyika Li11lnothrissa. A marked disruption in the orderly progression of length frequency modes occurs in September, for which the present body of evidence cannot supply an explanation. INTRODUCTION light-attracted sardines in Lake Kariba were The absence of a specialised, plankti tested in 1970 and early 1971.