CHEMICAL HERITAGE FOUNDATION R. VICTOR JONES Transcript of An
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
When Is a Microprocessor Not a Microprocessor? the Industrial Construction of Semiconductor Innovation I
Ross Bassett When is a Microprocessor not a Microprocessor? The Industrial Construction of Semiconductor Innovation I In the early 1990s an integrated circuit first made in 1969 and thus ante dating by two years the chip typically seen as the first microprocessor (Intel's 4004), became a microprocessor for the first time. The stimulus for this piece ofindustrial alchemy was a patent fight. A microprocessor patent had been issued to Texas Instruments, and companies faced with patent infringement lawsuits were looking for prior art with which to challenge it. 2 This old integrated circuit, but new microprocessor, was the ALl, designed by Lee Boysel and used in computers built by his start-up, Four-Phase Systems, established in 1968. In its 1990s reincarnation a demonstration system was built showing that the ALI could have oper ated according to the classic microprocessor model, with ROM (Read Only Memory), RAM (Random Access Memory), and I/O (Input/ Output) forming a basic computer. The operative words here are could have, for it was never used in that configuration during its normal life time. Instead it was used as one-third of a 24-bit CPU (Central Processing Unit) for a series ofcomputers built by Four-Phase.3 Examining the ALl through the lenses of the history of technology and business history puts Intel's microprocessor work into a different per spective. The differences between Four-Phase's and Intel's work were industrially constructed; they owed much to the different industries each saw itselfin.4 While putting a substantial part ofa central processing unit on a chip was not a discrete invention for Four-Phase or the computer industry, it was in the semiconductor industry. -
Readingsample
Springer Series in Materials Science 106 Into The Nano Era Moore's Law Beyond Planar Silicon CMOS Bearbeitet von Howard Huff 1. Auflage 2008. Buch. xxviii, 348 S. Hardcover ISBN 978 3 540 74558 7 Format (B x L): 15,5 x 23,5 cm Gewicht: 725 g Weitere Fachgebiete > Technik > Elektronik > Mikroprozessoren Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 2 The Economic Implications of Moore’s Law G.D. Hutcheson 2.1 Introduction One hundred nanometers is a fundamental technology landmark. It is the demarca- tion point between microtechnology and nanotechnology. The semiconductor indus- try crossed it just after the second millennium had finished. In less than 50 years, it had come from transistors made in mils (one-thousandth of an inch or 25.4 mi- crons); to integrated circuits which were popularized as microchips; and then as the third millennium dawned, nanochips. At this writing, nanochips are the largest single sector of nanotechnology. This, in spite of many a nanotechnology expert’s predic- tion that semiconductors would be dispatched to the dustbin of science – where tubes and core memory lie long dead. Classical nanotechnologists should not feel any dis- grace, as pundits making bad predictions about the end of technology progression go back to the 1960s. Indeed, even Gordon Moore wondered as he wrote his clas- sic paper in 1965 if his observation would hold into the 1970s. -
UW EE Professional Masters Program To
Electrical Engineering Fall 2007 The ntegrator In this issue UW EE Professional Masters Program To Dean’s Message 2 Chair’s Message 2 Commence In 2008 New Faculty 3 UW EE is pleased to announce the availability of an evening professional master’s degree Damborg Retires 3 in electrical engineering. The Professional Masters Program (PMP) is designed primarily Parviz Wins TR35 4 for the working professional employed locally in the Puget Sound to allow students the flexibility of working while pursuing an MSEE. Classes will be offered in the evening on In Memory 4 the Seattle campus and are scheduled to begin winter quarter 2008. “For the first time, Student Awards 5 the UW MSEE degree will be available in an evening format,” says Professor and Associ- New Scholarship 5 ate Chair for Education, Jim Ritcey. “The addition of an MS degree on your resume can be critical when seeking new opportunities.” Alumni Profile 6 Class Notes 7 Based on a comprehensive marketing survey carried out by UW Office of Educational Outreach, the PMP will initially focus on four curriculum areas. These include Controls, Electromagnetics, Signal and Image Process- Earn a MSEE In the Evening ing, and Wireless Communications. As the program matures, additional topic areas will Considered getting a MSEE but can’t quit your job? UW be available to PMP students. The program EE’s Professional Master’s Program allows you to keep your will meet the same high standard as the full- knowledge up-to-date in this fast moving field by working time degree, although the course content will vary. -
Transistors to Integrated Circuits
resistanc collectod ean r capacit foune yar o t d commercial silicon controlled rectifier, today's necessarye b relative .Th e advantage lineaf so r thyristor. This later wor alss kowa r baseou n do and circular structures are considered both for 1956 research [19]. base resistanc r collectofo d an er capacity. Parameters, which are expected to affect the In the process of diffusing the p-type substrate frequency behavior considerede ar , , including wafer into an n-p-n configuration for the first emitter depletion layer capacity, collector stage of p-n-p-n construction, particularly in the depletion layer capacit diffusiod yan n transit redistribution "drive-in" e donophasth f ro e time. Finall parametere yth s which mighe b t diffusion at higher temperature in a dry gas obtainabl comparee ear d with those needer dfo ambient (typically > 1100°C in H2), Frosch a few typical switching applications." would seriously damag r waferseou wafee Th . r surface woul e erodedb pittedd an d r eveo , n The Planar Process totally destroyed. Every time this happenee dth s e apparenlosexpressiowa th s y b tn o n The development of oxide masking by Frosch Frosch' smentiono t face t no , ourn o , s (N.H.). and Derick [9,10] on silicon deserves special We would make some adjustments, get more attention inasmuch as they anticipated planar, oxide- silicon wafers ready, and try again. protected device processing. Silicon is the key ingredien oxids MOSFEr it fo d ey an tpave wa Te dth In the early Spring of 1955, Frosch commented integrated electronics [22]. -
Food Fight at Los Altos High
The Joye of surgery Doctor develops alternative to open-leg bypass HEALTH&FITNESS | P.25 OCTOBER 12, 2007 VOLUME 15, NO. 40 INSIDE: WEEKEND | PAGE 18 650.964.6300 MountainViewOnline.com Builders Trustees should help put foreign tenants language relocate, on table MV WHISMAN VOTES EPC says TO INCLUDE IDEA IN ITS STRATEGIC GOALS By Daniel DeBolt By Susan Hong he Environmental Planning Commission recommended fter an hour-long debate Tlast Wednesday that devel- late last week, the opers take on more of the burden AMountain View Whis- of relocating tenants of low income man school board decided to apartment buildings slated for rede- formalize its interest in explor- velopment. ing foreign language instruc- The recommendation comes tion — a first step which could after controversial tenant reloca- eventually lead to the district tion efforts at 291 Evandale Ave., HARDY WILSON teaching subjects like Manda- where 64 low income households Schoolchildren admire a pumpkin grown in Huff Elementary Schoo’s garden. rin Chinese to its elementary are being evicted to make way for school students. 144 condos priced above $500,000. Technically, the move means The City Council decided to use so- language will be added to the called BMR funds — earmarked Huff kids grow their own Great Pumpkin district’s six strategic goals indi- to create new below-market-rate cating interest in a district-wide housing — to help relocate those GARDEN CLUB RAISES 319-POUND BEAUTY, NAMES IT ‘FRANK’ foreign language program. The tenants. exact wording and placement The hitch, however, is that tenants By Theresa Condon party last week, demonstrating in. -
Copyrighted Material
pter O ha n C e An Historic Overview of Venture Capitalism • Those who cannot remember the past are condemned to repeat it. —George Santayana Why is an historical overview of VC important? Because history does in fact repeat itself, and a study of history allows us to frame an understanding of the present and the future. The playersCOPYRIGHTED and the investment climate MATERIAL change, but the entrepreneur’s innate instinct to risk capital for a return is no different today from what it was when John D. Rockefeller became America’s first billionaire in 1900. When Andrew c01.indd 1 10-12-2013 8:50:11 [2] The Little Book of Venture Capital Investing Carnegie joined forces with his childhood friend, Henry Phipps, to form Carnegie Steel in 1892, they were driven by the same conviction to improve the status quo as are the idealistic dream chasers of the twenty-first century. It was these early trailblazers who paved the way and developed the techniques that have laid the foundation for VC as we know it today. Arguably, historians will debate the nature of history and its usefulness. This includes using the discipline as a way of providing perspective on the problems and opportu- nities of the present. I believe it to be an important tool in providing a systematic account and window to the future. It is patently dishonest and irresponsible to perpetuate the popular mythology that those who created great wealth in America are to be despised and that there are no useful les- sons to be learned from an objective, historical review of their contributions to the subject at hand. -
HOW DID SILICON VALLEY BECOME SILICON VALLEY? Three Surprising Lessons for Other Cities and Regions
HOW DID SILICON VALLEY BECOME SILICON VALLEY? Three Surprising Lessons for Other Cities and Regions a report from: supported by: 2 / How Silicon Valley Became "Silicon Valley" This report was created by Rhett Morris and Mariana Penido. They wish to thank Jona Afezolli, Fernando Fabre, Mike Goodwin, Matt Lerner, and Han Sun who provided critical assistance and input. For additional information on this research, please contact Rhett Morris at [email protected]. How Silicon Valley Became "Silicon Valley" / 3 INTRODUCTION THE JOURNALIST Don Hoefler coined the York in the chip industry.4 No one expected the term “Silicon Valley” in a 1971 article about region to become a hub for these technology computer chip companies in the San Francisco companies. Bay Area.1 At that time, the region was home to Silicon Valley’s rapid development offers many prominent chip businesses, such as Intel good news to other cities and regions. This and AMD. All of these companies used silicon report will share the story of its creation and to manufacture their chips and were located in analyze the steps that enabled it to grow. While a farming valley south of the city. Hoefler com- it is impossible to replicate the exact events that bined these two facts to create a new name for established this region 50 years ago, the devel- the area that highlighted the success of these opment of Silicon Valley can provide insights chip businesses. to leaders in communities across the world. Its Silicon Valley is now the most famous story illustrates three important lessons for cul- technology hub in the world, but it was a very tivating high-growth companies and industries: different place before these businesses devel- oped. -
Oral History of Jay Last
Oral History of Jay Last Interviewed by: Craig Addison Recorded: September 15, 2007 Beverly Hills, California CHM Reference number: X4158.2008 © 2007 Computer History Museum Oral History of Jay Last Craig Addison: Jay, could you start off by talking about where you were brought up and your education experience? Jay Last: Sure, I was born in Western Pennsylvania and went to school there in a small steel mill town. My father worked in the steel mill there and I was born in 1929 -- the week the stock market crashed -- and so in my first decade steel was a pretty tough industry to be involved with from my father’s point-of- view. So my first 10 years were the Depression and after that there was five years of war so by the time I was 15 I realized I had seen nothing but depressions and wars. I got a good high school education in this small town and then went to the University of Rochester and got a Bachelor’s degree in optics and had a very heavy physics training there also which gave me the background, then, to go on to MIT and get a doctorate in solid state physics. Solid state physics was a relatively new field then. All of the technical developments from the 1930s and the things happening in the war just had this vast amount of physical phenomenon that were available for use in various commercial products and improving whatever we were doing. So my timing was just perfect. I got an education in solid state physics…so I knew the background of the transistor field. -
Publications Core Magazine, 2007 Read
CA PUBLICATIONo OF THE COMPUTERre HISTORY MUSEUM ⁄⁄ SPRINg–SUMMER 2007 REMARKABLE PEOPLE R E scuE d TREAsuREs A collection saved by SAP Focus on E x TRAORdinARy i MAGEs Computers through the Robert Noyce lens of Mark Richards PUBLISHER & Ed I t o R - I n - c hie f THE BEST WAY Karen M. Tucker E X E c U t I V E E d I t o R TO SEE THE FUTURE Leonard J. Shustek M A n A GI n G E d I t o R OF COMPUTING IS Robert S. Stetson A S S o c IA t E E d I t o R TO BROWSE ITS PAST. Kirsten Tashev t E c H n I c A L E d I t o R Dag Spicer E d I t o R Laurie Putnam c o n t RIBU t o RS Leslie Berlin Chris garcia Paula Jabloner Luanne Johnson Len Shustek Dag Spicer Kirsten Tashev d E S IG n Kerry Conboy P R o d U c t I o n ma n ager Robert S. Stetson W E BSI t E M A n AGER Bob Sanguedolce W E BSI t E d ESIG n The computer. In all of human history, rarely has one invention done Dana Chrisler so much to change the world in such a short time. Ton Luong The Computer History Museum is home to the world’s largest collection computerhistory.org/core of computing artifacts and offers a variety of exhibits, programs, and © 2007 Computer History Museum. -
BOOK PROPOSAL a NATION of INNOVATORS: by Gregory
BOOK PROPOSAL A NATION OF INNOVATORS: The Social, Cultural, and Economic Pioneers who Forged the American Century By Gregory Mitrovich Saltzman Institute of War and Peace Studies Columbia University Mitrovich Proposal Synopsis Is American preeminence doomed? Hundreds of books and thousands of articles have argued that the United States’ position as global leader is under threat by rising authoritarian nations—notably China—and the legacy of the Donald Trump presidency. TURNING POINTS challenges this consensus, demonstrating that throughout history, American liberal democracy has prevailed even under threat because of the unique strengths that first made the nation great: Its egalitarian society and innovative, risk-taking, national culture. TURNING POINTS makes this case by examining six crises that could have derailed America’s rise, yet did not—because its citizens enjoyed the liberty to find solutions where the federal government had failed. TURNING POINTS will begin with America’s first crisis point: Its brutal early years that the Colonists survived by creating a society that valued risk-taking, individual initiative and innovation, laying the foundation for the American liberal democracy. It will discuss the build-up to the Civil War when abolitionists led a crusade to convince America’s political leaders to end slavery—demonstrating to the world America’s sincere belief in the democratic system. During Reconstruction, while the federal government was paralyzed by incompetence and scandal, a group of ruthless business tycoons turned America into a global power. In the late 19th century, progressives reformed American labor and inspired the spread of democracy around the world. When the United States government withdrew into isolationism following World War I, private American bankers rebuilt the European financial system while American jazz musicians spread American culture, laying the foundation for American globalism after the Second World War. -
AT the INTERSECTION of OPTICS ART
AT THE INTERSECTION of OPTICS ART AN INTERVIEW WITH SILICON VALLEY PIONEER, DISTINGUISHED ART COLLECTOR, AND AUTHOR JAY LAST ’51. Interview by Peter Lennie Robert L. and Mary L. Sproull Dean of the Faculty of Arts, Sciences & Engineering and professor of brain and cognitive sciences Edited and condensed by Karen McCally ’02 (PhD) 32 ROCHESTER REVIEW September–October 2016 MAX GERBER FOR ROCHESTER REVIEW RochRev_Sept2016.indb 32 8/26/16 1:15 PM AT THE INTERSECTION of OPTICS ART THE GEOmETRY OF ART: Last, who has long favored art based on simple geometric forms, poses before a banner by Robert Indiana. The banner, displayed in Last’s beverly Hills home, is based on a 1928 painting by American modernist Charles Demuth. September–October 2016 ROCHESTER REVIEW 33 RochRev_Sept2016.indb 33 8/26/16 12:04 AM JAY LAST ’51 has had an extraordinary career in science and art. As an early leader in the development of semiconductors, he helped usher in the computer revolution. His keen interest in design and form led him to collect African art, becoming part of the first generation of Westerners to devote serious attention to the continent’s visual art traditions. In academic settings, science and art tend to dwell in separate departments, and often in different schools. But, says Last, “I don’t separate the two in my mind.” He reflected on their convergence in a memoir, African Art and Silicon Chips: A Life in Science and Art (Sierra Vista Books), published in 2015. In June, Peter Lennie, the Robert L. and Mary L. -
The Emergence of Tools Suppliers in the Semiconductor Industry Unni Pillai
The Emergence of Tools Suppliers in the Semiconductor Industry Unni Pillai (SUNY Polytechnic Institute) Abstract While the R&D intensive semiconductor tools industry has become pivotal to the advancement of technology and the growth of the downstream semiconductor chip manufacturing industry, this was not always the case. In the early stages of the industry, the chip manufacturers made their own tools in-house. Using data at the initial stages of the industry and a wealth of publicly available information from interviews with industry pioneers conducted as part of oral history projects, I examine how (i) market size (ii) intellectual property protection (iii) geographic proximity to downstream firms, influenced the process of emergence of the tools suppliers. 1. Introduction An extensive literature spanning many decades has identified a diverse array of factors that influence why a firm might buy an input or component from an outside supplier rather than make it in-house. The factors include market size, geographical concentration of downstream firms, economies of scale in production, transaction costs, asset specificity, complexity of the product, the extent of intellectual property protection, product and market uncertainty, strategic control of input market, technological change, among others.1 Although the literature has made definite progress in furthering our understanding of the determinants of vertical structure, much work remains to be done in putting forward a tractable and comprehensive theory that can explain when and why