Calibration of a Conodont Apatite-Based Ordovician 87Sr/86Sr Curve to Biostratigraphy and Geochronology: Implications for Stratigraphic Resolution

Total Page:16

File Type:pdf, Size:1020Kb

Calibration of a Conodont Apatite-Based Ordovician 87Sr/86Sr Curve to Biostratigraphy and Geochronology: Implications for Stratigraphic Resolution Geological Society of America Bulletin, published online on 30 June 2014 as doi:10.1130/B31038.1 Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution Matthew R. Saltzman1,†, Cole T. Edwards1, Stephen A. Leslie2, Gary S. Dwyer3, Jeffrey A. Bauer4, John E. Repetski5, Anita G. Harris5, and Stig M. Bergström1 1School of Earth Sciences, Ohio State University, Columbus, Ohio 43210, USA 2Department of Geology and Environmental Science, James Madison University, Harrisonburg, Virginia 22807, USA 3Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA 4Department of Natural Sciences, Shawnee State University, Portsmouth, Ohio 45662, USA 5U.S. Geological Survey, Reston, Virginia 20192, USA ABSTRACT rates of fall in 87Sr/86Sr at a maximum reso- stratigraphic correlation or radiometric age lution of ~0.5–1.0 m.y. Links between the uncertainties (Veizer et al., 1997; McArthur and The Ordovician 87Sr/86Sr isotope sea- increased rate of fall in 87Sr/86Sr beginning Howath, 2004; McArthur et al., 2012). water curve is well established and shows in the mid-late Darriwilian (Phragmodus po- The general structure of the 87Sr/86Sr seawater a decreasing trend until the mid-Katian. lonicus to Pygodus serra conodont zones) and curve for the Ordovician Period is well estab- However, uncertainties in calibration of this geologic events continue to be investigated, lished and shows falling values from ~0.7090 curve to biostratigraphy and geochronology but the coincidence with a long-term rise in near the base of the Ordovician to a minimum have made it diffi cult to determine how the sea level (Sauk-Tippecanoe megasequence of ~0.7078 in the middle Katian (Denison et al., rates of 87Sr/86Sr decrease may have varied, boundary) and tectonic events (Taconic orog- 1998; Qing et al., 1998; Shields et al., 2003; which has implications for both the strati- eny) in North America provides a plausible Young et al., 2009; McArthur et al., 2012; Fig. graphic resolution possible using Sr isotope explanation for the changing magnitude and 1A). However, the extent to which the rate of stratigraphy and efforts to model the effects 87Sr/86Sr of the riverine Sr fl ux to the oceans. fall varies during the Ordovician (Fig. 1B) is less of Ordovician geologic events. We measured well understood, and more intensive Sr isotope 87Sr/86Sr in conodont apatite in North Ameri- INTRODUCTION sampling is needed from sections that contain can Ordovician sections that are well studied index fossils or well-dated volcanic ash beds. for conodont biostratigraphy, primarily in The strontium isotopic (87Sr/86Sr) composi- The maximum rate of fall in 87Sr/86Sr has been Nevada, Oklahoma, the Appalachian re- tion of the ocean is homogeneous at any given estimated at ~5.0–10.0 × 10–5 per m.y. in the gion, and Ohio Valley. Our results indicate time in the geologic past because of the long Darriwilian and Sandbian Stages of the Middle that conodont apatite may provide an accu- oceanic residence time of strontium (~2–4 m.y.) to Late Ordovician (Shields et al., 2003; Young rate medium for Sr isotope stratigraphy relative to oceanic mixing times (~103 yr; Elder- et al., 2009). These authors linked the high rate and strengthen previous reports that point fi eld, 1986; Palmer and Edmond, 1989; Veizer, of fall to unusual tectonic activity and sea-level toward a signifi cant increase in the rate of 1989; McArthur, 1994; Davis et al., 2003). Sea- changes that affected Ordovician Sr fl uxes. fall in seawater 87Sr/86Sr during the Middle water 87Sr/86Sr varies over geologic time (Fig. Although parts of the Middle to Late Ordovi- Ordovician Darriwilian Stage. Our 87Sr/86Sr 1A) in response to changes in the magnitude of cian clearly stand out as periods of anomalously results suggest that Sr isotope stratigraphy the riverine Sr fl ux, the 87Sr/86Sr of rock types high rates of change in 87Sr/86Sr in McArthur will be most useful as a high-resolution tool being weathered on the continents, and the fl ux et al. (2012) (Fig. 1B), these same authors cau- for global correlation in the mid-Darriwilian of Sr from seafl oor hydrothermal weathering tioned that, as with all pre-Cenozoic time inter- to mid-Sandbian, when the maximum rate of (Hodell et al., 1990; Richter et al., 1992; Ingram vals, this result should be carefully examined for fall in 87Sr/86Sr is estimated at ~5.0–10.0 × 10–5 et al., 1994; Jones et al., 1994; Banner, 2004; evidence of time-scale compression (i.e., anom- per m.y. Variable preservation of conodont Waltham and Gröcke, 2006; Young et al., 2009). alously large 87Sr/86Sr rates of change that are elements limits the precision for individual Calibration of the 87Sr/86Sr curve to biostratig- mere artifacts of poorly constrained radiometric stratigraphic horizons. Replicate conodont raphy and geochronology makes it possible to age dates or biostratigraphic correlation) before analyses from the same sample differ by an use Sr isotope stratigraphy as an independent drawing conclusions about causal factors (e.g., average of ~4.0 × 10–5 (the 2σ standard de- method to correlate rocks (Burke et al., 1982; Jurassic example in Waltham and Gröcke, 2006; viation is 6.2 × 10–5), which in the best case McArthur et al., 2001). Sr isotope stratigraphy McArthur and Wignall, 2007). scenario allows for subdivision of Ordovician is commonly applied to Mesozoic and Ceno- If observed high rates of change in the time intervals characterized by the highest zoic time periods, but efforts in the Paleozoic Middle to Late Ordovician are not drastically have been hindered by a lack of abundance of diminished with improvements in radiometric †E-mail: [email protected]. well-preserved materials and uncertainty in age dates and biostratigraphic calibration, this GSA Bulletin; Month/Month 2014; v. 1xx; no. X/X; p. 1–18; doi: 10.1130/B31038.1; 12 fi gures; 1 table; Data Repository item 2014240. For permission to copy, contact [email protected] 1 © 2014 Geological Society of America Geological Society of America Bulletin, published online on 30 June 2014 as doi:10.1130/B31038.1 Saltzman et al. (2012) shown in our Figure 1A (note that McArthur et al. [2012] also utilized bulk rock data from Gao and Land, 1991; Denison et al., 1998; Young et al., 2009; and conodont data from Ebneth et al., 2001). Although well-pre- served brachiopods composed of diagenetically resistant low-Mg calcite are generally accepted as a medium for accurate measurement of 87Sr/86Sr trends in the Ordovician and else- where in the Paleozoic (e.g., Korte et al., 2006; Van Geldern et al., 2006; Brand et al., 2012), signifi cant gaps in their availability occur in parts of the Middle to Late Ordovician. Cono- dont apatite can be extracted from virtually every marine Ordovician-aged carbonate rock and tied to the global conodont biostratigraphic zonation (Fig. 3), which is the most widely used zonation in Ordovician carbonate facies (e.g., Harris et al., 1979; Bergström, 1971, 1986; Sweet, 1984; Sweet et al., 2005; Cooper and Sadler, 2012). The use of conodont apatite as an accurate and precise medium for seawater 87Sr/86Sr stratigraphy is debated in the litera- ture because of questions about the commonly observed postmortem incorporation of signifi - cant amounts of Sr, which could derive from seawater or non-seawater sources depending on pore-water conditions (e.g., Bertram et al., 1992; Kürschner et al., 1992; Cummins and Elderfi eld, 1994; Holmden et al., 1996; Ruppel et al., 1996; Ebneth et al., 1997, 2001; Veizer Figure 1. (A) Phanerozoic 87Sr/86Sr and (B) rates of change, both et al., 1997; Qing et al., 1998; Korte et al., 2003, after McArthur et al. (2012). The curve in A is the LOWESS (locally 2004; Martin and Scher, 2004; Twitchett, 2007). weighted scatterplot smoother), which is a statistical nonparametric Similar debate surrounds use of bulk rock for Sr regression method fi t to the data sources in McArthur et al. (2012). isotope stratigraphy (e.g., Gao and Land, 1991; Ordovician study interval is highlighted with gray box. Denison et al., 1998; Young et al., 2009), and we have a separate study under way to better char- acterize accuracy and precision in fossil mate- interval, which is marked by major biologi- Oklahoma, the Ohio Valley, and Appalachian rials versus bulk rock in the Ordovician using cal and climatic changes (Trotter et al., 2008; region (Figs. 2 and 3). To calculate rates of some of the same sections analyzed in the pres- Servais et al., 2010), holds great promise for change in 87Sr/86Sr, we utilize the new Geologic ent contribution (Edwards et al., 2013). Sr isotope stratigraphy. McArthur et al. (2012) Time Scale 2012 (Cooper and Sadler, 2012). Our Direct comparisons between Ordovician calculated that when rates of 87Sr/86Sr change in results, which support use of conodont apatite as conodonts and brachiopods may be used to the Phanero zoic exceed 5.0 × 10–5 per m.y. (Fig. an accurate medium for seawater 87Sr/86Sr under assess their accuracy for seawater 87Sr/86Sr 1B), the stratigraphic resolution in these time certain circumstances, strengthen the notion that measurements. The precision (reproducibil- periods can theoretically surpass 0.1 m.y. In the Ordovician Sr isotope stratigraphy is particu- ity) of these materials, which also determines Ordovician, 0.1 m.y. resolution using Sr isotope larly effective as a high-resolution correlation their effectiveness for use in Sr isotope stratig- stratigraphy likely cannot be achieved because tool in the mid-Darriwilian to mid-Sandbian raphy, can be compared with each other but also of limitations in biostratigraphy, geochronology, Stages characterized by high rates of 87Sr/86Sr with younger periods.
Recommended publications
  • Sandbian) K-Bentonites in Oslo, Norway T ⁎ Eirik G
    Palaeogeography, Palaeoclimatology, Palaeoecology 520 (2019) 203–213 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo A new age model for the Ordovician (Sandbian) K-bentonites in Oslo, Norway T ⁎ Eirik G. Balloa, , Lars Eivind Auglanda, Øyvind Hammerb, Henrik H. Svensena a Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Pb. 1028, 0316 Oslo, Norway b Natural History Museum, University of Oslo, Pb. 1172, 0318 Oslo, Norway ARTICLE INFO ABSTRACT Keywords: During the Late Ordovician, large explosive volcanic eruptions deposited worldwide K-bentonites, including the Chronostratigraphy Millbrig and Deicke K-bentonites in North America and the Kinnekulle K-bentonite in Scandinavia. We have Sandbian-Katian boundary studied a classical locality in Oslo containing one of the most complete sections of K-bentonites in Europe. U-Pb dating In a 53 m section of Sandbian age, we discovered 33 individual K-bentonite beds, the most notable beds being Milankovitch the Kinnekulle and the upper Grimstorp K-bentonite. Magnetic susceptibility (MS) measurements on two in- Age model tervals show significant periodicity peaks interpreted as Milankovitch cycles and thus astronomically forced Kinnekulle changes in sediment supply and composition. These cycles fit remarkably well with both the expected Milankovitch periodicities for the Ordovician as well as the radiometric ages presented in this study and may represent one of the most convincing demonstrations of Milankovitch cycles from the lower Paleozoic so far. Five of the K-bentonites have been dated by high-precision chemical abrasion-thermal ionization mass spectrometry (CA-TIMS) U-Pb zircon geochronology, where the Kinnekulle K-bentonite gives an age of 454.06 ± 0.43 Ma.
    [Show full text]
  • Open-File Report No. 2008-02-18 Phase 2 Study Of
    Maryland Department of Natural Resources Resource Assessment Service MARYLAND GEOLOGICAL SURVEY Jeffrey P. Halka, Acting Director OPEN-FILE REPORT NO. 2008-02-18 PHASE 2 STUDY OF THE AREA CONTRIBUTING GROUNDWATER TO THE SPRING SUPPLYING THE A.M. POWELL STATE FISH HATCHERY, WASHINGTON COUNTY, MARYLAND by Mark T. Duigon Prepared in cooperation with the Maryland Department of Natural Resources Fisheries Service 2009 CONVERSION FACTORS AND ABBREVIATIONS The following factors may be used to convert the inch-pound units published in this report to International System (SI) units. Multiply By To obtain inch (in.) 2.54 (exact) centimeter (cm) foot (ft) 0.3048 meter (m) mile (mi) 1.609 kilometer (km) square mile (mi2) 2.590 square kilometer (km2) gallon (gal) 3.785 liter (L) cubic feet per second (ft3/s) 0.02832 cubic meters per second (m3/s) million gallons per day (Mgal/d) 3785 cubic meters per day (m3/d) ii CONTENTS Page ABSTRACT ...................................................................................................................................... 1 INTRODUCTION ............................................................................................................................ 2 Purpose and scope ....................................................................................................................... 2 Acknowledgments ....................................................................................................................... 2 HYDROLOGY AND GROUNDWATER TRACING ...................................................................
    [Show full text]
  • Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, South-West Libya
    This is a repository copy of Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, south-west Libya. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/125997/ Version: Accepted Version Article: Abuhmida, F.H. and Wellman, C.H. (2017) Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, south-west Libya. Palynology, 41. pp. 31-56. ISSN 0191-6122 https://doi.org/10.1080/01916122.2017.1356393 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, southwest Libya Faisal H. Abuhmidaa*, Charles H. Wellmanb aLibyan Petroleum Institute, Tripoli, Libya P.O. Box 6431, bUniversity of Sheffield, Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK Twenty nine core and seven cuttings samples were collected from two boreholes penetrating the Middle Ordovician Hawaz Formation in the Murzuq Basin, southwest Libya.
    [Show full text]
  • Polar Front Shift and Atmospheric CO During the Glacial Maximum of the Early Paleozoic Icehouse
    Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse Thijs R. A. Vandenbrouckea,b,c,1,2, Howard A. Armstronga,1, Mark Williamsd,e,1, Florentin Parisf, Jan A. Zalasiewiczd, Koen Sabbeg, Jaak Nõlvakh, Thomas J. Challandsa,i, Jacques Verniersb, and Thomas Servaisc aPalaeoClimate Group, Department of Earth Sciences, Durham University, Science Labs, Durham, DH1 3LE, United Kingdom; bResearch Unit Palaeontology, Department of Geology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium; cGéosystèmes, Université Lille 1, Formation de Recherche en Evolution 3298 du Centre National de la Recherche Scientifique, Avenue Paul Langevin, bâtiment SN5, 59655 Villeneuve d’Ascq Cedex, France; dDepartment of Geology, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom; eBritish Geological Survey, Kingsley Dunham Centre, Keyworth, NG12 5GG, United Kingdom; fGéosciences, Université de Rennes I, Unité Mixte de Recherche 6118 du Centre National de la Recherche Scientifique, Campus de Beaulieu, 35042 Rennes-cedex, France; gProtistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium; hInstitute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; and iTotal E&P UK Limited, Geoscience Research Centre, Crawpeel Road, Aberdeen AB12 3FG, United Kingdom Edited by Jeffrey Kiehl, National Center for Atmospheric Research, Boulder, CO, and accepted by the Editorial Board July 1, 2010 (received for review March 16, 2010) Our new data address the paradox of Late Ordovician glaciation PAL (5). A GCM experiment parameterized with the same p × under supposedly high CO2 (8 to 22 PAL: preindustrial atmo- pCO2 value, high relative sea level, and a modern equator-to-pole spheric level).
    [Show full text]
  • View of Valley and Ridge Structures from ?:R Stop IX
    GIJIDEBOOJ< TECTONICS AND. CAMBRIAN·ORDO'IICIAN STRATIGRAPHY CENTRAL APPALACHIANS OF PENNSYLVANIA. Pifftbutgh Geological Society with the Appalachian Geological Society Septembet, 1963 TECTONICS AND CAMBRIAN -ORDOVICIAN STRATIGRAPHY in the CENTRAL APPALACHIANS OF PENNSYLVANIA FIELD CONFERENCE SPONSORS Pittsburgh Geological Society Appalachian Geological Society September 19, 20, 21, 1963 CONTENTS Page Introduction 1 Acknowledgments 2 Cambro-Ordovician Stratigraphy of Central and South-Central 3 Pennsylvania by W. R. Wagner Fold Patterns and Continuous Deformation Mechanisms of the 13 Central Pennsylvania Folded Appalachians by R. P. Nickelsen Road Log 1st day: Bedford to State College 31 2nd day: State College to Hagerstown 65 3rd day: Hagerstown to Bedford 11.5 ILLUSTRATIONS Page Wagner paper: Figure 1. Stratigraphic cross-section of Upper-Cambrian 4 in central and south-central Pennsylvania Figure 2. Stratigraphic section of St.Paul-Beekmantown 6 rocks in central Pennsylvania and nearby Maryland Nickelsen paper: Figure 1. Geologic map of Pennsylvania 15 Figure 2. Structural lithic units and Size-Orders of folds 18 in central Pennsylvania Figure 3. Camera lucida sketches of cleavage and folds 23 Figure 4. Schematic drawing of rotational movements in 27 flexure folds Road Log: Figure 1. Route of Field Trip 30 Figure 2. Stratigraphic column for route of Field Trip 34 Figure 3. Cross-section of Martin, Miller and Rankey wells- 41 Stops I and II Figure 4. Map and cross-sections in sinking Valley area- 55 Stop III Figure 5. Panorama view of Valley and Ridge structures from ?:r Stop IX Figure 6. Camera lucida sketch of sedimentary features in ?6 contorted shale - Stop X Figure 7- Cleavage and bedding relationship at Stop XI ?9 Figure 8.
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]
  • U.S. Geological Survey Bulletin 1839-G, H
    Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H i i i I ' i ' i ' X- »-v l^,:^ Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia By ROBERT T. RYDER Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia By CHRYSA M. CULLATHER Chapters G and H are issued as a single volume and are not available separately U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H EVOLUTION OF SEDIMENTARY BASINS-APPALACHIAN BASIN U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging in Publication Data (revised for vol. G-H) Evoluation of sedimentary basins Appalachian basin. (U.S. Geological Survey bulletin ; 1839 A-D, G-H) Includes bibliographies. Supt. of Docs. no.:19.3:1839-G Contents: Horses in fensters of the Pulaski thrust sheet, southwestern Virginia / by Arthur P. Schultz [etc.] Stratigraphic framework of Cam­ brian and Ordovician rocks in central Appalachian basin from Morrow County, Ohio, to Pendleton County, West Virginia / by Robert T.
    [Show full text]
  • International Stratigraphic Chart
    INTERNATIONAL STRATIGRAPHIC CHART ICS International Commission on Stratigraphy Ma Ma Ma Ma Era Era Era Era Age Age Age Age Age Eon Eon Age Eon Age Eon Stage Stage Stage GSSP GSSP GSSA GSSP GSSP Series Epoch Series Epoch Series Epoch Period Period Period Period System System System System Erathem Erathem Erathem Erathem Eonothem Eonothem Eonothem 145.5 ±4.0 Eonothem 359.2 ±2.5 542 Holocene Tithonian Famennian Ediacaran 0.0117 150.8 ±4.0 Upper 374.5 ±2.6 Neo- ~635 Upper Upper Kimmeridgian Frasnian Cryogenian 0.126 ~ 155.6 385.3 ±2.6 proterozoic 850 “Ionian” Oxfordian Givetian Tonian Pleistocene 0.781 161.2 ±4.0 Middle 391.8 ±2.7 1000 Calabrian Callovian Eifelian Stenian Quaternary 1.806 164.7 ±4.0 397.5 ±2.7 Meso- 1200 Gelasian Bathonian Emsian Ectasian proterozoic 2.588 Middle 167.7 ±3.5 Devonian 407.0 ±2.8 1400 Piacenzian Bajocian Lower Pragian Calymmian Pliocene 3.600 171.6 ±3.0 411.2 ±2.8 1600 Zanclean Aalenian Lochkovian Statherian Jurassic 5.332 175.6 ±2.0 416.0 ±2.8 Proterozoic 1800 Messinian Toarcian Pridoli Paleo- Orosirian 7.246 183.0 ±1.5 418.7 ±2.7 2050 Tortonian Pliensbachian Ludfordian proterozoic Rhyacian 11.608 Lower 189.6 ±1.5 Ludlow 421.3 ±2.6 2300 Serravallian Sinemurian Gorstian Siderian Miocene 13.82 196.5 ±1.0 422.9 ±2.5 2500 Neogene Langhian Hettangian Homerian 15.97 199.6 ±0.6 Wenlock 426.2 ±2.4 Neoarchean Burdigalian M e s o z i c Rhaetian Sheinwoodian 20.43 203.6 ±1.5 428.2 ±2.3 2800 Aquitanian Upper Norian Silurian Telychian 23.03 216.5 ±2.0 436.0 ±1.9 P r e c a m b i n P Mesoarchean C e n o z i c Chattian Carnian
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Ordovician, in CH Shultz Ed, the Geology of Pennsylvania
    SCALE :ii! o 10 20 30 40 50 MI I 'i I' "i' , o 20 40 60 80 KM 41 40 ' EXPLANATION ~ l1li Ordovician rocks in subsurface Autochthonous OrdOllician rocks at surface Hamburg klippe Figure 5-1. Distribution of Ordovician sedimentary rocks In Pennsylvania west of the Martie Line (modified from Berg and others, 1980, and Pennsylvania Geological Survey, 1990). Part II. Stratigraphy and Sedimentary Tectonics CHAPTERS ORDOVICIAN ALLAN M. THOMPSON INTRODUCTION Department of Geology University of Delaware This chapter contains a summary of lithologic, Newark, DE 19716 facies, and temporal relationships of sedimentary rocks of Ordovician age in Pennsylvania west and northwest of the Martie Line (Figure 5-1). Ordovician sedimentary rocks occur only in the subsurface of northern and western Pennsylvania (Fettke, 1961; Wagner, 1966b) and crop out in cen­ tral and southeastern Pennsylvania (Figure 5-1). In central and south-central Pennsylvania, the Ridge and Valley belt contains a nearly complete Ordovician section. The Great Valley contains predominantly Lower and Middle Ordovician strata. The east-central part of the Great Valley contains allochthonous Cam­ brian to Middle Ordovician rocks of the Hamburg klippe; these rocks have been compared to the Ta­ conian allochthons of eastern New York and western New England (Rodgers, 1970; Lash and others, 1984). The Piedmont Lowland contains carbonates and shale of Early and possibly Middle Ordovician age (Gobn, 1978). Possibly coeval rocks of the Glenarm Super­ group, which occur southeast of the Martic Line (Fig­ ure 5-1), are penetratively deformed and variably metamorphosed (see Chapters 3A and 4). Some were assigned Early Ordovician ages by Berg, McInerney, and others (1986), but the evidence is equivocal.
    [Show full text]
  • (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin) Geologica Acta: an International Earth Science Journal, Vol
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España GUTIÉRREZ-MARCO, J.C.; ALBANESI, G.L.; SARMIENTO, G.N.; CARLOTTO, V. An Early Ordovician (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin) Geologica Acta: an international earth science journal, vol. 6, núm. 2, junio, 2008, pp. 147-160 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50513115004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.6, Nº 2, June 2008, 147-160 DOI: 10.1344/105.000000248 Available online at www.geologica-acta.com An Early Ordovician (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin) 1 2 1 3,4 J.C. GUTIÉRREZ-MARCO G.L. ALBANESI G.N. SARMIENTO and V. CARLOTTO 1 Instituto de Geología Económica (CSIC-UCM). Facultad de Ciencias Geológicas 28040 Madrid, Spain. Gutiérrez-Marco E-mail: [email protected] Sarmiento E-mail: [email protected] 2 CONICET-CICTERRA, Museo de Paleontología Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba Casilla de Correo 1598, 5000 Córdoba, Argentina. E-mail: [email protected] 3 INGEMMET Avenida Canadá 1740, San Borja, Lima, Peru. E-mail: [email protected] 4 Departamento de Geología, Universidad Nacional San Antonio Abad del Cusco Avda. de la Cultura 733, Cuzco, Perú ABSTRACT Late Floian conodonts are recorded from a thin limestone lens intercalated in the lower part of the San José For- mation at the Carcel Puncco section (Inambari River), Eastern Cordillera of Peru.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2018/08 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon Erathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.58 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian Bajocian 170.3 ±1.4 Givetian 1200 Pliocene 3.600 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- 2050 Burdigalian Hettangian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 27.82 Gorstian
    [Show full text]