PHS 398 (Rev. 9/04), Biographical Sketch Format Page

Total Page:16

File Type:pdf, Size:1020Kb

PHS 398 (Rev. 9/04), Biographical Sketch Format Page Principal Investigator/Program Director (Last, First, Middle): PI Name Roshan Cools BIOGRAPHICAL SKETCH Provide the following information for the key personnel and other significant contributors in the order listed on Form Page 2. Follow this format for each person. DO NOT EXCEED FOUR PAGES. NAME POSITION TITLE Cools, Roshan Professor of Cognitive Neuropsychiatry eRA COMMONS USER NAME Cools EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.) DEGREE INSTITUTION AND LOCATION YEAR(s) FIELD OF STUDY (if applicable) University of Groningen, The Netherlands M.Sc.(equiv) 1993 Experimental Psychology University of Cambridge, UK M.Phil. 1999 Experimental Psychology University of Cambridge, UK Ph.D. 2003 Experimental Psychology A. Personal Statement I have a broad background in psychology and cognitive neuroscience, with specific training and expertise in the neurochemistry of cognitive control and decision making, combining psychopharmacology, pharmacological fMRI and PET to advance our understanding of the role of the major ascending neuromodulators, such as dopamine and serotonin, in the cognitive and motivational control of behaviour. As PI or co-Investigator on several university- and NWO-funded grants, I laid the groundwork for the proposed research by establishing a key role for striatal dopamine in learning and cognitive control. B. Positions and Honors. Appointments 2002-2007 Research Fellow, University of Cambridge UK 2003-2005 Visiting Research Fellow, University of California, Berkeley 2007-present Principal Investigator, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University 2011-present Professor of Cognitive Neuropsychiatry, Dept of Psychiatry, Radboud university medical centre 2014-present Member, (Government) Advisory Council for Science and Technology Policy, NL Professional Memberships 2017 Member, VIDI award selection committee (Social Sciences), NWO, NL 2016 – present Member, Academia Europaea (Section Behavioural Sciences) 2012 – present Member, Board of the Rathenau Institute (research, debate on Science and Technology), NL 2010 & 2014 Member, Rubicon grant selection Committee (Social Sciences), NWO, NL 2011 – present Member, Advisory Council Attention and Performance, US 2012 – 2014 Contributor to Research Network “A Roadmap on Mental Health Research in Europe” 2011, 2014, 2017 Member, PI Selection Committee, Radboudumc, NL 2008 - 2013 Member, Steering Committee of 1 of 4 Themes (‘Perception, Action and Control’) at Donders Institute, Radboud University, NL 2008 – present Member, Education Committee, Radboud University, NL 2008 – 2012 Member, Research Infrastructure Committee, Radboud University, NL 2013 – present Fellow, Association for Psychological Science, UK 2003 – present Member, Society for Neuroscience, US 2003 – present Member, Cognitive Neuroscience Society, US Commissions of Trust 2017 – now Reviewing Editor, Journal of Neuroscience 2010 - now Active Editor, Journal of Cognitive Neuroscience 2014 - now Member, Editorial Board Royal Society Open Science PHS 398/2590 (Rev. 05/01) Page Biographical Sketch Format Page Principal Investigator/Program Director (Last, First, Middle): PI Name 2014 - now Member, Editorial Board Current Opinion in Behavioral Sciences 2014 - now Member, Editorial Board Motivation Science 2012 – 2014 Associate Editor, special issue Frontiers Behavioral Neuroscience 2009 – 2015 Consulting Editor, Cognitive, Affective, & Behavioral Neuroscience Awards and Honors 1998 MSc degree with Cum Laude 1998-1999 Dutch-British Partnership Award, Cambridge UK 1998-2001 Cambridge European Trust Award, UK 1999-2002 CD Marsden Studentship, Parkinson’s Disease Society of the UK 1999-2002 Mary Ann Eward Studentship, Newnham College, Cambridge UK 2002-2006 Junior Research Fellowship, St John’s College, Cambridge UK 2002-2006 Royal Society Dorothy Hodgkin Research Fellowship, University of Cambridge UK 2002 Human Frontiers Longterm Fellowship (declined) 2006-2007 Royal Society University Research Fellowship, University of Cambridge UK 2008 Vidi award from the Netherlands Organization for Scientific Research 2011 Radboud Science Award for best research at Radboud University 2012 Young Investigator Award of the Cognitive Neuroscience Society 2012 James McDonnell Scholar Award 2015 Vici award from the Netherlands Organization for Scientific Research 2017 KNAW-Ammodo Award C. Contribution to Science I study the brain mechanisms of motivation and cognition by combining cognitive neuroscience with psychopharmacology, focusing on dopamine and serotonin. A strength of our group is the interventional nature of our work, which often involves manipulating the brain through pharmacological, electrical or psychological means in health and disease. The work is motivated by mechanistic questions about motivation and cognition. How do we motivate ourselves to exert cognitive control? How do we maximize reward? We leverage knowledge about dopamine and serotonin and combine the use of neurochemical PET, psychopharmacological fMRI, (computational) model-based analyses and trans-diagnostic patient work to resolve these questions. We hope to contribute to resolving a major problem in neurology and psychiatry: the huge variability in treatment efficacy. Cognitive effects of Parkinson’s disease In my earliest work I studied effects of dopaminergic medication on learning and control in patients with Parkinson’s disease. These series of experiments provided empirical evidence for, among other things, contrasting effects of medication depending on task demands, which led us to advance the ‘dopamine overdose hypothesis’ (Cools et al., 2001 Cereb Cortex; Cools, 2006 NBR). This and subsequent evidence (Smittenaar et al., 2014; Cools et al., 2010) inspired novel theoretical work on dopamine’s role in behavior (Frank, 2005 J Cogn Neurosci; Frank et al., 2004 Science; Collin and Frank, 2014 Psych Rev) as well as novel recent work on the role of inhibitory control mechanisms in interrupting cognition (Wessel and Aron, 2017 Neuron). I continue to study Parkinson’s disease, in order to refine and revise the dopamine overdose hypothesis, clarifying why not every patients develops the severe psychiatric side effects, such as ICD, after starting medication. Selected publications: 1. Cools R, Barker RA, Sahakian BJ, Robbins TW (2001). Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cereb Cortex 11:1136-1143. 2. Cools R, Barker RA, Sahakian BJ, and Robbins TW (2001). Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain 124:2503-2512. 3. Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: The role of prefrontal cortex revealed by PET. Brain 125: 584-594. 4. Cools R, Barker R A, Sahakian B J, Robbins T W (2003). L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41:1431- 1441. PHS 398/2590 (Rev. 09/04, Reissued 4/2006) Page 6 Continuation Format Page Principal Investigator/Program Director (Last, First, Middle): PI Name 5. Cools R, Robbins TW (2004). Chemistry of the Adaptive Mind. Philos Transact Ser A Math Phys Eng Sci 362 (1825): 2871-2888. 6. Cools R (2006) Dopaminergic modulation of cognitive function – Implication for L-DOPA therapy in Parkinson’s disease. Neurosci Biobehav Rev 30 (1):1-34. 7. Cools R, Altamirano L, D’Esposito M (2006). Reversal learning in Parkinson’s disease depends on medication status and outcome valence. Neuropsychologia 44 (10):1663-1673 8. Cools R, Lewis SGJ, Clark L, Barker RA, Robbins TW (2007). L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32 (1): 180- 189. 9. Cools R, Miyakawa A, Sheridan M, D'Esposito M (2010). Enhanced frontal function in Parkinson's disease. Brain 133:225-33. 10. De Wit S, Barker RA, Dickinson A, Cools R (2011). Habitual versus goal-directed action control in Parkinson disease. J Cogn Neurosci. 23(5):1218-1229 [5.7] 11. Smittenaar P, Chase HW, Aarts E, Nusselein B, Bloem BR, Cools R (2012). Decomposing effects of dopaminergic medication in Parkinson’s disease on probabilistic action selection: learning or performance? Eur J Neurosci 35(7):1144-51 [3.9] 12. Aarts E, Nusselein AA, Smittenaar P, Helmich RC, Bloem BR, Cools R (2014). Greater striatal s disease are associated with better task-switching but worse reward׳responses to medication in Parkinson performance. Neuropsychologia 62:390-7 13. Robbins TW, Cools R (2014). Cognitive Deficits in Parkinson’s Disease: A Cognitive Neuroscience Perspective. Movement Dis 29:597:607 14. Timmer MHM, Sescousse G, Van der Schaaf ME, Esselink RAJ, Cools R (in press). Reward learning deficits in Parkinson’s disease depend on depression. Psychol Med Reversal learning In a second line of work, I have introduced a paradigm for assessing the neural mechanisms of probabilistic reversal learning in healthy volunteers. Many other research groups have subsequently used this paradigm to study reversal learning. Selected publications on reversal learning: 1. Cools R, Clark L, Owen AM, Robbins TW (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional MRI. J Neurosci 22: 4563-4567. 2. Chase HW, Swainson R, Durham L, Benham L, Cools R (2011). Feedback-related
Recommended publications
  • Aberrant Reward Processing in Parkinson's Disease Is Associated with Dopamine Cell Loss
    NeuroImage 59 (2012) 3339–3346 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Full-length Article Aberrant reward processing in Parkinson's disease is associated with dopamine cell loss Esther Aarts a,b,⁎,1, Rick C. Helmich a,c,1, Marcel J.R. Janssen a,d, Wim J.G. Oyen a,d, Bastiaan R. Bloem a,c, Roshan Cools a,b a Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behavior, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands b Radboud University Nijmegen Medical Centre, Department of Psychiatry, Reinier Postlaan 10, 6525 GC Nijmegen, The Netherlands c Radboud University Nijmegen Medical Centre, Department of Neurology, Parkinson Centre Nijmegen (ParC), Reinier Postlaan 4, 6525 GC Nijmegen, The Netherlands d Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Geert Grooteplein 8, 6525 GA Nijmegen, The Netherlands article info abstract Article history: Dopamine has been implicated in reward-related impulsivity, but the exact relationship between dopamine, Received 3 August 2011 reward and impulsivity in humans remains unknown. We address this question in Parkinson's disease (PD), Revised 14 November 2011 which is characterized by severe dopamine depletion. PD is associated primarily with motor and cognitive Accepted 24 November 2011 inflexibility, but can also be accompanied by reward-related impulsivity. This paradoxical symptom of PD Available online 6 December 2011 has often been attributed to dopaminergic overstimulation by antiparkinson medication, which is necessary to relieve the motor and cognitive inflexibility. However, factors other than medication may also contribute Keywords: fl Impulsivity to aberrant impact of reward. Here we assess whether cognitive in exibility and aberrant reward impact in Dopamine PD are two sides of the same coin, namely dopamine cell loss.
    [Show full text]
  • Striatal Dopamine and the Interface Between Motivation and Cognition
    REVIEW ARTICLE published: 14 July 2011 doi: 10.3389/fpsyg.2011.00163 Striatal dopamine and the interface between motivation and cognition Esther Aarts1*, Mieke van Holstein 2 and Roshan Cools 2,3 1 Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA 2 Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands 3 Department of Psychiatry, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands Edited by: Brain dopamine has long been known to be implicated in the domains of appetitive motivation Wim Notebaert, Ghent University, and cognition. Recent work indicates that dopamine also plays a role in the interaction between Belgium appetitive motivation and cognition. Here we review this work. Animal work has revealed an Reviewed by: K. Richard Ridderinkhof, University of arrangement of spiraling connections between the midbrain and the striatum that subserves a Amsterdam, Netherlands mechanism by which dopamine can direct information flow from ventromedial to more dorsal Patrick Santens, Gent University, regions in the striatum. In line with current knowledge about dopamine’s effects on cognition, Belgium we hypothesize that these striato-nigro-striatal connections provide the basis for functionally *Correspondence: specific effects of appetitive motivation on cognition. One implication of this hypothesis is Esther Aarts, Helen Wills Neuroscience Institute, University of California at that appetitive motivation
    [Show full text]
  • Visiting KNAW Professor from Newcastle University
    78 BCN - School for Behavioral and Cognitive Neurosciences june 2010 Interview with prof. dr. Daniel Nettle Visiting KNAW professor from r Newcastle University e Could you shortly introduce yourself? My name is Daniel Nettle. I am a behavioural scientist t from Newcastle University and I am a KNAW visiting professor this year, here in the Psychology Department. t I am here for some time now, but the KNAW professorship allows me to make several visits during the year, so I will be back later this year. e In my career, I started out as an anthropologist, but then I went to psychology and now I work in neuroscience. l For me, the fundamental issues are: How do we understand human behaviour; what part of behaviour comes from the situation people are in and what s part comes from the properties of the individual; the way their brain is set up. Whichever way you study behaviour, it is going to involve many disciplines, like biology, psychology, neuroscience, anthropology. When I worked on different problems concerning behaviour, w it just was easier to be attached to different institutes. You cannot isolate psychology from anthropology, neuroscience and biology. It is all kind of a mixture. e they live in. The ways we have of deciding in such Can you tell us about your research? questions will have been subject to natural selection My recent work is on reproductive decisions, specifically over many thousands of years. how do we decide when to have a baby. Do you have your first baby at 18 or 28 and if you have had one, Do you see that as a conscious decision? how long do you keep breastfeeding and when do you I think it is a funny old mixture.
    [Show full text]
  • Serotonergic Modulation of Prefrontal Cortex During Negative Feedback in Probabilistic Reversal Learning
    Neuropsychopharmacology (2005) 30, 1138–1147 & 2005 Nature Publishing Group All rights reserved 0893-133X/05 $30.00 www.neuropsychopharmacology.org Serotonergic Modulation of Prefrontal Cortex during Negative Feedback in Probabilistic Reversal Learning 1 ,2,3 3 1 1 Elizabeth AT Evers , Roshan Cools* , Luke Clark , Frederik M van der Veen , Jelle Jolles , 4 3 Barbara J Sahakian and Trevor W Robbins 1Brain and Behavior Institute, University of Maastricht, Maastricht, The Netherlands; 2Department of Psychology, University of California, 3 4 Berkeley, CA, USA; Department of Experimental Psychology, University of Cambridge, Cambridge, UK; Department of Psychiatry, Addenbrooke’s Hospital, Cambridge, UK This study used functional magnetic resonance imaging to examine the effects of acute tryptophan (TRP) depletion (ATD), a well- recognized method for inducing transient cerebral serotonin depletion, on brain activity during probabilistic reversal learning. Twelve healthy male volunteers received a TRP-depleting drink or a balanced amino-acid drink (placebo) in a double-blind crossover design. At 5 h after drink ingestion, subjects were scanned while performing a probabilistic reversal learning task and while viewing a flashing checkerboard. The probabilistic reversal learning task enabled the separate examination of the effects of ATD on behavioral reversal following negative feedback and negative feedback per se that was not followed by behavioral adaptation. Consistent with previous findings, behavioral reversal was accompanied by significant signal change in the right ventrolateral prefrontal cortex (PFC) and the dorsomedial prefrontal cortex. ATD enhanced reversal-related signal change in the dorsomedial PFC, but did not modulate the ventrolateral PFC response. The ATD-induced signal change in the dorsomedial PFC during behavioral reversal learning extended to trials where subjects received negative feedback but did not change their behavior.
    [Show full text]
  • CNS 2013 Program
    Cognitive Neuroscience Society 20th Annual Meeting, April 13-16, 2013 Hyatt Regency Hotel, San Francisco, California 2013 Annual Meeting Program Contents 2013 Committees & Staff . 2 Schedule Overview . 3 Keynotes. 5 George A. Miller Prize. 7 Distinguished Career Contributions Award . 8 Young Investigator Award . 9 General Information. 12 Exhibitors . 15 Invited-Symposium Sessions. 16 Mini-Symposium Sessions . 23 Poster Schedule . 31 Poster Session A . 32 Poster Session B . 62 Poster Session C . 92 Poster Session D . 121 Poster Session E . 151 Poster Session F . 180 Poster Session G . 209 Poster Session H . 238 Poster Topic Index . 267 Author Index . 269 Hyatt Regency Floorplan . 280 A Supplement of the Journal of Cognitive Neuroscience Cognitive Neuroscience Society c/o Center for the Mind and Brain 267 Cousteau Place, Davis, CA 95616 ISSN 1096-8857 © CNS www.cogneurosociety.org 2013 Committees & Staff Governing Board Mini-Symposium Committee Roberto Cabeza, Ph.D., Duke University Elizabeth Kensinger, Ph.D., Boston College (Chair) Marta Kutas, Ph.D., University of California, San Diego David Badre, Ph.D., Brown University Helen Neville, Ph.D., University of Oregon Clayton Curtis, Ph.D., New York University Daniel Schacter, Ph.D., Harvard University Lila Davachi, Ph.D., New York University Michael S. Gazzaniga, Ph.D.,University of California, Scott Huettel, Ph.D., Duke University Santa Barbara (ex offi cio) Gina Kuperberg, Ph.D., Harvard University George R. Mangun, Ph.D., University of California, Kia Nobre, Ph.D., University of Oxford Davis (ex offi cio) Thad Polk, Ph.D., University of Michigan Patti Reuter-Lorenz, Ph.D., University of Michigan (ex offi cio) Marty Woldorff, Ph.D., Duke University Program Committee Young Investigator Award Committee George R.
    [Show full text]
  • Decomposing Effects of Dopaminergic Medication in Parkinson’S Disease on Probabilistic Action Selection – Learning Or Performance?
    European Journal of Neuroscience European Journal of Neuroscience, Vol. 35, pp. 1144–1151, 2012 doi:10.1111/j.1460-9568.2012.08043.x Decomposing effects of dopaminergic medication in Parkinson’s disease on probabilistic action selection – learning or performance? P. Smittenaar,1 H. W. Chase,2 E. Aarts,3 B. Nusselein,4 B. R. Bloem5 and R. Cools4,6 1The Wellcome Trust Centre for Neuroimaging, University College London, London, UK 2Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 3Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA 4Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands 5Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands 6Department of Psychiatry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands Keywords: decision-making, dopamine, reinforcement learning, valence, value-based performance Abstract Dopamine has long been implicated in reward-based learning and the expression of such learned associations on performance. Robust evidence supports its effects on learning and performance, but teasing these apart has proved challenging. Here we have adapted a classic test of value-based learning, the probabilistic selection task, to disentangle effects of dopamine on value-based performance from effects on value-based learning. Valence-specific effects of dopamine on this specific task cannot be accounted for by modulation of learning, and therefore must reflect modulation of performance. We found that dopaminergic medication, consisting of levodopa and ⁄ or dopamine agonists taken at own dose, in 18 patients with mild Parkinson’s disease (Hoehn and Yahr < 2.5) potentiated reward-based approach in terms of both accuracy and reaction times, while leaving punishment-based avoidance unaffected.
    [Show full text]
  • CNS-2020-Program-Booklet.Pdf
    Cognitive Neuroscience Society 27th Annual Meeting, March 14-17, 2020 Sheraton Hotel, Boston, Massachusetts Contents 2020 Committees & Staff………………………………. 2 Schedule Overview……………………………………... 3 Code of Conduct………………………………………... 8 Keynote………………………………………………….. 9 George A Miller Prize………………………………….. 10 The Fred Kavli Distinguished Career 11 Contributions Award………………………………….... Young Investigator Award…………………………….. 12 Workshops & Special Events…………………..…….. 13 Special Session…………………………………….….. 14 Data Blitz Sessions...………………………………….. 16 General Information……………………………….…... 19 Invited-Symposium Sessions………………………… 21 Symposium Sessions…………………………………. 26 Exhibits……………………………………………….… 44 GSA/PFA Awards………………………………….….. 44 Poster Schedule……………………………………..… 45 • Poster Session A…………………………… 45 • Poster Session B…………………………… 51 • Poster Session C…………………………… 57 • Poster Session D…………………………… 63 • Poster Session E…………………………… 69 • Poster Session F…………………………… 75 Advertisements……………………………………...… 7, 9, 84 A Supplement of the Journal of Cognitive Neuroscience Cognitive Neuroscience Society c/o Center for the Mind and Brain 267 Cousteau Place, Davis, CA 95616 ISSN 1096-8857 © CNS www.cogneurosociety.org 2020 Committees & Staff Governing Board Art Shimamura, Ph.D., University of California, Berkeley Marie Banich, Ph.D., University of Colorado at Boulder Roberto Cabeza, Ph.D., Duke University CNS Trainee Association (CNSTA) Marta Kutas, Ph.D., University of California, San Diego Alexandra (Lesya) Gaynor, Memorial Sloan Kettering George R. Mangun, Ph.D., University
    [Show full text]
  • Li Eke Van Lieshou T the Cognitive and Neural Mechanisms of Information
    Lieke van Lieshou t The cognitive and neural mechanisms of information seeking DONDERS SE RIES Radboud University ltJ Radboudumc O e_; -ttJN6·� LIEKE VAN LIESHOUT Why so curious? The cognitive and neural mechanisms of information seeking Why so curious? The cognitive and neural mechanisms of information seeking Coverdesign | Floortje Bouwkamp Opmaak | Proefschriftenbalie, Michel Wolf Print | Ipskamp Printing ISBN 978-94-6421-206-8 © Lieke van Lieshout (2021) Why so curious? The cognitive and neural mechanisms of information seeking Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op woensdag 9 juni 2021 om 14.30 uur precies door Lieke Lucia Francisca van Lieshout geboren op 1 februari 1991 te Geldrop Promotoren Prof. dr. Roshan Cools Prof. dr. Floris P. de Lange Manuscriptcommissie Prof. dr. Alan G. Sanfey Prof. dr. Sabine Hunnius Dr. Matthias J. Gruber (Cardiff University, Verenigd Koninkrijk) Contents CHAPTER 1 9 General introduction CHAPTER 2 33 Curiosity varies with uncertainty, but not with expected value of information CHAPTER 3 49 Induction and relief of curiosity elicit parietal and frontal activity CHAPTER 4 73 Curiosity or savouring? Information seeking is modulated by both uncertainty and valence CHAPTER 5 115 Curiosity: An appetitive or an aversive drive? CHAPTER 6 139 Does dopamine synthesis capacity predict individual variation in curiosity? CHAPTER 7 165 General discussion Nederlandse samenvatting 187 Acknowledgements 195 About the author 201 List of Publications 202 Data Research Management 203 Donders Graduate School for Cognitive Neuroscience 204 CHAPTER 1 General introduction This chapter is adapted from: van Lieshout, L.L.F., de Lange, F.P., & Cools, R.
    [Show full text]
  • Learning Jennifer L Cook1*, Jennifer C Swart2, Monja I Frobo¨ Se2, Andreea O Diaconescu3,4,5, Dirk EM Geurts2,6, Hanneke EM Den Ouden2†, Roshan Cools2,6†
    RESEARCH ARTICLE Catecholaminergic modulation of meta- learning Jennifer L Cook1*, Jennifer C Swart2, Monja I Frobo¨ se2, Andreea O Diaconescu3,4,5, Dirk EM Geurts2,6, Hanneke EM den Ouden2†, Roshan Cools2,6† 1School of Psychology, University of Birmingham, Birmingham, United Kingdom; 2Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands; 3Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; 4Department of Psychiatry, University of Basel, Basel, Switzerland; 5Krembil Centre for Neuroinformatics,CAMH, University of Toronto, Toronto, Canada; 6Department of Psychiatry, Radboud University Medical Centre, Nijmegen, Netherlands Abstract The remarkable expedience of human learning is thought to be underpinned by meta- learning, whereby slow accumulative learning processes are rapidly adjusted to the current learning environment. To date, the neurobiological implementation of meta-learning remains unclear. A burgeoning literature argues for an important role for the catecholamines dopamine and noradrenaline in meta-learning. Here, we tested the hypothesis that enhancing catecholamine function modulates the ability to optimise a meta-learning parameter (learning rate) as a function of environmental volatility. 102 participants completed a task which required learning in stable phases, where the probability of reinforcement was constant, and volatile phases, where probabilities changed every
    [Show full text]
  • A Balancing Act with Dopamine
    high da: stable prefrontal cortex dopamine: cognitive stability low da: distractible functional and neurochemical reciprocity low da: inflexible striatum dopamine: cognitive flexibility high da: flexible A balancing act with dopamine Human beings are extremely capable of adapting to their constantly aim to provide more insight into this proc- changing environment. But often we need to ignore those changes, ess, with the ultimate aim of understanding stay as we are, and continue acting as normal. So how do we know the neurobiological basis of neuropsychiat- when it’s appropriate to change our behaviour and how do we balance ric disorders such as ADHD and Parkinson’s fl exibility and stability? Roshan Cools is working on the hypothesis disease. One characteristic of these disorders that this is mediated by the brain substance dopamine, which regu- is a neurochemical imbalance, leading to in- lates the dynamic interaction between two regions of the brain. flexibility, impulsivity and/or compulsivity. We hope that our approach will eventually lead to individualized treatment strategies that target the complex cognitive deficits ‘Things developed so quickly’, Cools associated with these conditions. ’ observes, referring to her position as Prin- cipal Investigator at the Donders Institute, Two interacting regions where she started only two years ago, ‘We appear to need both cognitive flexibility soon after which she obtained a NWO and stability. If we’re too flexible, we tend Vidi grant. ‘There are fourteen people in to be distracted and our behaviour becomes my group if I include my affiliated and unstable and, if we’re too stable, we become Master’s students,’ she says.
    [Show full text]
  • Stratified Medicine for Mental Disorders Gunter Schumann, Elisabeth B
    Author's Accepted Manuscript Stratified Medicine for Mental Disorders Gunter Schumann, Elisabeth B. Binder, Arne Holte, E.Ronald de Kloet, Ketil J. Oedegaard, Trevor W. Robbins, Tom R. Walker-Tilley, Verity J. Brown, Jan Buitelaar, Roberto Ciccocioppo, Roshan Cools, Carles Escera, Wolfgang Fleischhacker, Herta Flor, Chris D. Frith, Andreas Heinz, Erik Johnsen, Clemens Kirschbaum, Torkel Klingberg, Klaus-Peter www.elsevier.com/locate/euroneuro Lesch, Shon Lewis, Wolfgang Maier, Karl Mann, Jean-Luc Martinot, Andreas Meyer-Lindenberg, Christian P. Müller, Walter E. Müller, David J. Nutt, Antonio Persico, Giulio Perugi, Mathias Pessiglione, Ulrich W. Preuss, Jonathan P.Roiser, Paolo M. Rossini, Janusz K. Rybakowski, Carmen Sandi, Klaas E. Stephan, Juan Undurraga, Eduard Vieta, Nic van der Wee, Til Wykes, Josep Maria Haro, Hans Ulrich Wittchen PII: S0924-977X(13)00276-9 DOI: http://dx.doi.org/10.1016/j.euroneuro.2013.09.010 Reference: NEUPSY10731 To appear in: European Neuropsychopharmacology Received date: 19 June 2013 Revised date: 9 September 2013 Accepted date: 26 September 2013 Cite this article as: Gunter Schumann, Elisabeth B. Binder, Arne Holte, E.Ronald de Kloet, Ketil J. Oedegaard, Trevor W. Robbins, Tom R. Walker-Tilley, Verity J. Brown, Jan Buitelaar, Roberto Ciccocioppo, Roshan Cools, Carles Escera, Wolfgang Fleischhacker, Herta Flor, Chris D. Frith, Andreas Heinz, Erik Johnsen, Clemens Kirschbaum, Torkel Klingberg, Klaus-Peter Lesch, Shon Lewis, Wolfgang Maier, Karl Mann, Jean-Luc Martinot, Andreas Meyer- Lindenberg, Christian P. Müller, Walter E. Müller, David J. Nutt, Antonio Persico, Giulio Perugi, Mathias Pessiglione, Ulrich W. Preuss, Jonathan P. Roiser, Paolo M. Rossini, Janusz K. Rybakowski, Carmen Sandi, Klaas E.
    [Show full text]
  • Rational Inattention and Tonic Dopamine
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.04.325175; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Rational Inattention and Tonic Dopamine John G. Mikhael1;2∗, Lucy Lai1, Samuel J. Gershman3 1Program in Neuroscience, Harvard Medical School, Boston, MA 02115 2MD-PhD Program, Harvard Medical School, Boston, MA 02115 3Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138 ∗Corresponding Author Correspondence: john [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.04.325175; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 Slow-timescale (tonic) changes in dopamine (DA) contribute to a wide variety of processes in reinforce- 3 ment learning, interval timing, and other domains. Furthermore, changes in tonic DA exert distinct 4 effects depending on when they occur (e.g., during learning vs. performance) and what task the subject 5 is performing (e.g., operant vs. classical conditioning). Two influential theories of tonic DA|the average 6 reward theory and the Bayesian theory in which DA controls precision|have each been successful at 7 explaining a subset of empirical findings. But how the same DA signal performs two seemingly distinct 8 functions without creating crosstalk is not well understood. Here we reconcile the two theories under the 9 unifying framework of `rational inattention,' which (1) conceptually links average reward and precision, 10 (2) outlines how DA manipulations affect this relationship, and in so doing, (3) captures new empirical 11 phenomena.
    [Show full text]