Anatomy, Histology, and Embryology

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy, Histology, and Embryology ANATOMY, HISTOLOGY, 1 AND EMBRYOLOGY An understanding of the anatomic divisions composed of the vomer. This bone extends from of the head and neck, as well as their associ- the region of the sphenoid sinus posteriorly and ated normal histologic features, is of consider- superiorly, to the anterior edge of the hard pal- able importance when approaching head and ate. Superior to the vomer, the septum is formed neck pathology. The large number of disease by the perpendicular plate of the ethmoid processes that involve the head and neck area bone. The most anterior portion of the septum is a reflection of the many specialized tissues is septal cartilage, which articulates with both that are present and at risk for specific diseases. the vomer and the ethmoidal plate. Many neoplasms show a sharp predilection for The supporting structure of the lateral border this specific anatomic location, almost never of the nasal cavity is complex. Portions of the occurring elsewhere. An understanding of the nasal, ethmoid, and sphenoid bones contrib- location of normal olfactory mucosa allows ute to its formation. The lateral nasal wall is visualization of the sites of olfactory neuro- distinguished from the smooth surface of the blastoma; the boundaries of the nasopharynx nasal septum by its “scroll-shaped” superior, and its distinction from the nasal cavity mark middle, and inferior turbinates. The small su- the interface of endodermally and ectodermally perior turbinate and larger middle turbinate are derived tissues, a critical watershed in neoplasm distribution. Angiofibromas and so-called lym- phoepitheliomas, for example, almost exclu- sively arise on the nasopharyngeal side of this line, whereas schneiderian papillomas, lobular capillary hemangiomas, and sinonasal intesti- nal-type adenocarcinomas almost entirely arise anterior to the line, in the nasal cavity. NASAL CAVITY Anatomy Although usually referred to as a single struc- ture, the nasal cavity consists of paired midfacial nares divided into two more or less mirror images by the nasal septum and at its extreme anterior, the columella (figs. -, -2). Midline asymmetry of the nasal septum is common, however, result- ing in considerable variation in the contours and volumes of the left and right chambers. Each cav- ity is bounded anteriorly by the external naris, marking its junction with the external world; posteriorly by the nasal choana, forming its junction with the nasopharynx; and medially by the smooth-surfaced nasal septum. Figure 1-1 Beneath the mucosa, the septum is formed SAGITTAL VIEW OF UPPER RESPIRATORY TRACT by one cartilaginous and two osseous support- A midline sagittal section shows the major structures of ing structures. Posteriorly and inferiorly, it is the nasal cavity, pharynx, and larynx. Tumors of the Upper Aerodigestive Tract and Ear Figure 1-2 CORONAL VIEW OF UPPER RESPIRATORY TRACT A coronal section through the head at the level of the molar teeth displays the anatomy of the nasal cavity, as well as the pharynx, larynx, and some of the paranasal sinuses. formed from the ethmoid bone (9). The lower Histology turbinate is a separate bone (9). There are multiple openings along the lateral The most anterior portion of the nasal cav- wall of the nasal cavity, primarily to the adjacent ity, or nasal vestibule, is an inward extension paranasal sinuses. The frontal sinus ostium is of the skin of the external nose. It is lined by located in the frontal recess at the anterior of the keratinized squamous epithelium with associ- middle turbinate. The sphenoid sinus opening ated dermal adnexa, including hair follicles, is in the sphenoethmoid recess located behind sebaceous glands, and sweat glands. This in- the superior turbinate. The opening to the ward cutaneous extension averages to 2 cm posterior ethmoid air cells is located under the in depth, at which point there is a gradual loss superior turbinate, with openings to the middle of adnexal structures and replacement of the and anterior cells located in the ethmoid bulla keratinized squamous epithelium by schneide- and hiatus semilunaris of the middle turbinate rian epithelium (9), denoted with this eponym (9). The primary maxillary antrum ostium is primarily to emphasize its ectodermal origin, also located in the hiatus semilunaris, and there as distinct from the endodermal origin of the may be an accessory ostium located posterior mucosa lining the pharynx and larynx. The to the primary maxillary ostium. schneiderian epithelium lines the nasal cav- The most superior portion of the nasal cavity ity and paranasal sinuses. With the exception consists of the cribriform plate with its special- of olfactory mucosa, schneiderian epithelium ized olfactory mucosa (fig. -3). This merges lacks any histologic distinction from the lin- with the remainder of the cavity roof, which ings of the pharynx and larynx. It is primarily slopes downward posteriorly to form the su- composed of a mixture of nonkeratinizing squa- perior portion of the choana. The floor of the mous cells, ciliated respiratory cells, scattered nasal cavity is formed by a combination of the mucus-containing goblet cells, and “intermedi- hard and soft palates. ate” cells. The mucosa varies in thickness from 2 Anatomy, Histology, and Embryology Figure 1-3 NASAL CAVITY The olfactory mucosa is confined to the most superior portion of the nasal cavity (blue shading). It involves the superior portion of the superior turbinate, the cribriform plate, and the superior approximate- ly one third of the nasal sep- tum. In adults, the distribution becomes patchy, due to multi- focal replacement by non- olfactory mucosa. The olfactory cells send processes through the cribriform plate to connect with the olfactory bulb. Figure 1-4 NASAL STROMA Prominent blood vessels below the nasal seromucinous glands resemble erectile tissue and should not be confused with a vascular neoplasm. (Fig. -5 from Stelow EB, Mills SE. Biopsy interpretation of the upper aerodigestive tract and ear. Lippincott, Williams & Wil- kins, Philadelphia, 2008:4.) more prominent pseudostratified columnar lamina with underling loose stroma containing cells overlying the portions of the middle and variably prominent seromucinous glands. Deep inferior turbinates in direct contact with airflow, to the glands is a prominent erectile type of vas- to thinner layers of cuboidal cells lining the cular tissue which should not be confused with recesses of the nasal cavity and the paranasal a vascular neoplasm (fig. -4). sinuses (9). Areas of squamous metaplasia are The olfactory mucosa is normally confined occasionally found, primarily on the anterior to the cribriform plate, medial surface of the surfaces of the middle and lower turbinates superior turbinate, and superior one third of the and the anterior portion of the nasal septum nasal septum. The total surface area in adults (36). Beneath the mucosal surface is thin basal is approximately .5 cm2. Over time, areas of 3 Tumors of the Upper Aerodigestive Tract and Ear Figure 1-5 OLFACTORY MUCOSA Left: Specialized olfactory mucosa is composed of a mixture of olfactory cells (OC) with neuronal processes that penetrate the cribriform plate, sustentacular epithelial cells (SC), and regenerative basal cells (BC). The olfactory cells extend to the surface where they form olfactory vesicles (OV). Above: The stratified, specialized olfactory epithelium has underlying Bowman glands, nerve fibers, and bone of the cribriform plate. (Fig. 5-5 from Balogh K, Pantanowitz L. Mouth, nose, and paranasal sinuses. In: Mills SE, ed. Histology for pathologists, 3rd ed. Philadelphia: Lippincott, Williams & Wilkins; 2007:428.) olfactory mucosa may be partially replaced by in a protective mucus blanket. Proximally, the schneiderian epithelium, resulting in a patchy neuronal cells form thin cytoplasmic processes distribution that presumably accounts for the containing unmyelinated nerve fibers which generally diminishing sense of smell with advanc- penetrate the cribriform plate to synapse in ing age. Whether olfactory neurons can regenerate the olfactory bulb. Small basal cells just above in humans is unclear, but has been demonstrated the basement membrane differentiate to form in other mammals (2). Rarely, ectopic foci of replacement sustentacular cells and may also olfactory mucosa lower in the nasal cavity have form replacement neuronal cells. Just beneath been described. Several studies using an olfactory the olfactory mucosa is a group of simple serous marker protein have allowed for easy mapping glands, referred to as the glands of Bowman (fig. of the mucosal distribution (6,22,23). -5). The distinctive appearance of these glands The specialized olfactory mucosa is composed and, particularly, their lack of mucin, aid in of three cell types (fig. -5). Most common are distinguishing olfactory mucosa from normal epithelial sustentacular cells, tall columnar schneiderian epithelium. eosinophilic cells anchored to the basement Embryology membrane but extending upward to the surface where they form microvilli. Interdigitated be- The nasal cavity is of ectodermal origin. Dur- tween the sustentacular cells are the elongated ing the fourth week of embryologic develop- neuronal olfactory cells. At the surface, these ment, a proliferation of ectoderm beneath the cells form widened peripheral processes con- forebrain forms a hollow invagination known taining olfactory vesicles. These are embedded as the olfactory pit. Cells within this pit acquire 4 Anatomy, Histology, and Embryology
Recommended publications
  • Septoplasty, Rhinoplasty, Septorhinoplasty, Turbinoplasty Or
    Septoplasty, Rhinoplasty, Septorhinoplasty, 4 Turbinoplasty or Turbinectomy CPAP • If you have obstructive sleep apnea and use CPAP, please speak with your surgeon about how to use it after surgery. Follow-up • Your follow-up visit with the surgeon is about 1 to 2 weeks after Septoplasty, Rhinoplasty, Septorhinoplasty, surgery. You will need to call for an appointment. Turbinoplasty or Turbinectomy • During this visit any nasal packing or stents will be removed. Who can I call if I have questions? For a healthy recovery after surgery, please follow these instructions. • If you have any questions, please contact your surgeon’s office. Septoplasty is a repair of the nasal septum. You may have • For urgent questions after hours, please call the Otolaryngologist some packing up your nose or splints which stay in for – Head & Neck (ENT) surgeon on call at 905-521-5030. 7 to 14 days. They will be removed at your follow up visit. When do I need medical help? Rhinoplasty is a repair of the nasal bones. You will have a small splint or plaster on your nose. • If you have a fever 38.5°C (101.3°F) or higher. • If you have pain not relieved by medication. Septorhinoplasty is a repair of the nasal septum and the nasal bone. You will have a small splint or plaster cast on • If you have a hot or inflamed nose, or pus draining from your nose, your nose. or an odour from your nose. • If you have an increase in bleeding from your nose or on Turbinoplasty surgery reduces the size of the turbinates in your dressing.
    [Show full text]
  • Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection
    Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection This guide is for middle and high school students participating in AIMS Anatomy of the Human Brain and Sheep Brain Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human brain by observing, studying, and examining human specimens. The primary focus is on the anatomy, function, and pathology. Those students participating in Sheep Brain Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. The following topics will be covered: 1. The neurons and supporting cells of the nervous system 2. Organization of the nervous system (the central and peripheral nervous systems) 4. Protective coverings of the brain 5. Brain Anatomy, including cerebral hemispheres, cerebellum and brain stem 6. Spinal Cord Anatomy 7. Cranial and spinal nerves Objectives: The student will be able to: 1. Define the selected terms associated with the human brain and spinal cord; 2. Identify the protective structures of the brain; 3. Identify the four lobes of the brain; 4. Explain the correlation between brain surface area, structure and brain function. 5. Discuss common neurological disorders and treatments. 6. Describe the effects of drug and alcohol on the brain. 7. Correctly label a diagram of the human brain National Science Education
    [Show full text]
  • Human Anatomy (Biology 2) Lecture Notes Updated July 2017 Instructor
    Human Anatomy (Biology 2) Lecture Notes Updated July 2017 Instructor: Rebecca Bailey 1 Chapter 1 The Human Body: An Orientation • Terms - Anatomy: the study of body structure and relationships among structures - Physiology: the study of body function • Levels of Organization - Chemical level 1. atoms and molecules - Cells 1. the basic unit of all living things - Tissues 1. cells join together to perform a particular function - Organs 1. tissues join together to perform a particular function - Organ system 1. organs join together to perform a particular function - Organismal 1. the whole body • Organ Systems • Anatomical Position • Regional Names - Axial region 1. head 2. neck 3. trunk a. thorax b. abdomen c. pelvis d. perineum - Appendicular region 1. limbs • Directional Terms - Superior (above) vs. Inferior (below) - Anterior (toward the front) vs. Posterior (toward the back)(Dorsal vs. Ventral) - Medial (toward the midline) vs. Lateral (away from the midline) - Intermediate (between a more medial and a more lateral structure) - Proximal (closer to the point of origin) vs. Distal (farther from the point of origin) - Superficial (toward the surface) vs. Deep (away from the surface) • Planes and Sections divide the body or organ - Frontal or coronal 1. divides into anterior/posterior 2 - Sagittal 1. divides into right and left halves 2. includes midsagittal and parasagittal - Transverse or cross-sectional 1. divides into superior/inferior • Body Cavities - Dorsal 1. cranial cavity 2. vertebral cavity - Ventral 1. lined with serous membrane 2. viscera (organs) covered by serous membrane 3. thoracic cavity a. two pleural cavities contain the lungs b. pericardial cavity contains heart c. the cavities are defined by serous membrane d.
    [Show full text]
  • Anatomic Variations of the Nose and Paranasal Sinuses in Saudi Population
    234 Original article Anatomic variations of the nose and paranasal sinuses in saudi population: computed tomography scan analysis Nada Alshaikha, Amirah Aldhuraisb aDepartment of Otolaryngology Head & Neck Background Surgery, Rhinology Unit, Dammam Medical Knowledge of the anatomy constitutes an integral part in the total management of Complex (DMC), bDepartment of ENT, King Fahad Specialist Hospital (KFSH), Dammam, patients with sinonasal diseases. The aim of this study was to obtain the prevalence Saudi Arabia of sinonasal anatomic variations in Saudi population and to understand their importance and impact on the disease process, as well as their influence on Correspondence to Nada Alshaikh, MD, Department of Otorhinolaryngology Head and surgical management and outcome. Neck Surgery, Dammam Medical Complex, Materials and methods Dammam - 31414, Saudi Arabia This study is prospective review of retrospectively performed normal computed e-mail: [email protected] tomography (CT) scans of the nose and paranasal sinuses in adult Saudi Received 13 November 2016 population at Dammam Medical Complex. The scans were reviewed by two Accepted 23 December 2016 independent observers. The Egyptian Journal of Otolaryngology Results 2018, 34:234–241 Of all CT scans that were reviewed, 48.4% were of female patients and 51.6% were of male patients. The mean age of the study sample was 38.5±26.5 years. The most common anatomic variation after excluding agger nasi cell was pneumatized crista galli, which was seen in 73% of the scans. However, the least common variation seen in this series was hypoplasia of the maxillary sinus, which was encountered in 5% of the cases. We did not detect a single pneumatized inferior turbinate among the studied scans.
    [Show full text]
  • Fossa of Rosenmüller Rosenmüller
    Quick Review: Fossa of pharyngeal recess or the fossa of Rosenmüller Rosenmüller. The nasopharynx is a fibromuscular sling suspended from the skull base. The human nasopharynx is mainly derived from the primitive pharynx. It represents the nasal portion of the pharynx behind the nasal cavity and above the free border of the soft palate. The nasopharynx communicates with the nasal cavities through posterior nasal apertures. The choanal orifices along with the posterior edge of the Saggital section of the postnasal space (L E Loh et al 1991) nasal septum form the anterior boundary of the nasopharynx. The The superior constrictor muscle does superior surface of the soft palate not reach the base of skull hence a constitutes its floor and lateral gap (sinus of Morgagni) is velopharyngeal isthum provides created. Fossa of Rosenmüller is a communication between nasopharynx herniation of the nasopharyngeal and oropharynx. The body of mucosa through this deficiency sphenoid, basiocciput and first and between skull base and superior most second cervical vertebrae combine to fibers of the superior constrictor form roof of the nasopharynx. muscle. Through this gap bridged only by the pharyngobasilar fascia, the The part of nasopharynx proximal to eustachian tube enters the the tubal orifice is innervated by the nasopharynx with its two muscles, one maxillary division of the trigeminal (V) on each side. Along the inferior border nerve, and that posterior to the tubal of the two muscles the Fossa of orifice by the glossopharyngeal (IX) Rosenmüller is separated from the nerve. parapharyngeal space by mucosa and pharyngobasilar fascia. Functional studies with contrast and cinefluorography reveal structural The borders of the Fossa of differences between the two Rosenmüller are: components.
    [Show full text]
  • Rhinoplasty ARTICLE by PHILIP WILKES, CST/CFA
    Rhinoplasty ARTICLE BY PHILIP WILKES, CST/CFA hinoplasty is plastic become lodged in children's noses.3 glabella, laterally with the maxilla, surgery of the nose Fortunately, the art and science of inferiorly with the upper lateral car- for reconstructive, rhinoplasty in the hands of a skilled tilages, and posteriorly with the eth- restorative, or cos- surgical team offers positive alter- moid bone? metic purposes. The natives. The nasal septum is formed by procedure of rhmo- Three general types of rhino- the ethmoid (perpendicular plate) plasty had its beginnings in India plasty will be discussed in this arti- and vomer bones (see Figure 5). The around 800 B.c.,as an ancient art cle. They include partial, complete, cartilaginous part is formed by sep- performed by Koomas Potters.' and finesse rhinoplasties. tal and vomeronasal cartilages. The Crimes were often punished by the anterior portion consists of the amputation of the offender's nose, Anatomy and Physiology of the medial crus of the greater alar carti- creating a market for prosthetic sub- Nose lages, called the columella nasi? stitutes. The skill of the Koomas The nose is the olfactory organ that The vestibule is the cave-like area enabled them to supply this need. In projects from the center of the face modem times, rhinoplasty has and warms, filters, and moistens air developed into a high-technology on the way to the respiratory tract. procedure that combines art with Someone breathing only through the latest scientific advancements.' the mouth delivers a bolus of air During rhinoplastic procedures, with each breath. The components surgeons can change the shape and of the nose allow a thin flow of air size of the nose to improve physical to reach the lungs, which is a more appearance or breathing.
    [Show full text]
  • A Cellular Mechanism for Main and Accessory Olfactory Integration at the Medial Amygdala
    The Journal of Neuroscience, February 17, 2016 • 36(7):2083–2085 • 2083 Journal Club Editor’s Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml. A Cellular Mechanism for Main and Accessory Olfactory Integration at the Medial Amygdala E. Mae Guthman1* and XJorge Vera2* 1Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, and 2Departamento de Biología, Universidad de Chile, Santiago, Chile, 7800003 Review of Keshavarzi et al. Many vertebrates rely on their accessory (Sua´rez et al., 2012). Chemical cues reach thalamus (Keshavarzi et al., 2014), and and main olfactory systems (AOS and the AOS at a specialized sensory epithe- predator odors activate neurons in both re- MOS, respectively) to interact with their lium located in the vomeronasal organ gions (Pe´rez-Go´mez et al., 2015). Ventro- environment. Shaped by evolution to (VNO), a close-ended tubular structure medial hypothalamic neuronal activity is drive the perception of volatile and non- connected to the nostrils and positioned both necessary (Kunwar et al., 2015) and volatile molecules (for review, see Sua´rez at the base of the medial septum. The sufficient (Kunwar et al., 2015; Pe´rez- et al., 2012), these sensory systems allow VNO is sequestered from airflow; thus, Go´mez et al., 2015) to drive defensive be- animals to react and learn about the the chemical cues must solubilize with na- haviors.
    [Show full text]
  • Basic Brain Anatomy
    Chapter 2 Basic Brain Anatomy Where this icon appears, visit The Brain http://go.jblearning.com/ManascoCWS to view the corresponding video. The average weight of an adult human brain is about 3 pounds. That is about the weight of a single small To understand how a part of the brain is disordered by cantaloupe or six grapefruits. If a human brain was damage or disease, speech-language pathologists must placed on a tray, it would look like a pretty unim- first know a few facts about the anatomy of the brain pressive mass of gray lumpy tissue (Luria, 1973). In in general and how a normal and healthy brain func- fact, for most of history the brain was thought to be tions. Readers can use the anatomy presented here as an utterly useless piece of flesh housed in the skull. a reference, review, and jumping off point to under- The Egyptians believed that the heart was the seat standing the consequences of damage to the structures of human intelligence, and as such, the brain was discussed. This chapter begins with the big picture promptly removed during mummification. In his and works down into the specifics of brain anatomy. essay On Sleep and Sleeplessness, Aristotle argued that the brain is a complex cooling mechanism for our bodies that works primarily to help cool and The Central Nervous condense water vapors rising in our bodies (Aristo- tle, republished 2011). He also established a strong System argument in this same essay for why infants should not drink wine. The basis for this argument was that The nervous system is divided into two major sec- infants already have Central nervous tions: the central nervous system and the peripheral too much moisture system The brain and nervous system.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Nasal Cavity Trachea Right Main (Primary) Bronchus Left Main (Primary) Bronchus Nostril Oral Cavity Pharynx Larynx Right Lung
    Nasal cavity Oral cavity Nostril Pharynx Larynx Trachea Left main Right main (primary) (primary) bronchus bronchus Left lung Right lung Diaphragm © 2018 Pearson Education, Inc. 1 Cribriform plate of ethmoid bone Sphenoidal sinus Frontal sinus Posterior nasal aperture Nasal cavity • Nasal conchae (superior, Nasopharynx middle, and inferior) • Pharyngeal tonsil • Nasal meatuses (superior, middle, and inferior) • Opening of pharyngotympanic • Nasal vestibule tube • Nostril • Uvula Hard palate Oropharynx • Palatine tonsil Soft palate • Lingual tonsil Tongue Laryngopharynx Hyoid bone Larynx Esophagus • Epiglottis • Thyroid cartilage Trachea • Vocal fold • Cricoid cartilage (b) Detailed anatomy of the upper respiratory tract © 2018 Pearson Education, Inc. 2 Pharynx • Nasopharynx • Oropharynx • Laryngopharynx (a) Regions of the pharynx © 2018 Pearson Education, Inc. 3 Posterior Mucosa Esophagus Submucosa Trachealis Lumen of Seromucous muscle trachea gland in submucosa Hyaline cartilage Adventitia (a) Anterior © 2018 Pearson Education, Inc. 4 Intercostal muscle Rib Parietal pleura Lung Pleural cavity Trachea Visceral pleura Thymus Apex of lung Left superior lobe Right superior lobe Oblique Horizontal fissure fissure Right middle lobe Left inferior lobe Oblique fissure Right inferior lobe Heart (in pericardial cavity of mediastinum) Diaphragm Base of lung (a) Anterior view. The lungs flank mediastinal structures laterally. © 2018 Pearson Education, Inc. 5 Posterior Vertebra Esophagus (in posterior mediastinum) Root of lung at hilum Right lung • Left main bronchus Parietal pleura • Left pulmonary artery • Left pulmonary vein Visceral pleura Pleural cavity Left lung Thoracic wall Pulmonary trunk Pericardial membranes Heart (in mediastinum) Sternum Anterior mediastinum Anterior (b) Transverse section through the thorax, viewed from above © 2018 Pearson Education, Inc. 6 Alveolar duct Alveoli Respiratory bronchioles Alveolar duct Terminal bronchiole Alveolar sac (a) Diagrammatic view of respiratory bronchioles, alveolar ducts, and alveoli © 2018 Pearson Education, Inc.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • Submucosa Precedes Lamina Propria in Initiating Fibrosis in Oral Submucous Fibrosis - Evidence Based on Collagen Histochemistry
    SUBMUCOSA PRECEDES LAMINA PROPRIA IN INITIATING FIBROSIS IN ORAL SUBMUCOUS FIBROSIS - EVIDENCE BASED ON COLLAGEN HISTOCHEMISTRY. *Anna P. Joseph ** R. Rajendran Abstract Oral submucous fibrosis is a chronic insidious disease and a well-recognized potentially malignant condition of the oral cavity. It is a collagen related disorder associated with betel quid chewing and characterized by progressive hyalinization of the lamina propria. Objectives: It is traditionally held that in oral submucous fibrosis the hyalinization process starts from the lamina propria and progresses to involve the submucosal tissues. However reports of some investigators suggest that on the contrary, the fibrosis starts in the submucosa and not in the juxta epithelium as previously assumed. Methods: A histochemical study comparing the pattern of collagen deposition and hyalinization in early and advanced cases of oral submucous fibrosis was done using special stain for collagen. Result & Conclusion: The results suggest that in a certain percentage of cases submucosa precedes the lamina propria in initiating fibrosis in this disease. This could have implications on the differences in clinical presentation, biological progression, neoplastic transformation and responsiveness to treatment. Introduction fibrosis (OSF) is an insidious chronic fibrotic disease and a well recognized premalignant Fibrosis, a conspicuous feature of condition that involves the oral mucosa and chronically inflamed tissue is characterized by occasionally the pharynx and the upper progressive
    [Show full text]