Female Mate Choice and Male Ornamentation in the Stalk-Eyed Fly, Diasemopsis Meigenii

Total Page:16

File Type:pdf, Size:1020Kb

Female Mate Choice and Male Ornamentation in the Stalk-Eyed Fly, Diasemopsis Meigenii de la Motte & Burkhardt 1983 1 Female Mate Choice and Male Ornamentation in the Stalk-Eyed Fly, Diasemopsis meigenii James Malcolm Howie Submitted for Ph.D. University College London 2 I, James Malcolm Howie, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 A C K N O W L E D G E M E N T S First and foremost, I would like to thank my two Ph.D. supervisors, Professor Kevin Fowler (Kevin) and Professor Andrew Pomiankowski (POM). Both have been excellent, and have pushed, and pulled, and sometimes frustrated me into shape. I have learned a lot from them, and I suspect the lessons (the ‘Kevin’ and ‘POM’ in my head) will keep on coming. Thanks guys!! Next, I would like to thank all of the members of the stalkie lab, and also, more recently, those of the Drosophila lab. The Ph.D. would not have happened without you – and that means all of you, really. Thanks! The names of you lot are (in – I hope – alphabetical order), Aaron Towlson, Alison Cotton, David Ellis, Elisabeth (Liz) Harley, Lara Meade, Lawrence Bellamy, Luke Lazarou, Nadine Chapman and Sam Cotton (as well the Drosophila guys, Filipe Ruzicka and Mark Hill). I want to also give a special thanks to Nadine Chapman, who helped me a great deal when I first arrived at this lab, and got me started and integrated. Thanks too, to David Murrel for his advice at my upgrade – it helped. For those who want to share that advice, in short: things take longer than you think. Further to this, I have a raft of summer students and third year students and further fourth year project students to thank for their help. These are, Emily Heathwood, Sam Finnegan (who, I believe, now joins us in the stalkie lab – hurrah!), Maya Konishi, Jack Munns, Isabel Burgess, Zak Jolly --- and a very, very large thanks has to go out to the main man, Harry Dawson, who got down in the trenches, when we counted, and counted, and collected and collected, and dissected and dissected our way through the largest experiment of this Ph.D. and (so far) my life. Thanks man! Now, to the two lab assistants who also helped for short stints. Actually, these are more than lab assistants, as they are my good friends, Anna Aichinger (well, more than a friend), and Koichi Yamanoha. Thanks to you too guys J 4 Of course, on top of all this, there are the friends and fellow scientists from this university and a few others without whom this would all have been that bit less awesome. These include, Claire Asher, Claire Fourcade, Deirdre Dinneen, Federico Mancinelli, Jeremy (Jez) Owen, Mark (the ‘fish king’) Ransley, Anna Rudzinski, Andy, Fraser, Kate Brown, Ian Evans, Ali – the main man at security – James Michaels (without this man’s drill!!), Ridhima and Omer M Sharif. For excellent bro time, and scientific debate, a massive shout out has to be made for Henry Ferguson-Gow. I also want to thank Rich, Greg (Tomlinson), Jon Kennedy, Rafi Latif, Arun Rao, Chloë Swart, Edite Garjane, Steph Ratcliffe, Stephen Bush, Steven Cass, Sebastian Revell, Mish Doyle, Sam Bedford, Maggie May, and Daisy Dickenson – for keeping me alive. After this, I have, of course, to thank my funders – NERC. And now, to the extended family: Annette and John Calver, Tabitha and Nigel, Martine and John, Uncle Dave and Marg, Michelle and Hailey. I have to give a serious thanks to Elisabeth and Christian Aichinger, and to Theresa Aichinger, Doris Lamplmair, and Steffi Rizaj. Thanks! Now to my close relations: thanks Jon, for being, well, about. Thanks more than I can say, to my parents, Siân Howie, and Malcolm Howie. Without these guys, I wonder if I’d ever have made it to the end of this. If I had more time, I would say more. But you are the best parents that one could want. Thanks so much. And then there’s Anna! Ich liebe dich! Und danke! You have helped in more ways than you can know, as well as in the literal help with my diagrammatic figures, and in the lab, and in the band. Well, you are the best. Finally, I would like to dedicate this work to my grandparents, none of whom will either be here, or be able to see this – but without you, I wouldn’t be here (of course) but I also wouldn’t have become the person that I have. To, Helen Findlay, George Findlay, Mary Howie, and Allen Howie – thanks! 5 A B S T R A C T Female mate choice is a crucial driver of sexual selection, leading to the evolution of the diverse male sexual ornaments seen in nature. Yet little is known about the factors that cause variation in different components of female preference, or how these components interact to influence the series of choices that exert selection on male ornaments. Likewise, it is not known how the signals of genetic condition revealed by male ornaments, or reproductive capacity, vary across environments. But this variation is important for both the direct and indirect genetic benefits of female mate choice, as well as for the male-driven effects of reproductive investment on ejaculate allocation and sexual selection. Here, I use the sexually dimorphic African stalk-eyed fly species Diasemopsis meigenii to conduct empirical studies to address these issues. First, I manipulate female mating status (virgin versus mated) and use mathematical and statistical techniques to decompose mate choices made in a repeated sequential no-choice design into estimates of preference, and selection on the male ornament. I show that choosiness and selection, but not the preference function, are elevated in mated females. Second, I use larval diet manipulation and a series of crosses within and between a suite of inbred lines to investigate the across-environmental genetic condition dependence of male sexual ornaments relative to nonsexual traits. I find evidence for the heightened condition dependence of the male sexual trait (male eyespan), and for a novel gene-by-environment interaction in which the effects of genetic stress on sexual trait expression are masked in both high and low but not intermediate environments. Finally, I measure the effects of environmental (E) and genetic (G) stress on reproductive, fertility and attractiveness traits, and find evidence for a qualitative alignment of trait responses (all tend to be positive), but a negative integration across traits (traits that respond most to E respond least to G). The results have important implications for the operation of sexual selection in nature. 6 T A B L E O F C O N T E N T S Chapter 1: General introduction 1.1 Overview 12 1.2 Sexual selection: an historic overview 13 1.3 Theories of inter-sexual selection 16 1.4 Models of condition-dependent sexual selection 29 1.5 The maintenance of additive genetic variance 35 1.6 Reproductive investment 42 1.7 Female mate choice 49 1.8 A review of the literature on stalk-eyed flies 63 1.9 Overview of thesis chapters 83 Mating status affects components of female mating Chapter 2: behaviour and sexual selection in the stalk-eyed fly, Diasemopsis meigenii 2.1 Abstract 89 2.2 Introduction 90 2.3 Methods 97 2.4 Results 111 2.5 Discussion 125 Environmental variation can amplify or mask the signal Chapter 3: of genetic condition in sexual ornaments, in stalk-eyed flies 3.1 Abstract 140 3.2 Introduction 141 3.3 Methods 145 3.4 Results 154 3.5 Discussion 160 7 Environmental and genetic condition dependence of pre- Chapter 4: and post-copulatory reproductive traits in the stalk-eyed fly, Diasemopsis meigenii 4.1 Abstract 173 4.2 Introduction 174 4.3 Methods 182 4.4 Results 190 4.5 Discussion 202 Chapter 5: General discussion 5.1 Overview 216 5.2 Summary of principal findings 217 5.3 Future directions 237 5.4 Final thoughts 247 Chapter 6: References 248 Chapter 7: Appendix 7.1-A Chapter 2. Supplementary material 284 7.1-B Chapter 3. Supplementary material 312 7.1-C Chapter 4. Supplementary material 340 7.2 Female Sneak Copulation 396 7.3 Evolution: Sex or Survival 409 8 L I S T O F F I G U R E S Figure 1.1 51 Figure 1.2 53 Figure 2.1 112 Figure 2.2 113 Figure 2.3 114 Figure 2.4 116 Figure 2.5 118 Figure 2.6 119 Figure 2.7 120 Figure 2.8 122 Figure 2.9 124 Figure 2.10 126 Figure 3.1 147 Figure 3.2 155 Figure 3.3 159 Figure 3.4 161 Figure 3.5 162 Figure 4.1 184 Figure 4.2 191 Figure 4.3 193 Figure 4.4 194 Figure 4.5 196 9 L I S T O F T A B L E S Table 4.1 198 10 CHAPTER 1 GENERAL INTRODUCTION 11 1.1 O V E R V I E W In this introduction, I firstly outline the classical models of sexual selection and discuss the mechanisms by which female preference for elaborate male secondary sexual ornamental traits can evolve. I then describe the lek paradox, introduce the concept of condition and discuss how condition dependence and gene- environment (G x E) interactions can interact to increase additive genetic variation (VA) in sexual traits, resolve the lek paradox, or undermine ornament reliability and the indirect benefits of choice.
Recommended publications
  • The Occurrence of Stalk-Eyed Flies (Diptera, Diopsidae) in the Arabian Peninsula, with a Review of Cluster Formation in the Diopsidae Hans R
    Tijdschrift voor Entomologie 160 (2017) 75–88 The occurrence of stalk-eyed flies (Diptera, Diopsidae) in the Arabian Peninsula, with a review of cluster formation in the Diopsidae Hans R. Feijen*, Ralph Martin & Cobi Feijen Catalogue and distribution data are presented for the six Diopsidae species known to occur in the Arabian Peninsula: Sphyracephala beccarii, Chaetodiopsis meigenii, Diasemopsis aethiopica, Diopsis arabica, Diopsis mayae and Diopsis sp. (ichneumonea species group). The biogeographical aspects of their distribution are discussed. Records of Diopsis apicalis and Diopsis collaris are removed from the list for Arabia as these were based on misidentifications. Synonymies involving Diasemopsis aethiopica and Diasemopsis varians are discussed. Only one out of four specimens in the D. elegantula type series proved conspecific with D. aethiopica. The synonymy of D. aethiopica and D. varians is rejected. A lectotype for Diasemopsis elegantula is now designated. D. elegantula is proposed as junior synonym of D. varians. A fly cluster of more than 80,000 Sphyracephala beccarii, observed in Oman, is described. The occurrence of cluster formations in the Diopsidae is reviewed, while a possible explanation is indicated. Hans R. Feijen*, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands. [email protected] Ralph Martin, University of Freiburg, Münchhofstraße 14, 79106 Freiburg, Germany Cobi Feijen, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Introduction catalogue for Diopsidae, Steyskal (1972) only re- Westwood (1837b) described Diopsis arabica as ferred to Westwood and Hennig as far as Diopsidae the first stalk-eyed fly from the Arabian Peninsula. in Arabia was concerned.
    [Show full text]
  • Tropical Fish Now That You Have Set up Your Aquarium and Are Starting to Think About Adding Fish, You Have Many Choices to Choose From
    Tropical Fish Now that you have set up your aquarium and are starting to think about adding fish, you have many choices to choose from. One specific type of fish is the tropical fish, found in tropical waters all over the world and in areas near the equator. They can live in fresh water such as ponds, lakes, streams and even oceans that are salt water. In home aquariums, tropical fish are usually kept in heated fish tanks or in areas where the ambient room temperature is between 70°F - 82°F. As you make your decisions, be sure to research their compatibility, hardiness and if they are a schooling fish or not. Selecting the right fish will help ensure that you have hours of enjoyment and success. Today, many freshwater fish are captive bred either in fish farms or by hobbyists, making them readily available and easy to find. Popular freshwater tropical fish include Bettas, Guppies, Tetras, Swordtails, Platys, Barbs, Mollies and Corydoras among others. Sometimes people starting out in the aquatic hobby may not always provide their fish with ideal living conditions. Fish recommended for beginners and new aquariums must be durable and able to handle sometimes-poor water quality and stressful living conditions. The list included here are freshwater fish and will provide you with a nice assortment to consider. Cold -Water Fish The most common cold-water fish species is the goldfish but there are many other fish species that do not require a heated tank such as White Cloud Mountain Minnows, Bloodfin Tetras, and Rosy Barbs among others; where their preferred water temperature is between 64 to 72 degrees F.
    [Show full text]
  • Superfamilies Tephritoidea and Sciomyzoidea (Dip- Tera: Brachycera) Kaj Winqvist & Jere Kahanpää
    20 © Sahlbergia Vol. 12: 20–32, 2007 Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Dip- tera: Brachycera) Kaj Winqvist & Jere Kahanpää Winqvist, K. & Kahanpää, J. 2007: Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Diptera: Brachycera). — Sahlbergia 12:20-32, Helsinki, Finland, ISSN 1237-3273. Another part of the updated checklist of Finnish flies is presented. This part covers the families Lonchaeidae, Pallopteridae, Piophilidae, Platystomatidae, Tephritidae, Ulididae, Coelopidae, Dryomyzidae, Heterocheilidae, Phaeomyii- dae, Sciomyzidae and Sepsidae. Eight species are recorded from Finland for the first time. The following ten species have been erroneously reported from Finland and are here deleted from the Finnish checklist: Chaetolonchaea das- yops (Meigen, 1826), Earomyia crystallophila (Becker, 1895), Lonchaea hirti- ceps Zetterstedt, 1837, Lonchaea laticornis Meigen, 1826, Prochyliza lundbecki (Duda, 1924), Campiglossa achyrophori (Loew, 1869), Campiglossa irrorata (Fallén, 1814), Campiglossa tessellata (Loew, 1844), Dioxyna sororcula (Wie- demann, 1830) and Tephritis nigricauda (Loew, 1856). The Finnish records of Lonchaeidae: Lonchaea bruggeri Morge, Lonchaea contigua Collin, Lonchaea difficilis Hackman and Piophilidae: Allopiophila dudai (Frey) are considered dubious. The total number of species of Tephritoidea and Sciomyzoidea found from Finland is now 262. Kaj Winqvist, Zoological Museum, University of Turku, FI-20014 Turku, Finland. Email: [email protected] Jere Kahanpää, Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland. Email: kahanpaa@iki.fi Introduction new millennium there was no concentrated The last complete checklist of Finnish Dipte- Finnish effort to study just these particular ra was published in Hackman (1980a, 1980b). groups. Consequently, before our work the Recent checklists of Finnish species have level of knowledge on Finnish fauna in these been published for ‘lower Brachycera’ i.e.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • From an Easy Method to Computerized Species Determination
    insects Article Connecting the Dots: From an Easy Method to Computerized Species Determination Senta Niederegger 1,*, Klaus-Peter Döge 2, Marcus Peter 2, Tobias Eickhölter 2 and Gita Mall 1 1 Institute of Legal Medicine, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; [email protected] 2 Department of Electrical Engineering and Information Technology, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany; [email protected] (K.-P.D.); [email protected] (M.P.); [email protected] (T.E.) * Correspondence: [email protected]; Tel.: +49-3641-9397130 Academic Editors: David Rivers and John R. Wallace Received: 8 March 2017; Accepted: 12 May 2017; Published: 18 May 2017 Abstract: Differences in growth rate of forensically important dipteran larvae make species determination an essential requisite for an accurate estimation of time since colonization of the body. Interspecific morphological similarities, however, complicate species determination. Muscle attachment site (MAS) patterns on the inside of the cuticula of fly larvae are species specific and grow proportionally with the animal. The patterns can therefore be used for species identification, as well as age estimation in forensically important dipteran larvae. Additionally, in species where determination has proven to be difficult—even when employing genetic methods—this easy and cheap method can be successfully applied. The method was validated for a number of Calliphoridae, as well as Sarcophagidae; for Piophilidae species, however, the method proved to be inapt. The aim of this article is to assess the utility of the MAS method for applications in forensic entomology.
    [Show full text]
  • Bushhopper Stalk-Eyed Fly Coconut Crab Periodical Cicada
    PIOTR NASKRECKI PHOTO BANNERS HANGING IN CHANGING EXHIBIT GALLERY Bushhopper Stalk-Eyed Fly Phymateus viridipes Diasemopsis fasciata Gorongosa National Park, Mozambique Gorongosa National Park, Mozambique A nymph of the bushhopper from Mozambique Like antlers on a deer’s head, the long can afford to be slow and conspicuous thanks eyestalks on this fly’s head are used in maleto- to the toxins in its body. These insects feed male combat, allowing the individual with on plants rich in poisonous metabolites, the largest stalks to win access to females including some that can cause heart failure, so most predators avoid them. Coconut Crab Periodical Cicada Birgus latro Magicicada septendecim Guadalcanal, Solomon Islands Annandale, Virginia The coconut crab is not just another land Periodical cicadas spend seventeen years crab; it is the largest living terrestrial underground, feeding on the roots of plants. invertebrate, reaching a weight of nine After that time they all emerge at the same pounds and a leg span of over three feet. time, causing consternation in people and Their lifespan is equally impressive, and the a feeding frenzy in birds. A newly emerged largest individuals are believed to be forty to (eclosed) periodical cicada is almost snow sixty years old. white, but within a couple of hours its body darkens and the exoskeleton becomes hard. BIG BUGS • Dec. 31, 2015 - April 17, 2016 Virginia Living Museum • 524 J. Clyde Morris Blvd. • Newport News, VA 23601 • 757-595-1900 • thevlm.org PIOTR NASKRECKI PHOTO BANNERS HANGING IN CHANGING EXHIBIT GALLERY Dung Beetles Lappet Moth Kheper aegyptiorum Chrysopsyche lutulenta Gorongosa National Park, Mozambique Gorongosa National Park, Mozambique Dung beetles are very important members of At the beginning of the dry season in Savanna communities.
    [Show full text]
  • Diptera, Diopsidae) in Sri Lanka with Descriptions of Two New Species and a Review of the Other Stalk-Eyed Flies from the Island
    ZooKeys 946: 113–151 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.946.53108 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A revision of the genus Teleopsis Rondani (Diptera, Diopsidae) in Sri Lanka with descriptions of two new species and a review of the other stalk-eyed flies from the island Hans R. Feijen1, Cobi Feijen1 1 Naturalis Biodiversity Center, P. O. Box 9517, 2300 RA Leiden, The Netherlands Corresponding author: Hans R. Feijen ([email protected]) Academic editor: R. Meier | Received 10 April 2020 | Accepted 27 May 2020 | Published 6 July 2020 http://zoobank.org/CFC2300D-4E2C-44BF-B2A4-E11E406B5A0F Citation: Feijen HR, Feijen C (2020) A revision of the genus Teleopsis Rondani (Diptera, Diopsidae) in Sri Lanka with descriptions of two new species and a review of the other stalk-eyed flies from the island. ZooKeys 946: 113–151. https://doi.org/10.3897/zookeys.946.53108 Abstract The literature on Sri Lankan Diopsidae is reviewed. Eight Diopsidae are now known to occur in Sri Lanka, five species in the genusTeleopsis and one species each in the genera Sphyracephala, Diopsis, and Cyrtodiopsis. The presence of Cyrtodiopsis requires confirmation to exclude the possibility of mislabelling. All five Teleopsis species are endemic, as are the Diopsis species and probably the Cyrtodiopsis species. Only Sphyracephala bipunctipennis Senior-White has a larger distribution as it also occurs in India. A key is pre- sented for the Diopsidae of Sri Lanka. Three Teleopsis species were already known to occur in Sri Lanka: T. ferruginea Röder, T.
    [Show full text]
  • Reproductive Morphology and Sperm Depletion in Crayfish
    WORCESTER POLYTECHNIC INSTITUTE Reproductive morphology and sperm depletion in crayfish A Major Qualifying Project submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Lauren Pehnke and Aung Pyae 4/26/2012 Acknowledgements There are a number of people to whom we owe our thanks. Firstly, our advisors, Michael Buckholt, Daniel Gibson, and Lauren Mathews, without whose guidance, we would have been lost. Secondly, to the other crayfish ProjectLab groups, for helping us collect some of our specimens from the Quinebaug River in the fall. Lastly, we would like to thank the other groups working in the ProjectLab for their patience and understanding on the matters of keeping live crayfish and the odors inherent to doing so. 1 Abstract Females of the species Orconectes limosus have shown a preference for virgin males over those which had mated recently, when given the choice in prior studies. It was hypothesized that a depletion in sperm stores in the males could be an explanation for this preference. Using conventional methods such as microdissection, resin embedding, and light and electron microscopy, we attempted to show evidence of this depletion and the sperm’s deposition within the female’s spermatheca. 2 Table of Contents Acknowledgements ......................................................................................................................... 1 Abstract ..........................................................................................................................................
    [Show full text]
  • The AQUATIC DESIGN CENTRE
    The AQUATIC DESIGN CENTRE ltd 26 Zennor Road Trade Park, Balham, SW12 0PS Ph: 020 7580 6764 [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY Complete Freshwater Livestock (2019) Livebearers Common Name In Stock Y/N Limia melanogaster Y Poecilia latipinna Dalmatian Molly Y Poecilia latipinna Silver Lyre Tail Molly Y Poecilia reticulata Male Guppy Asst Colours Y Poecilia reticulata Red Cap, Cobra, Elephant Ear Guppy Y Poecilia reticulata Female Guppy Y Poecilia sphenops Molly: Black, Canary, Silver, Marble. y Poecilia velifera Sailfin Molly Y Poecilia wingei Endler's Guppy Y Xiphophorus hellerii Swordtail: Pineapple,Red, Green, Black, Lyre Y Xiphophorus hellerii Kohaku Swordtail, Koi, HiFin Xiphophorus maculatus Platy: wagtail,blue,red, sunset, variatus Y Tetras Common Name Aphyocarax paraguayemsis White Tip Tetra Aphyocharax anisitsi Bloodfin Tetra Y Arnoldichthys spilopterus Red Eye Tetra Y Axelrodia riesei Ruby Tetra Bathyaethiops greeni Red Back Congo Tetra Y Boehlkea fredcochui Blue King Tetra Copella meinkeni Spotted Splashing Tetra Crenuchus spilurus Sailfin Characin y Gymnocorymbus ternetzi Black Widow Tetra Y Hasemania nana Silver Tipped Tetra y Hemigrammus erythrozonus Glowlight Tetra y Hemigrammus ocelifer Beacon Tetra y Hemigrammus pulcher Pretty Tetra y Hemigrammus rhodostomus Diamond Back Rummy Nose y Hemigrammus rhodostomus Rummy nose Tetra y Hemigrammus rubrostriatus Hemigrammus vorderwimkieri Platinum Tetra y Hyphessobrycon amandae Ember Tetra y Hyphessobrycon amapaensis Amapa Tetra Y Hyphessobrycon bentosi
    [Show full text]
  • Midsouth Entomologist 5: 39-53 ISSN: 1936-6019
    Midsouth Entomologist 5: 39-53 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Research Article Insect Succession on Pig Carrion in North-Central Mississippi J. Goddard,1* D. Fleming,2 J. L. Seltzer,3 S. Anderson,4 C. Chesnut,5 M. Cook,6 E. L. Davis,7 B. Lyle,8 S. Miller,9 E.A. Sansevere,10 and W. Schubert11 1Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, e-mail: [email protected] 2-11Students of EPP 4990/6990, “Forensic Entomology,” Mississippi State University, Spring 2012. 2272 Pellum Rd., Starkville, MS 39759, [email protected] 33636 Blackjack Rd., Starkville, MS 39759, [email protected] 4673 Conehatta St., Marion, MS 39342, [email protected] 52358 Hwy 182 West, Starkville, MS 39759, [email protected] 6101 Sandalwood Dr., Madison, MS 39110, [email protected] 72809 Hwy 80 East, Vicksburg, MS 39180, [email protected] 850102 Jonesboro Rd., Aberdeen, MS 39730, [email protected] 91067 Old West Point Rd., Starkville, MS 39759, [email protected] 10559 Sabine St., Memphis, TN 38117, [email protected] 11221 Oakwood Dr., Byhalia, MS 38611, [email protected] Received: 17-V-2012 Accepted: 16-VII-2012 Abstract: A freshly-euthanized 90 kg Yucatan mini pig, Sus scrofa domesticus, was placed outdoors on 21March 2012, at the Mississippi State University South Farm and two teams of students from the Forensic Entomology class were assigned to take daily (weekends excluded) environmental measurements and insect collections at each stage of decomposition until the end of the semester (42 days). Assessment of data from the pig revealed a successional pattern similar to that previously published – fresh, bloat, active decay, and advanced decay stages (the pig specimen never fully entered a dry stage before the semester ended).
    [Show full text]
  • New Species of Rhizomyces (Ascomycota, Laboulbeniales) Parasitic on African Stalk-Eyed Flies (Diptera, Diopsidae)
    European Journal of Taxonomy 474: 1–13 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.474 www.europeanjournaloftaxonomy.eu 2018 · Rossi W. & Feijen H.R. This work is licensed under a Creative Commons Attribution 3.0 License. Research article New species of Rhizomyces (Ascomycota, Laboulbeniales) parasitic on African stalk-eyed flies (Diptera, Diopsidae) Walter ROSSI 1,* & Hans R. FEIJEN 2 1 Sect. Environmental Sciences, Dept of Life, Health and Environmental Sciences, University of L’Aquila, Coppito (AQ), 67100 Italy. 2 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. Three new species of Rhizomyces Thaxt., parasitic on African stalk-eyed flies, are described. These are R. forcipatus W.Rossi & Feijen sp. nov., parasitic on various species of Centrioncus Speiser from Ivory Coast, Kenya and Malawi and Teloglabrus Feijen from South Africa; R. ramosus W.Rossi & Feijen sp. nov., parasitic on Diopsina nitida (Adams, 1903) from Uganda; R. tschirnhausii W.Rossi & Feijen sp. nov., parasitic on Diopsina africana (Shillito, 1940) from Uganda. All previous records of species of Rhizomyces are presented in tabulated form with updated host names. A key is presented to all species of Rhizomyces. The occurrence of Rhizomyces and other taxa of the Laboulbeniales Lindau in the genera of the Diopsidae Billberg is discussed. Keywords. Afrotropical, Diopsidae, Laboulbeniales, Rhizomyces, taxonomy. Rossi W. & Feijen H.R. 2018. New species of Rhizomyces (Ascomycota, Laboulbeniales) parasitic on African stalk- eyed flies (Diptera, Diopsidae).European Journal of Taxonomy 474: 1–13. https://doi.org/10.5852/ejt.2018.474 Introduction About 10% of the approximately 2100 described species of Laboulbeniales Lindau, parasitic fungi of arthropods, is associated with the Diptera Linnaeus, 1758.
    [Show full text]
  • Theoretical Aspects of the Evolution of Reproductive Parasites
    1 Theoretical Aspects of the Evolution of Reproductive Parasites by Jan Engelstaedter A thesis submitted for the degree of Doctor of Philosophy of the University of London December 2006 Department of Biology University College London UMI Number: U592750 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U592750 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 2 Declaration This dissertation represents, except where specifically mentioned in the text, the results of my own research. The dissertation is not substantially the same as any that I have submitted for a degree or other qualification at this or any other university. No part of my dissertation has already been or is currently submitted for any such degree or other qualification. Jan Engelstaedter Dr. Gregory Hurst teandidate Supervisor 3 A bstract Reproductive parasites are maternally inherited endosymbionts that manipulate the reproduction of their hosts in a way that enhances the transmission of the parasites, but is deleterious to the hosts. In the present thesis, I try to resolve some ques­ tions concerning the evolution of reproductive parasites and their hosts by means of theoretical modelling, using a variety of approaches including recurrence equations, optimisation, and stochastic modelling.
    [Show full text]