Lecture Computing Before and After World War II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer History – the Pitfalls of Past Futures
Research Collection Working Paper Computer history – The pitfalls of past futures Author(s): Gugerli, David; Zetti, Daniela Publication Date: 2019 Permanent Link: https://doi.org/10.3929/ethz-b-000385896 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library TECHNIKGESCHICHTE DAVID GUGERLI DANIELA ZETTI COMPUTER HISTORY – THE PITFALLS OF PAST FUTURES PREPRINTS ZUR KULTURGESCHICHTE DER TECHNIK // 2019 #33 WWW.TG.ETHZ.CH © BEI DEN AUTOREN Gugerli, Zetti/Computer History Preprints zur Kulturgeschichte der Technik #33 Abstract The historicization of the computer in the second half of the 20th century can be understood as the effect of the inevitable changes in both its technological and narrative development. What interests us is how past futures and therefore history were stabilized. The development, operation, and implementation of machines and programs gave rise to a historicity of the field of computing. Whenever actors have been grouped into communities – for example, into industrial and academic developer communities – new orderings have been constructed historically. Such orderings depend on the ability to refer to archival and published documents and to develop new narratives based on them. Professional historians are particularly at home in these waters – and nevertheless can disappear into the whirlpool of digital prehistory. Toward the end of the 1980s, the first critical review of the literature on the history of computers thus offered several programmatic suggestions. It is one of the peculiar coincidences of history that the future should rear its head again just when the history of computers was flourishing as a result of massive methodological and conceptual input. -
Microprocessors History of Computing Nouf Assaid
MICROPROCESSORS HISTORY OF COMPUTING NOUF ASSAID 1 Table of Contents Introduction 2 Brief History 2 Microprocessors 7 Instruction Set Architectures 8 Von Neumann Machine 9 Microprocessor Design 12 Superscalar 13 RISC 16 CISC 20 VLIW 23 Multiprocessor 24 Future Trends in Microprocessor Design 25 2 Introduction If we take a look around us, we would be sure to find a device that uses a microprocessor in some form or the other. Microprocessors have become a part of our daily lives and it would be difficult to imagine life without them today. From digital wrist watches, to pocket calculators, from microwaves, to cars, toys, security systems, navigation, to credit cards, microprocessors are ubiquitous. All this has been made possible by remarkable developments in semiconductor technology enabling in the last 30 years, enabling the implementation of ideas that were previously beyond the average computer architect’s grasp. In this paper, we discuss the various microprocessor technologies, starting with a brief history of computing. This is followed by an in-depth look at processor architecture, design philosophies, current design trends, RISC processors and CISC processors. Finally we discuss trends and directions in microprocessor design. Brief Historical Overview Mechanical Computers A French engineer by the name of Blaise Pascal built the first working mechanical computer. This device was made completely from gears and was operated using hand cranks. This machine was capable of simple addition and subtraction, but a few years later, a German mathematician by the name of Leibniz made a similar machine that could multiply and divide as well. After about 150 years, a mathematician at Cambridge, Charles Babbage made his Difference Engine. -
Turing's Influence on Programming — Book Extract from “The Dawn of Software Engineering: from Turing to Dijkstra”
Turing's Influence on Programming | Book extract from \The Dawn of Software Engineering: from Turing to Dijkstra" Edgar G. Daylight∗ Eindhoven University of Technology, The Netherlands [email protected] Abstract Turing's involvement with computer building was popularized in the 1970s and later. Most notable are the books by Brian Randell (1973), Andrew Hodges (1983), and Martin Davis (2000). A central question is whether John von Neumann was influenced by Turing's 1936 paper when he helped build the EDVAC machine, even though he never cited Turing's work. This question remains unsettled up till this day. As remarked by Charles Petzold, one standard history barely mentions Turing, while the other, written by a logician, makes Turing a key player. Contrast these observations then with the fact that Turing's 1936 paper was cited and heavily discussed in 1959 among computer programmers. In 1966, the first Turing award was given to a programmer, not a computer builder, as were several subsequent Turing awards. An historical investigation of Turing's influence on computing, presented here, shows that Turing's 1936 notion of universality became increasingly relevant among programmers during the 1950s. The central thesis of this paper states that Turing's in- fluence was felt more in programming after his death than in computer building during the 1940s. 1 Introduction Many people today are led to believe that Turing is the father of the computer, the father of our digital society, as also the following praise for Martin Davis's bestseller The Universal Computer: The Road from Leibniz to Turing1 suggests: At last, a book about the origin of the computer that goes to the heart of the story: the human struggle for logic and truth. -
Analytical Engine, 1838 ALLAN G
Charles Babbage’s Analytical Engine, 1838 ALLAN G. BROMLEY Charles Babbage commenced work on the design of the Analytical Engine in 1834 following the collapse of the project to build the Difference Engine. His ideas evolved rapidly, and by 1838 most of the important concepts used in his later designs were established. This paper introduces the design of the Analytical Engine as it stood in early 1838, concentrating on the overall functional organization of the mill (or central processing portion) and the methods generally used for the basic arithmetic operations of multiplication, division, and signed addition. The paper describes the working of the mechanisms that Babbage devised for storing, transferring, and adding numbers and how they were organized together by the “microprogrammed” control system; the paper also introduces the facilities provided for user- level programming. The intention of the paper is to show that an automatic computing machine could be built using mechanical devices, and that Babbage’s designs provide both an effective set of basic mechanisms and a workable organization of a complete machine. Categories and Subject Descriptors: K.2 [History of Computing]- C. Babbage, hardware, software General Terms: Design Additional Key Words and Phrases: Analytical Engine 1. Introduction 1838. During this period Babbage appears to have made no attempt to construct the Analytical Engine, Charles Babbage commenced work on the design of but preferred the unfettered intellectual exploration of the Analytical Engine shortly after the collapse in 1833 the concepts he was evolving. of the lo-year project to build the Difference Engine. After 1849 Babbage ceased designing calculating He was at the time 42 years o1d.l devices. -
A Bibliography of Publications By, and About, Charles Babbage
A Bibliography of Publications by, and about, Charles Babbage Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 08 March 2021 Version 1.24 Abstract -analogs [And99b, And99a]. This bibliography records publications of 0 [Bar96, CK01b]. 0-201-50814-1 [Ano91c]. Charles Babbage. 0-262-01121-2 [Ano91c]. 0-262-12146-8 [Ano91c, Twe91]. 0-262-13278-8 [Twe93]. 0-262-14046-2 [Twe92]. 0-262-16123-0 [Ano91c]. 0-316-64847-7 [Cro04b, CK01b]. Title word cross-reference 0-571-17242-3 [Bar96]. 1 [Bab97, BRG+87, Mar25, Mar86, Rob87a, #3 [Her99]. Rob87b, Tur91]. 1-85196-005-8 [Twe89b]. 100th [Sen71]. 108-bit [Bar00]. 1784 0 [Tee94]. 1 [Bab27d, Bab31c, Bab15]. [MB89]. 1792/1871 [Ynt77]. 17th [Hun96]. 108 000 [Bab31c, Bab15]. 108000 [Bab27d]. 1800s [Mar08]. 1800s-Style [Mar08]. 1828 1791 + 200 = 1991 [Sti91]. $19.95 [Dis91]. [Bab29a]. 1835 [Van83]. 1851 $ $ $21.50 [Mad86]. 25 [O’H82]. 26.50 [Bab51a, CK89d, CK89i, She54, She60]. $ [Enr80a, Enr80b]. $27.95 [L.90]. 28 1852 [Bab69]. 1853 [She54, She60]. 1871 $ [Hun96]. $35.00 [Ano91c]. 37.50 [Ano91c]. [Ano71b, Ano91a]. 1873 [Dod00]. 18th $45.00 [Ano91c]. q [And99a, And99b]. 1 2 [Bab29a]. 1947 [Ano48]. 1961 Adam [O’B93]. Added [Bab16b, Byr38]. [Pan63, Wil64]. 1990 [CW91]. 1991 Addison [Ano91c]. Addison-Wesley [Ano90, GG92a]. 19th [Ano91c]. Addition [Bab43a]. Additions [Gre06, Gre01, GST01]. -
Women in Computing
History of Computing CSE P590A (UW) PP190/290-3 (UCB) CSE 290 291 (D00) Women in Computing Katherine Deibel University of Washington [email protected] 1 An Amazing Photo Philadelphia Inquirer, "Your Neighbors" article, 8/13/1957 2 Diversity Crisis in Computer Science Percentage of CS/IS Bachelor Degrees Awarded to Women National Center for Education Statistics, 2001 3 Goals of this talk ! Highlight the many accomplishments made by women in the computing field ! Learn their stories, both good and bad 4 Augusta Ada King, Countess of Lovelace ! Translated and extended Menabrea’s article on Babbage’s Analytical Engine ! Predicted computers could be used for music and graphics ! Wrote the first algorithm— how to compute Bernoulli numbers ! Developed notions of looping and subroutines 5 Garbage In, Garbage Out The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform. It can follow analysis; but it has no power of anticipating any analytical relations or truths. — Ada Lovelace, Note G 6 On her genius and insight If you are as fastidious about the acts of your friendship as you are about those of your pen, I much fear I shall equally lose your friendship and your Notes. I am very reluctant to return your admirable & philosophic 'Note A.' Pray do not alter it… All this was impossible for you to know by intuition and the more I read your notes the more surprised I am at them and regret not having earlier explored so rich a vein of the noblest metal. -
The Early Mathematical Education of Ada Lovelace. Hollings, Martin And
BSHM Bulletin: Journal of the British Society for the History of Mathematics ISSN: 1749-8430 (Print) 1749-8341 (Online) Journal homepage: http://www.tandfonline.com/loi/tbsh20 The early mathematical education of Ada Lovelace Christopher Hollings, Ursula Martin & Adrian Rice To cite this article: Christopher Hollings, Ursula Martin & Adrian Rice (2017): The early mathematical education of Ada Lovelace, BSHM Bulletin: Journal of the British Society for the History of Mathematics, DOI: 10.1080/17498430.2017.1325297 To link to this article: http://dx.doi.org/10.1080/17498430.2017.1325297 © 2017 British Society for the History of Mathematics Published online: 01 Jun 2017. Submit your article to this journal Article views: 226 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tbsh20 Download by: [the Bodleian Libraries of the University of Oxford] Date: 21 June 2017, At: 06:49 BSHM Bulletin, 2017 https://doi.org/10.1080/17498430.2017.1325297 The early mathematical education of Ada Lovelace CHRISTOPHER HOLLINGS and URSULA MARTIN University of Oxford, UK ADRIAN RICE Randolph-Macon College, USA Ada, Countess of Lovelace, is remembered for a paper published in 1843, which translated and considerably extended an article about the unbuilt Analytical Engine, a general-purpose computer designed by the mathematician and inventor Charles Babbage. Her substantial appendices, nearly twice the length of the original work, contain an account of the principles of the machine, along with a table often described as ‘the first computer program’. In this paper we look at Lovelace’s education before 1840, which encompassed older traditions of practical geometry; newer textbooks influenced by continental approaches; wide reading; and a fascination with machinery. -
Lovelace & Babbage and the Creation of the 1843 'Notes'
Lovelace & Babbage and the Creation of the 1843 ‘Notes’ John Fuegi and Jo Francis Flare/MITH Augusta Ada Lovelace worked with Charles Babbage to create a description of Babbage’s unbuilt invention, the Analytical Engine, a highly advanced mechanical calculator often considered a forerunner of the electronic calculating computers of the 20th century. Ada Lovelace’s “Notes,” describing the Analytical Engine, published in Taylor’s Scientific Memoirs in 1843, contained a ground-breaking description of the possibilities of programming the machine to go beyond number-crunching to “computing” in the wider sense in which we understand the term today. This article expands on research first presented by the authors in their documentary film, To Dream Tomorrow. What shall we do to get rid of Mr. Babbage and known to have crossed the intellectual thresh- his calculating Machine? Surely if completed it old between conceptualizing computing as would be worthless as far as science is con- only for calculation on the one hand, and on cerned? the other hand, computing as we know it —British Prime Minister Sir Robert Peel, 18421 today: with wider applications made possible by symbolic substitution. The Analytical Engine does not occupy common In an early background interview at the ground with mere ‘calculating machines.’ … In Science Museum (London) for the historical enabling mechanism to combine together gen- documentary film about collaboration between eral symbols, in successions of unlimited variety Lovelace and Babbage, To Dream Tomorrow,3 and extent, a uniting link is established between Babbage authority Doron Swade mentioned the operations of matter and the abstract mental that he thought Babbage and Lovelace had processes of the most abstract branch of mathe- “very different qualities of mind.” Swade’s matical science. -
Finding a Story for the History of Computing 2018
Repositorium für die Medienwissenschaft Thomas Haigh Finding a Story for the History of Computing 2018 https://doi.org/10.25969/mediarep/3796 Angenommene Version / accepted version Working Paper Empfohlene Zitierung / Suggested Citation: Haigh, Thomas: Finding a Story for the History of Computing. Siegen: Universität Siegen: SFB 1187 Medien der Kooperation 2018 (Working paper series / SFB 1187 Medien der Kooperation 3). DOI: https://doi.org/10.25969/mediarep/3796. Erstmalig hier erschienen / Initial publication here: https://nbn-resolving.org/urn:nbn:de:hbz:467-13377 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer Creative Commons - This document is made available under a creative commons - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0/ Attribution - Non Commercial - No Derivatives 4.0/ License. For Lizenz zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz more information see: finden Sie hier: https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/ Finding a Story for the History of Computing Thomas Haigh University of Wisconsin — Milwaukee & University of Siegen WORKING PAPER SERIES | NO. 3 | JULY 2018 Collaborative Research Center 1187 Media of Cooperation Sonderforschungsbereich 1187 Medien der Kooperation Working Paper Series Collaborative Research Center 1187 Media of Cooperation Print-ISSN 2567 – 2509 Online-ISSN 2567 – 2517 URN urn :nbn :de :hbz :467 – 13377 This work is licensed under the Creative Publication of the series is funded by the German Re- Commons Attribution-NonCommercial- search Foundation (DFG). No Derivatives 4.0 International License. The Arpanet Logical Map, February, 1978 on the titl e This Working Paper Series is edited by the Collabora- page is taken from: Bradley Fidler and Morgan Currie, tive Research Center Media of Cooperation and serves “Infrastructure, Representation, and Historiography as a platform to circulate work in progress or preprints in BBN’s Arpanet Maps”, IEEE Annals of the History of in order to encourage the exchange of ideas. -
Charles Babbage?
iCompute For more fun computing lessons and resources visit: Who was Charles Babbage? 8 He was an English mathematician Charles Babbage and inventor 8 He designed the world’s first computing machine Biography for children The story of important figures in the history of computing Charles Babbage (1791 – 1871) © iCompute 2015 www.icompute -uk.com iCompute Why is Charles Babbage important? 8 He believed that machines could be designed to do complicated calculations quickly 8 His ideas led to the world’s first programmable computing machines 8 His designs contain may of the parts that modern computers use today His early years 8 Born 26th December 1791 8 The son of a London banker 8 Charles was a sickly child, often too unwell to go to school 8 He was often taught by private tutors 8 One, from Oxford, helped his love of mathematics grow © iCompute 2015 www.icompute -uk.com iCompute 8 He went to Trinity College, Cambridge in 1810 8 Elected Fellow of the Royal Society in 1816 8 Helped found the Astronomical Society in 1820 8 In 1814 he married Georgiana Whitmore 8 They had eight children 8 Only four survived to adulthood 8 Charles’ son, Henry Prevost Babbage, built some pieces to his father’s design after his Charles’ death 8 One went to Harvard University and inspired the first ever electro-mechanical computer – The Harvard Mark 1 The Harvard Mark 1 Science Museum, London © iCompute 2015 www.icompute -uk.com iCompute Charles Babbage and Computers 8 He invented the Difference Engine in 1822 which was a machine for calculating tables 8 In 1834 -
Milestones in Analog and Digital Computing
Milestones in Analog and Digital Computing Contributions to the History of Mathematics and Information Technology by Herbert Bruderer Numerous recent discoveries of rare historical analog and digital calculators and previously unknown texts, drawings, and pictures from Germany, Austria, Switzerland, Liechtenstein, and France. Worldwide, multilingual bibliography regarding the history of computer science with over 3000 entries. 12 step-by-step set of instructions for the operation of historical analog and digital calculating devices. 75 comparative overviews in tabular form. 200 illustrations. 20 comprehensive lists. 7 timelines of computer history. Published by de Gruyter Oldenbourg. Berlin/Boston 2015, xxxii, 820 pages, 119.95 Euro. During the 1970's mechanical calculating instruments and machines suddenly disappeared from the scene. They were replaced by electronic versions. Most of these devices developed since the 17th century – often very clever constructions – have been forgotten. Who can imagine today how difficult calculation was only a few decades ago? This book introduces the reader to selected milestones from prehistory and early history of computing. The Antikythera Mechanism This puzzling device was made around 200 BC. It was discovered around 1900 by divers off the Greek island of Antikythera. It is believed to be the oldest known analog (or rather hybrid) computing device. Numerous replicas have been built to unravel the mysteries of this calendar calculator. It is suspected that the machine came from the school of Archimedes. 1 Androids, Music Boxes, Chess Automatons, Looms This treatise also explores topics related to computing technology: automated human and animal figures, mecha- nized musical instruments, music boxes, as well as punched tape controlled looms and typewriters. -
The History of Computing in the History of Technology
The History of Computing in the History of Technology Michael S. Mahoney Program in History of Science Princeton University, Princeton, NJ (Annals of the History of Computing 10(1988), 113-125) After surveying the current state of the literature in the history of computing, this paper discusses some of the major issues addressed by recent work in the history of technology. It suggests aspects of the development of computing which are pertinent to those issues and hence for which that recent work could provide models of historical analysis. As a new scientific technology with unique features, computing in turn can provide new perspectives on the history of technology. Introduction record-keeping by a new industry of data processing. As a primary vehicle of Since World War II 'information' has emerged communication over both space and t ime, it as a fundamental scientific and technological has come to form the core of modern concept applied to phenomena ranging from information technolo gy. What the black holes to DNA, from the organization of English-speaking world refers to as "computer cells to the processes of human thought, and science" is known to the rest of western from the management of corporations to the Europe as informatique (or Informatik or allocation of global resources. In addition to informatica). Much of the concern over reshaping established disciplines, it has information as a commodity and as a natural stimulated the formation of a panoply of new resource derives from the computer and from subjects and areas of inquiry concerned with computer-based communications technolo gy.