Sound-Producing Sand Avalanches

Total Page:16

File Type:pdf, Size:1020Kb

Sound-Producing Sand Avalanches ContemporaryPhysics, 1997,volume 38, number 5, pages 329 ± 342 Sound-producingsand avalanch es PAUL SHOLTZ, MICHAEL BRETZ and FRANCO NORI* Sound-producingsand grains constitute one of nature’ smore puzzlingand least understood physicalphenomena. They occur naturally in two distinct types: booming and squeaking sands.Although both varieties ofsand produce unexpectedly pure acoustic emissions when sheared,they diŒ er intheir frequencyrange and duration of emission, as well as the environmentin which they tend to be found. Large-scale slumping events ondry booming dunescan produce acoustic emissions that can be heard up to 10 km awayand which resemble hums,moans, drums, thunder, foghorns or the drone of low-¯ ying propeller aircraft.These analogies emphasize the uniqueness of the phenomenon and the clarity of the producedsound. Although reports ofthese sandshave existed inthe literature for overone thousandyears, a satisfactoryexplanation for either typeof acoustic emission is still unavailable. 1.Introduction sands haveled to aconsensus that although both types of There existtwo distinct types of sand that areknown to sand produce manifest acoustic emissions, their respective produce manifest acoustic emissions when sheared. The sounding mechanisms must be substantially diŒerent. More more common of the two, known colloquiallyas ` squeak- recent laboratory production of `squeaks’ in booming sand ing’or `whistling’sand, produces ashort ( <1/4 s), high- (HaŒ1979) has nonetheless suggested acloser connection frequency (500± 2500Hz) `squeak’ when sheared or com- between the two mechanisms. Asatisfactory explanation pressed. It is fairlycommon in occurrence, and canbe for either type of acoustic activityis still unavailable. found atnumerous beaches, lakeshores and riverbeds This brief reviewis not aclosed chapter in awell- around the world. The other, rarer type of sound- understood research area,but is asummary of the producing sand occurs principallyin large,isolated dunes incomplete and unsatisfactoryproposals put forward to deep in the desert (Nori et al.1997,Criswell et al. 1975). explainsound production in squeaking and, especially, The loud, low-frequency(typically50 ± 300Hz) acoustic booming sand. Our reviewpoints out the serious problems, output of this `booming’ sand, resultant upon avalanching, incomplete theories, and the severe limitations of diŒerent has been the subject of desert folklore and legend for approaches published so far. centuries. Marco Polo (1295)wrote of evildesert spirits Booming and squeaking sands eachshow amarkedly which `attimes ®llthe airwith the sounds of allkinds of diŒerent response to waterexposure. Booming occurs best musical instruments,and alsoof drums and the clash of when the grainsare very dry, preferably severalweeks after arms’.References canbe found datingas far back asthe the lastrain. Small amounts of atmospheric humidity, ArabianNights (Carus-Wilson 1915),and asrecently asthe which creates a¯uid surface coatingon the grains, science ®ction classic Dune (Herbert 1984).Charles Darwin eŒectively preclude booming emissions in these desert (1889)also makes mention of it in his classic Voyagesof the sands (Lewis1936). Even mixing as little as® vedrops of Beagle.At least31 desert and back-beach booming dunes waterinto aone litre bagfull of booming sand cansilence havebeen located in North and South America, Africa, the acoustic emissions (HaŒ1979). Similarly, squeaking Asia,the Arabian Peninsula and the HawaiianIslands sand that is visiblymoist is not acousticallyactive either. (Lindsay et al.1976,Miwa and Okazaki1995). Sharply However,sound is most easilyproduced from squeaking contrasting diŒerences between squeaking and booming sand immediatelyafter the grainshave been `washed’in waterand subsequently dried. It is not clearwhether this is due to the washingaway of ®ne impurities in the sample *Authorto whom correspondence should be addressed (Brown et al.1961)or to the creation of alooser, more Authors’address: Departmentof Physics, The University of Michigan, AnnArbor, MI 48109-1120,USA natural grainpacking (Clarke 1973), although it may http://www-personal.engin.umich.edu /~nori/ explainwhy squeaking sand typicallydoes not extend 0010-7514/97 $12.00 Ó1997 Taylor &FrancisLtd 330 P. Sholtz et al. inland more than 30m from the shore (Richardson 1919). located between the grains(Bolton 1889a).Also, a This process of cleaningcan also ` revive’squeaking sand preliminary explanation of booming relied on observed that has lost its abilityto squeak, acondition that often electricalcharging of the grains(Lewis 1936). Such air- occurs after repeated compression (Hashimoto 1951). cushion and electricalcharge models were,however, based Finally,squeaking sand canemit sound evenwhen on misguided evidence and havebeen discredited bymore completely submerged in water(Lindsay et al.1976,Brown recent experiments. Most modern theories stress the et al.1961),suggesting that intergranular cohesion in moist importance of intergranular friction. It has been suggested sand precludes acoustic output. that the unusually smooth and polished surfaces of The mean grainsize (diameter) of most sand, whether or booming grainsmay allow for exaggeratedvibration at not it is acousticallyactive, is roughly 300 l m. The the natural resonant frequency of sand (Criswell et al. 1975, frequency of emission generated bysqueaking sand is Lindsay et al.1976).DiŒ erences in grainpacking have also thought to varyas the inverse square root of the mean grain been considered (Humphries 1966).The most complete size (Bagnold1954a, 1966), although mean grainsize does development is givenby Bagnold (1954a, 1966), who argues not byitself determine the abilityof sand to sound (Lindsay that both types of emission result from nonlinear oscilla- et al.1976).It is unlikely that booming frequencies depend tions of dispersive stress in the layerof movinggrains, or similarlyon grainsize alone, asa fairlywide range of shear layer.Even this analysis,however, fails to address key fundamental frequencies is often generated in large-scale aspects of the booming mechanism. slumping events. Particle-size distributions (Folk and Ward 1957)of sound-producing grainsusually only extend over a narrow range,a condition that is called` being well-sorted’. 2.Acoustic and seismic outputof a boomingevent Also, booming and squeaking grainstend to be both Booming emissions produce awidevariety of sounds that spherical and lackabrupt surface asperities. The latter havebeen compared to moans, hums, roars, drums, condition is called` being well-rounded’(Powers 1953),a tambourines,thunder, cannon ®re, the rumble of distant term not to be confused here byour use of the word carts, foghorns, the buzzing of telegraph wiresand the `polished’,which wetake to mean granularsurfaces which drone of low-¯ying propeller aircraft (Lindsay et al. 1976, aresmooth on the 1 l mlength scale.Both types of sand Curzon 1923).These analogiesall emphasize the distinct further exhibit anunusually high shear strength, and in the qualityof the booming sand phenomenonand the clarity caseof squeaking sand, adecrease in shear strength has with which these sounds areproduced. The comparisons to been shown to correspond to adecrease in sounding ability drums and tambourines moreover illustrate how the (Hashimoto 1951,Humphries 1966).Experiments in which booming mechanism canproduce characteristic beat spherical glassbeads produce acoustic emissions similarto frequencies (1to 10Hz), though to result from periodic those of genuine squeaking sand when compressed, albeit amplitude modulation of the acoustic emissions which are under somewhat contrived experimental conditions (Brown often observed in prolonged, large-scale¯ ows.Perhaps et al.1965),provide further support for the notion that most illuminating,however, are those analogieswhich squeaking is caused primarilyby frictional eŒects. The compare booming emissions to musical instruments, such combination of these four grainproperties (ahigh degree astrumpets, bells or low-stringed instruments.Such clear of: size-sorting, sphericity, roundedness and resistance to emissions usuallyoccur only in small-scale¯ ows,whereby shear) is thought to be criticalfor the onset of squeaking. only one fundamental frequency of vibration is produced. Booming, on the other hand, is substantially less sensitive Criswell et al.(1975)point out the similarities in the to diŒerences in grainshape and sorting, and is likely acoustic amplitude trace of asmall-scale, in situ booming governed bythe unusually smooth and polished surface emission and that of apipe organ.It is remarkable that an texture present in allbooming grains(Lindsay et al. 1976). avalancheof granularmaterial could produce anacoustic Exactlywhat governs either sounding mechanism is still oscillation comparable in purity to a®nely-crafted musical anopen question. Research has been hindered both bythe instrument. Our 1994observations of small,induced rarityof the phenomena and the diculty in reproducing avalanchesat Sand Moutain, Nevada,during the second the sounds in alaboratory environment. Moreover, the driest summer on record, revealemissions similarto a increasingtra c of vehicleson dunes appears to suppress didjeridoo (an aboriginalinstrument from Australia) with the natural sounds of sands. Furthermore,manyresearch- its low,droning cadence. ers had problems diŒerentiating between booming and In general,several fundamental frequencies of vibration squeaking sands, and the earlyliterature on the
Recommended publications
  • Inner Sound of Stroma, Pentland Firth (Scotland, UK)
    3rd International Conference on Ocean Energy, 6 October, Bilbao An Operational Hydrodynamic Model of a key tidal-energy site: Inner Sound of Stroma, Pentland Firth (Scotland, UK) M.C. Easton 1, D.K. Woolf 1, and S. Pans 2 1 Environmental Research Institute North Highland College, UHI Millenium Institute Thurso, Caithness, KW14 7JD, Scotland Email: [email protected] 2 DHI Representative UK (Scotland) DHI Agern Allé 5, DK-2970 Hørsholm, Denmark E-mail: [email protected] Abstract mutual influence of tidal ranges and phases between North Atlantic to the West and the North Sea to the As a result of significant progress towards the East act to setup strong currents [2] where spring tides delivery of tidal-stream power the industry is commonly exceed 5 ms-1 [3-4]. moving swiftly towards the deployment of pre- Seeking to capitalise on these unique conditions and commercial arrays. Meanwhile important sites, accelerate the delivery of large-scale tidal-stream such as the Pentland Firth, are being made available energy, in March 2010 the organisation controlling the for development. It is now crucial that we consider seabed in the United Kingdom, the Crown Estate, how the installation of tidal-stream devices will awarded leases for up to 600 MW of installed tidal interact with their host environment. Surveying energy capacity within the Pentland Firth-Orkney and modelling of the marine system prior to region [5]. An additional 200 MW is expected to be development is a prerequisite to identifying any awarded later in 2010 [6]. This announcement of the significant changes associated with tidal energy first large-scale deployment of tidal energy devices deployment.
    [Show full text]
  • The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas
    OCS Study BOEM 2019-045 Proceedings: The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region OCS Study BOEM 2019-045 Proceedings: The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas Editors Larry McKinney, Mark Besonen, Kim Withers Prepared under BOEM Contract M16AC00026 by Harte Research Institute for Gulf of Mexico Studies Texas A&M University–Corpus Christi 6300 Ocean Drive Corpus Christi, TX 78412 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management July 2019 Gulf of Mexico OCS Region DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Agreement Number M16AC00026. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management website at https://www.boem.gov/Environmental-Studies-EnvData/, click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2019-045. CITATION McKinney LD, Besonen M, Withers K (editors) (Harte Research Institute for Gulf of Mexico Studies, Corpus Christi, Texas).
    [Show full text]
  • Sand Dunes Computer Animations and Paper Models by Tau Rho Alpha*, John P
    Go Home U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Sand Dunes Computer animations and paper models By Tau Rho Alpha*, John P. Galloway*, and Scott W. Starratt* Open-file Report 98-131-A - This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this program has been used by the U.S. Geological Survey, no warranty, expressed or implied, is made by the USGS as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. * U.S. Geological Survey Menlo Park, CA 94025 Comments encouraged tralpha @ omega? .wr.usgs .gov [email protected] [email protected] (gobackward) <j (goforward) Description of Report This report illustrates, through computer animations and paper models, why sand dunes can develop different forms. By studying the animations and the paper models, students will better understand the evolution of sand dunes, Included in the paper and diskette versions of this report are templates for making a paper models, instructions for there assembly, and a discussion of development of different forms of sand dunes. In addition, the diskette version includes animations of how different sand dunes develop. Many people provided help and encouragement in the development of this HyperCard stack, particularly David M. Rubin, Maura Hogan and Sue Priest.
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    Sand Ernest Rice Smith, DePauw University In retracing some of the "footprints in the sands of time," my mind goes back to a conversation some two years ago with my aunt, then eighty-four years young. She referred to "maple sand," a common "pest" to the maple-syrup makers in Vermont. The implication was that this "sand" had come up as sand from the soil through the circulatory system of the maple tree and then settled out in the boiling down of the sap. The resulting argument, as in so many cases, was based merely on lack of definition of terms. There is such a thing as maple sand, but it has not come up as sand from the soil. It's a fine, white, crystalline, rather impure calcium malate which, because of its relative insolubility (as compared with sugar) precipitates before the sugar in the syrup and sugar making. The solubility of calcium malate at 0°C. is 0.812 gm. per 100 cc. of water as compared with a solubility of sucrose, under the same conditions, of 179 gms. This relative difficulty of solution of the calcium malate as compared with sugar will explain the feeling of the maple-sugar maker that it is as insoluble as sand and the resultant naming of the material, "sand." Examination of two specimens of maple sand indicates a material much finer than what is usually called sand. 1 Table I. Grain Analyses of Two Specimens of Maple Sand According to Modified Wentworth Classification. (Table II.) £ B B 2 i CO CO s CO 12 * 73 ^ i 2 CQ g 0> g co ,1s 6^ W T-l a.
    [Show full text]
  • Chapter 10. a First Look at Nunatsiavut Kangidualuk ('Fjord') Ecosystems
    Chapter 10. A first look at Nunatsiavut Kangidualuk (‘fjord’) ecosystems Lead author Tanya Brown1,2,3, Ken Reimer3, Tom Sheldon4, Trevor Bell5 1Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC; 2Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC; 3Environmental Sciences Group, Royal Military College of Canada, Kingston, ON; 4Nunatsiavut Government, Nain, NF; 5Memorial University of Newfoundland, St. John’s, NF Contributing authors S. Bentley, R. Pienitz, M. Gosselin, M. Blais, M. Carpenter, E. Estrada, T. Richerol, E. Kahlmeyer, S. Luque, B. Sjare, A. Fisk, S. Iverson Abstract Long marine inlets that are classified as either fjords or fjards indent the Labrador coast. Along the moun- tainous north coast a classic fjord landscape dominates, with deep (up to ~300 m) muddy basins separated by rocky sills and flanked by high (up to 1,000 m), steep sidewalls. In contrast, the fjards of the central and southern coast are generally shallow (150 m), irregularly shaped inlets with gently sloping sidewalls and large intertidal zones. These fjords and fjards are important feeding grounds for marine mammals and seabirds and are commonly used by Inuit for hunting and travel. Despite their ecological and socio-cultural importance, these marine ecosystems are largely understudied. The Nunatsiavut Nuluak project has, as a primary goal, to undertake baseline inventories and comparative assessments of representative marine ecosystems in Labrador, including benthic and pelagic community composition, distribution and abun- dance, fjord processes, and oceanographic conditions. A case study demonstrating ecosystem resilience to anthropogenic disturbance is examined. This information provides a foundation for further research and monitoring as climate change and anthropogenic pressures alter recent baselines.
    [Show full text]
  • Singing Sands, Musical Grains and Booming Sand Dunes AJ Patitsas
    Singing sands, musical grains and booming sand dunes A. J. Patitsas, Professor Emeritus, Department of Physics and Astronomy, Laurentian University, [email protected] Abstract The origin of the acoustic emissions from a bed of musical grains, impacted by a pestle, is sought in a boundary layer at the leading front of the pestle. The frequencies of the shear modes of vibration in such a layer are compared with the observed frequencies. It is assumed that such a layer is the result of the fluidization of the grain asperities due to the high stress level at the front end. Such a boundary layer can also account for the emissions from plates of sand sliding on a dune surface and from grains shaken in a jar. Introduction Acoustic emissions occur when singing beach sands are stepped on or impacted in a dish by a pestle, with dominant frequency, fd, in the range from about 250 to 2500 Hz (Takahara, 1973; Nishiyama and Mori, 1982; Miwa et al., 1983; Haff, 1986; Qu et al., 1995; Sholtz et al., 1997; Nori et al., 1997; Brown et al., 1964). The emitted sound has musical quality, especially with f d under about 1000 Hz, hence the terms; singing, musical, and sonorous sands. When nearly spherical glass beads are placed in a dish and impacted by a pestle, they present little resistance to the motion of the pestle and there is no acoustic emission. However, when such beads, 0.18 mm in diameter, were placed in a dish, 5 cm in diameter, and impacted by a pestle, 4.3 cm in diameter, an acoustic emission described as, ”a shrill unpleasant note” was recorded having a wide frequency spectrum peaking at about 3000 Hz (Brown et al., 1964).
    [Show full text]
  • Restoring a Degraded Gulf of Mexico
    April 2012 | Visit: www.NWF.org/oilspill Introduction Three years after the Deepwater Horizon disaster, this report gives a snapshot view of six wildlife species that depend on a healthy Gulf and the coastal wetlands that are critical to the Gulf’s food web. In August 2011, scientists did a comprehensive health examination of a 16-year-old male bottlenose dolphin. This dolphin—dubbed Y12 for research purposes—was caught near Grand Isle, a Louisiana barrier island that was oiled during the Gulf oil disaster.i Like many of the 31 other dolphins examined in the study, Y12 was found to be severely ill—underweight, anemic and with signs of liver and lung disease. The dolphins’ symptoms were consistent with those seen in other mammals exposed to oil; researchers feared many of the dolphins studied were so ill they would not survive.ii Seven months later, Y12’s emaciated carcass washed up on the beach at Grand Isle.iii Ecosystem-wide effects of the oil are suggested by the poor health of dolphins, which are at the top of the Gulf’s food chain. The same may be true of sea turtles, which also continue to die in alarmingly high numbers. More than 650 dolphins have been found stranded in the oil spill area since the Gulf oil disaster began. This is more than four times the historical average. Research shows that polycyclic aromatic hydrocarbon (PAH) components of oil from the Macondo well were found in plankton even after the well was capped.iv, v PAHs can have carcinogenic, physiological and genetic effects.
    [Show full text]
  • Cynthia Winings Gallery
    ROAD WArrIOR Swept Away We interrupt this magazine for OM C O. C a live feed directly from the Secretary of Defense’s house. HELL; POLITI C IT BY COLIN W. SARGENT M uring the Reagan presidency, everyone on Earth knew that Secretary of De- fense Caspar Weinberger (1917-2006) MILY CARTER E D kept a getaway place up in Maine. But it was more something imagined than ac- tually seen. Far fewer knew where it was, or how luxuriant it was, or that it was once owned by Mary King Auchincloss. Listed for sale this sum- HE KOWLES COMPANY; T mer for $2.15M, “Windswept,” built in 1910, en- joys a classic view of Somes Sound on Mount FROM TOP: Desert Island. Positioned to advantage at 584 SUMMERGUIDE 2 0 1 6 1 4 7 A Chat With Caspar W. Weinberger, Jr. Caspar Willard Weinberger, Jr, known as “Cap,” is the son of Caspar Weinberger, prominent statesman and, most notably, U.S. Secretary of Defense under the Rea- gan administration from 1981 to 1987. Cap’s mother, Jane Weinberger, was an author and publisher from Milford, Maine. Born in 1947, Cap studied at Harvard–his father’s alma mater–and earned a B.A. in Modern British History in 1968. He lived in San Francisco for many years, working as an award-winning producer, director, and writer of documentary films for an NBC affiliate. Cap settled in Mount Desert in 1997. Today he is a writer and lecturer, as well as running Windswept House Publish- ers, started by his mother in 1984.
    [Show full text]
  • Instructions for Use Model Overview This Booklet Is Valid for the Following Hearing Aid Families and Models
    IIC-CIC-MIC-ITC-HS-FS Instructions for use Model overview This booklet is valid for the following hearing aid families and models: Oticon Alta Pro Oticon Nera Pro Oticon Ria Pro Oticon Alta Oticon Nera Oticon Ria IIC Invisible-In-the-Canal CIC Completely-In-the-Canal MIC Mostly-In-the-Canal ITC In-the-Canal HS Half-Shell FS Full Shell Introduction to this booklet Intended use This booklet guides you in how to use and maintain your new hearing The hearing aid is intended to amplify and transmit sound to the ear aid. Please read the booklet carefully including the Warning section. and thereby compensate for impaired hearing within mild to severe This will help you to achieve the full benefit of your new hearing aid. hearing loss. The hearing aid is not intended to be used by children younger than 36 months. Your hearing care professional has adjusted the hearing aid to meet your needs. If you have additional questions, please contact your hearing care professional. About Start up Handling Options Warnings More info For your convenience this booklet contains a navigation bar to help you navigate easily through the different sections. IMPORTANT NOTICE The hearing aid amplification is uniquely adjusted and optimised to your personal hearing capabilities during the hearing aid fitting performed by your hearing care professional. Table of content Replace O-Cap filter (hearing aids with 312 and 13 batteries) 29 Insert the hearing aid 30 About Remove the hearing aid 31 Identify your hearing aid style 8 Options Size 10 battery (CIC shown)
    [Show full text]
  • Booming Sand Dunes
    EA38CH11-Hunt ARI 23 March 2010 17:22 Booming Sand Dunes Melany L. Hunt and Nathalie M. Vriend Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125; email: [email protected]; [email protected] Annu. Rev. Earth Planet. Sci. 2010. 38:281–301 Key Words First published online as a Review in Advance on musical sands, dune structure, seismic refraction February 4, 2010 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org Access provided by Oregon State University on 02/24/20. For personal use only. “Booming” sand dunes have a remarkable capacity to produce sounds that This article’s doi: are comparable with those from a stringed instrument. This phenomenon, in Annu. Rev. Earth Planet. Sci. 2010.38:281-301. Downloaded from www.annualreviews.org 10.1146/annurev-earth-040809-152336 which sound is generated after an avalanching of sand along the slip face of a Copyright c 2010 by Annual Reviews. dune, has been known for centuries and occurs in at least 40 sites around the All rights reserved world. A spectral analysis of the sound shows a dominant frequency between 0084-6597/10/0530-0281$20.00 70 and 110 Hz, as well as higher harmonics. Depending on the location and time of year, the sound may continue for several minutes, even after the avalanching of sand has ceased. This review presents historical observations and explanations of the sound, many of which contain accurate and insightful descriptions of the phenomenon. In addition, the review describes recent work that provides a scientific explanation for this natural mystery, which is caused by sound resonating in a surface layer of the dune.
    [Show full text]
  • SUBMARINE CANYONS : DISTRIBUTION and LONGITUDINAL PROFILES By
    SUBMARINE CANYONS : DISTRIBUTION AND LONGITUDINAL PROFILES by Francis P. SHEPARD and Charles N. BEARD. (Reproduced from Geographical Review, New-York, July 1938, page 439). In the recent discussions of submarine canyons (1) there has been a tendency to base con­ clusions on the characteristics of selected examples, such as the canyons off Georges Bank, without much regard for the facts that the canyons are universal features and that they are associated with all kinds of conditions. Information on the distribution of many of the canyons has not been generally available, and there is practically no information regarding their longitu­ dinal profiles. In discussing these matters it seems advisable to take the opportunity of naming the canyons in order to facilitate future reference to them. BASIS FOR CANYON NAMES. In choosing names for the canyons (Table I) the Writers utilized practically all names used on charts and by earlier Writers such as Davidson (2) and H ull (3). In general, if a canyon heads towards a river mouth, the name of the river has been given to it. For other canyons the name of some shore feature or of a town in the vicinity Was used. However, there are a number of canyons whose heads are so far from the shore that it seemed unwise to name them after shore features. For these canyons names of vessels Were used, vessels being chosen that had played some part in the exploration of the canyons. In the lists in Table I the names of these canyons are underlined. One canyon off Georges Bank was named Georges Canyon because of its nearness to the dangerous Georges Shoal.
    [Show full text]
  • The Prairie Peninsula (Physiographic Area 31) Partners in Flight Bird Conservation Plan for the Prairie Peninsula (Physiographic Area 31)
    Partners in Flight Bird Conservation Plan for The Prairie Peninsula (Physiographic Area 31) Partners in Flight Bird Conservation Plan for The Prairie Peninsula (Physiographic Area 31) Version 1.0 4 February 2000 by Jane A. Fitzgerald, James R. Herkert and Jeffrey D. Brawn Please address comments to: Jane Fitzgerald PIF Midwest Regional Coordinator 8816 Manchester, suite 135 Brentwood, MO 63144 314-918-8505 e-mail: [email protected] Table of Contents: Executive Summary .......................................................1 Preface ................................................................3 Section 1: The planning unit Background .............................................................4 Conservation issues ........................................................4 General conservation opportunities .............................................8 Section 2: Avifaunal analysis General characteristics .....................................................9 Priority species .......................................................... 12 Section 3: Habitats and objectives Habitat-species suites ..................................................... 14 Grasslands ............................................................. 15 Ecology and conservation status ............................................ 15 Bird habitat requirements ................................................. 15 Population objectives and habitat strategies .................................... 20 Grassland conservation opportunities ........................................
    [Show full text]