RESEARCH ARTICLE Proteomic Landscape of Tissue-Specific Cyclin E Functions in Vivo Junko Odajima1,2, Siddharth Saini3, Piotr Jung1,2, Yasmine Ndassa-Colday1,4, Scott Ficaro1,4, Yan Geng1,2, Eugenio Marco5, Wojciech Michowski1,2, Yaoyu E. Wang6, James A. DeCaprio7, Larisa Litovchick3, Jarrod Marto1,4, Piotr Sicinski1,2* 1 Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 2 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America, 4 Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America, 5 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America, 6 Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 7 Department of a11111 Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America *
[email protected] Abstract OPEN ACCESS E-type cyclins (cyclins E1 and E2) are components of the cell cycle machinery that has Citation: Odajima J, Saini S, Jung P, Ndassa- Colday Y, Ficaro S, Geng Y, et al. (2016) Proteomic been conserved from yeast to humans. The major function of E-type cyclins is to drive cell Landscape of Tissue-Specific Cyclin E Functions in division. It is unknown whether in addition to their `core' cell cycle functions, E-type cyclins Vivo. PLoS Genet 12(11): e1006429.