Three New Sauropod Dinosaurs from the Upper Jurassic of Colorado

Total Page:16

File Type:pdf, Size:1020Kb

Three New Sauropod Dinosaurs from the Upper Jurassic of Colorado Great Basin Naturalist Volume 45 Number 4 Article 7 10-31-1985 Three new sauropod dinosaurs from the Upper Jurassic of Colorado James A. Jensen Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Jensen, James A. (1985) "Three new sauropod dinosaurs from the Upper Jurassic of Colorado," Great Basin Naturalist: Vol. 45 : No. 4 , Article 7. Available at: https://scholarsarchive.byu.edu/gbn/vol45/iss4/7 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. THREE NEW SAUROPOD DINOSAURS FROM THE UPPER JURASSIC OF COLORADO James A. Jensen' Abstract. — From 1972 to 1982 three exceptionally large sauropod scapulocoracoids and other ecjually large sauropod bones were collected from the base of the Brushy Basin Member of the Upper Jurassic, Morrison Formation, in western Colorado. Two of the scapulae are conspecific, but the third represents a second genus and possibly a new family. The two conspecific specimens are described here as; Supersaurus vivianae, the second genus is described as Ultrasaurtis mcintoshi, and a large, robust anterior dorsal vertebra of unique form is described as Dystylosaitrus edwini. Various miscellaneous elements are referred to the three genera. Historical tively new dinosaur fauna, described as the Uncompahgre fauna (Jensen, in preparation). The genus Brachiosaurus, named by The author later returned to Potter Creek and E. S. Riggs (1903), was part of an articulated collected additional brachiosaur material (be- skeleton the Upper Jurassic Morrison from ing described elsewhere). Formation within the present city limits of Grand Junction in western Colorado. Riggs believed the genus represented a land- Dry Mesa Quarry dwelling animal, rather than one preferring an aquatic habitat. Three large sauropod scapulocoracoids No one took him seriously at the time, but were collected from one of the Jones localities modern interpretations of sauropod habits near Dry Mesa, Mesa County, 35 miles west and paleoenvironments agree with him. The of Delta, Colorado. Over a period of 10 years brachiosaurs are now considered to be the the site proved to be very productive, yield- largest terrestrial animals to have lived on ing many tons of field blocks and packages of earth. dinosaur material. It was named after Dry The first uranium boom during World War Mesa and is located near the base of the II triggered the discovery of the second Brushy Basin member of the Morrison For- known North American brachiosaur; it was mation and, consequently, is not easily con- found by prospectors Eddie and Vivian Jones fused with the overlying Lower Cretaceous, who were looking for uranium, circa 1943, Cedar Mountain Formation when making when they collected a brachiosaur humerus simple stratigraphic determinations. The top from the Uncompahgre Upwarp and donated of the Morrison Formation is easy to follow it to the Smithsonian Institution, where it was cross-country because the superior Cedar put on display. However, no credit was given Mountain sediments are set-back above it, to the collectors. forming a prominent shoulder from 100 to 500 That display led to the discovery of the m wide. Sag-ponds are a characteristic feature Uncompahgre fauna and the materials des- of this shoulder, being produced by land-flow cribed herein. The author saw the Jones and slumping that crush and mutilate fossils humerus in 1958 and later in Colorado found contained in the moving sediments. Its ben- the Jones family, who took him to the location tonitic clays and mudstones, interbedded on Potter Creek. They also took him to three with soft sandstones, grits, and fine gravels, other major fossil localities on the Uncompah- respond actively to cyclic wet/dry stressing, gre Upwarp that together produced a rela- accelerating the deterioration rate of fossil Earth Science Museum, Brigham Young University. Provo, Utah 84602. Present address: 2821 North 700 East, Provo, Utah 84604. 697 posterior dodorsal vertebra, BYU B, Holotype, Ultm.saurus nmcintoshintoshi , F ig 1 A Brac/iK««,iru.ssp., dorsal vertebra. phalanges. anterior dorsal vertebra, BYU 5750. D, El, unidentified manual 50003. C, Holotype, Di/.s^r/Z.^n/n/scf/a/rH-, New Sauhopod Dinosaurs 699 )ctober 1985 JENSEN; anterior view. E, posterior view. 700 Great Basin Naturalist Vol. 45, No. view^'c; "''''"^'' ''"'^^^''"'- Jt;^i ^^^--^^J vertel,ra: SS";p!!;rr • A left /W later .1 km . October 1985 JENSEN: New Sauropod Dinosauks 701 materials beyond that of calcified sandstone or "glenoid process"; ridge separating the two limestone preservations. muscular fossae and running on a curved diag- One of the most important problems yet to be onal line up from the glenoid process to the solved is that of the exact age of the Dry Mesa maximum scapidar width is the "transverse sediments. It is mapped as Morrison Formation, ridge." This ridge and the shaft-axis form an but the fauna does not match taxa of classical angle that varies in different sauropod genera. Morrison localities. The assemblage is not only The great depressions to the left (above) and verv diverse but contains many taxa previously right unknown in the Upper Jurassic of North Amer- (below) of the transverse ridge are the ica. "superior fossa" and "inferior fossa," respec- The author believes the Morrison sediments tively. exposed along the eastern monocline of the Un- Description.— (Holotype BYU 5500; right compahgre Upwarp are younger than the Mor- scapulocoracoid) Scapula long but not robust; rison in previously described localities, and that distal end expanding moderately; shaft not the Uncompahgre fauna may represent the last severely constricted in midsection. expression of Jurassic dinosaur evolution. A shallow outward curve in inferior border slightly proximad to greatest width of scapula, at Class Reptilia top of transverse ridge, indicates origin of a liga- Order Saurischia ment, possibly M. scapulohumeralis. This pro- Suborder Sauropodomorpha cess also present on Diplodociis , occurring con- Infraorder Sauropoda siderably higher up on Cetiosaurus and most Family indeterminate prominently developed on Ultrasaurus , but ab- Supersauriis vivianae, n. gen., n. sp. sent or insignificant in Brachiosaunis, Ap- atosanrus, and Camarasaurus. Inferior border Etymology. — Supersaurus , internationally of scapula forming a gentle curve from glenoid published vernacular name; vivianae, after Vi- process to distal end, resembling Apatosaunis vian Jones, co-discoverer of all the important and Diplodociis rather than Brachiosaunis or Late Jurassic fossil localities on the Uncompah- Camarasaurus. Inferior fossa not broadly ex- gre Upwarp. panded as in Brachiosanrus and longer than 5500, scapulocoracoid HOLOTYPE. —BYU wide, contrasting with opposite design in Ap- 2.44 m (8') long. atosaurus and Camarasaurus . Coracoid with a Referred material. —BYU 5501, scapuloco- subrectangular profile. racoid 2.70 m (8,10") long; BYU 5502, ischium; Referred material. — BYU 5501, scapu- BYU 5503, medial caudal vertebra; BYU 5504, locoracoid 2.70m (8' 10") long. Description vertebrae. 12 articulated caudal same as Holotype, BYU 5500. Type locality. — Drv Mesa quarry; E 1/2, BYU 5502, 12 articulated caudal vertebrae: Section 23: T50N, R 14W, NMPM. each approximately 30 cm long, collected but Horizon. — Near the base of the Brushy Basin not yet prepared for study. They were exam- Member of the Upper Jurassic Morrison Forma- ined closely in the field by the author, and a tion, Mesa County, Colorado. decision was made to refer them to Supersau- Collector. —James A. Jensen 1979. rus on the basis of their massive size and Clarification. — Sauropod scapular termi- general morphology. They were found paral- scapula; how- nology in the literature is not uniform (Hatcher lel to, and near the Supersaurus 1903, Mook 1921, Gilmore 1936), resulting in ever, location is not a criterion for association some confusion. This paper describes the in the Dry Mesa cjuarry because of the exten- to scapula in a somewhat normal orientation; using sive fluvial transport of all elements prior an external view with the glenoid cavity down final burial. and the coracoid on the right end, the right BYU 5503, ischium (Fig. 7A): straight shaft, ex- scapula will be described. Descriptive terminol- more robust than Diplodocus; distal end ventrally. Very ogy used: narrow midsection is the "shaft"; left panded dorsally, truncated end is the "distal" end; upper edge is the similar to Diplodocus "superior border"; lower edge is the "inferior BYU 5504, two medial caudal vertebrae border"; ventral projection of glenoid area is the (Figs. 7C, D, Dl). C, double-keeled, diplo- 702 Great Basin Naturalist Vol. 45, No. 4 October 1985 JENSEN: New Sauropod Dinosau ,5 m , 704 Great Basin Naturalist Vol. 45, No. 4 coid caudal with broad ventral channel; D, preparation by the author) appears to be al- Dl, double-keeled diplocoid caudal with tithorax (see Figs. lA, B; 3A-D). transveisely thick neural spine that is ex- Figure 3C is a detail of the base of the panded dorsoventrally at its summit. The cau- neural spine and postzygapophyses of BYU dal neural spines oi Diplodociis are thin, nar- 5000. The form of the suprapostzygapophysal row, and unexpanded at the summit; caudal laminae is greatly altered by assymetry, with rib missing, no pleurocoel but a short channel the right side being more robust than the left. exists below base of caudal rib. Proportion of The vertebra is crushed transversely, making diameter-to-length would place the specimen an anterior view nearly useless. The neural as number 12 in a Diplodociis caudal series, spine is tall and buttressed posteriorly by but the reduction of the neural arch would suprapostzygapophysal laminae 2/3 the height place it much further back in the same series. of the spine (Fig. 3B). In contrast, the supraprezygapophysal laminae are almost Order Saurischia nonexistent.
Recommended publications
  • September 2019 Competitive Oil and Gas Lease Sale Monticello Field Office DOI-BLM-UT-0000-2019-0003-OTHER NEPA -Mtfo-EA
    U.S. Department of the Interior Bureau of Land Management July 2019 September 2019 Competitive Oil and Gas Lease Sale Monticello Field Office DOI-BLM-UT-0000-2019-0003-OTHER NEPA -MtFO-EA Monticello Field Office 365 North Main PO Box 7 Monticello, UT 84535 DOI-BLM-UT-0000-2019-0003_Other NEPA-MtFO-EA July 2019 Table of Contents Chapter 1 Purpose & Need .................................................................................................................... 4 1.1 Project Location and Legal Description ........................................................................................ 4 1.2 Introduction ................................................................................................................................... 4 1.3 Background ................................................................................................................................... 4 1.4 Purpose and Need ......................................................................................................................... 6 1.5 Decision to be Made ..................................................................................................................... 6 1.6 Plan Conformance Review............................................................................................................ 6 1.7 Relationship to Statutes, Regulations, Policies or Other Plans ..................................................... 9 1.8 Issues Identified .........................................................................................................................
    [Show full text]
  • CPY Document
    v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead.
    [Show full text]
  • Baltimorean Debunks Dinosaur Finds :Specialist B Comparison of Bones Shows 'New' Species Long Known
    1I1(1St) THE WASIfINGTON POST WEDNESDAY, MAY ll, 1988 A3 I ,I .Baltimorean Debunks Dinosaur Finds :Specialist B Comparison of Bones Shows 'New' Species Long Known several partial skeletons of different By Boyce Rensberger seum collections. He has also dis- Washington Po.'1l Stolff Writer covered several errors in previous sizes. reconstructions of the Brachiosau- Paul found that, while the Ultra- It is time to rewrite the record rus skeleton and corrected them in saurus bone is bigger than the com- book for dinosaurs, according to a his illustrations to reveal the ani- parable bone displayed in East Ber- leading expert on the extinct giants. mals as having a shorter trunk and lin, it is about the same size as a ' Contrary to a series of allegedly taller forelimbs, which give it a Brachiosaurus shoulder bone not on record-breaking discoveries' that more giraffe-like image than pre- display. began in 1972, the largest known vious experts have suggested. In fact, Paul concluded, the bones dinosaur really is a species known Brachiosaurus "is the only Quad- are so similar that Supersaurus and since the early 1900s, the familiar rupedal dinosaur which one would Ultrasaurus are "almost certainly" Brachiosaurus. have to reach up to slap the belly as not separate species but simply ad- The newest finding by Gregory one walked under it," Paul said. ditional examples of Brachiosaurus. S. Paul, a self-taught dinosaur spe- "Most unusual for a tetrapod [four- Paul's reconstruction of the skel- cialist from Baltimore, debunks legged animal]. much less a dino- eton also scales back estimates of "discovery" of Supersaurus in 1972, saur, it is an exceptionally elegant the beasts' weight.
    [Show full text]
  • Valérie Martin, Varavudh Suteethorn & Eric Buffetaut, Description of the Type and Referred Material of Phuwiangosaurus
    ORYCTOS, V ol . 2 : 39 - 91, Décembre 1999 DESCRIPTION OF THE TYPE AND REFERRED MATERIAL OF PHUWIANGOSAURUS SIRINDHORNAE MARTIN, BUFFETAUT AND SUTEETHORN, 1994, A SAUROPOD FROM THE LOWER CRETACEOUS OF THAILAND Valérie MARTIN 1, Varavudh SUTEETHORN 2 and Eric BUFFETAUT 3 1 Musée des Dinosaures, 11260 Espéraza, France 2 Geological Survey Division, Department of Mineral Resources, Rama VI Road, 10400 Bangkok, Thailand 3 CNRS (UMR 5561), 16 cour du Liégat, 75013 Paris, France Abstract : The type specimen of P. sirindhornae Martin, Buffetaut and Suteethorn, 1994 is an incomplete, partly articulated, skeleton discovered in the Phu Wiang area of northeastern Thailand). Most of the abundant sauropod material from the Sao Khua Formation (Early Cretaceous), collected on the Khorat Plateau, in northeastern Thailand, is referable to this species. Phuwiangosaurus is a middle-sized sauropod, which is clearly different from the Jurassic Chinese sauropods (Euhelopodidae). On the basis of a few jaw elements and teeth, P. sirindhornae may be considered as an early representative of the family Nemegtosauridae. Key words : Sauropoda, Osteology, Early Cretaceous, Thailand Description du type et du matériel rapporté de Phuwiangosaurus sirindhornae Martin, Buffetaut et Suteethorn, 1994, un sauropode du Crétacé inférieur de Thaïlande Résumé : Le spécimen type de Phuwiangosaurus sirindhornae est un squelette incomplet, partiellement articulé, découvert dans la région de Phu Wiang (Nord-Est de la Thaïlande). Phuwiangosaurus est un sauropode de taille moyenne (15 à 20 m de longueur) très différent des sauropodes du Jurassique chinois. La majeure partie de l’abondant matériel de sauropodes, récolté sur le Plateau de Khorat (Formation Sao Khua, Crétacé inférieur), est rap - portée à cette espèce.
    [Show full text]
  • The Princeton Field Guide to Dinosaurs, Second Edition
    MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M.
    [Show full text]
  • Neural Spine Bifurcation in Sauropods Palarch’S Journal of Vertebrate Palaeontology, 10(1) (2013)
    Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) NEURAL SPINE BIFURCATION IN SAUROPOD DINOSAURS OF THE MORRISON FORMATION: ONTOGENETIC AND PHYLOGENETIC IMPLICATIONS Mathew J. Wedel* & Michael P. Taylor# *Corresponding author. College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA. [email protected] #Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. [email protected] Wedel, Mathew J. & Michael P. Taylor. 2013. Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications. – Pal- arch’s Journal of Vertebrate Palaeontology 10(1) (2013), 1-34. ISSN 1567-2158. 34 pages + 25 figures, 2 tables. Keywords: sauropod, vertebra, neural spine, ontogeny, Morrison Formation AbsTrAcT It has recently been argued that neural spine bifurcation increases through ontogeny in several Morrison Formation sauropods, that recognition of ontogenetic transforma- tion in this ‘key character’ will have sweeping implications for sauropod phylogeny, and that Suuwassea and Haplocanthosaurus in particular are likely to be juveniles of known diplodocids. However, we find that serial variation in sauropod vertebrae can mimic on- togenetic change and is therefore a powerful confounding factor, especially when deal- ing with isolated elements whose serial position cannot be determined. When serial po- sition is taken into account, there is no evidence that neural spine bifurcation increased over ontogeny in Morrison Formation diplodocids. Through phylogenetic analysis we show that neural spine bifurcation is not a key character in sauropod phylogeny and that Suuwassea and Haplocanthosaurus are almost certainly not juveniles of known diplodo- cids.
    [Show full text]
  • Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
    Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur.
    [Show full text]
  • Mi Querido Brontosaurus.Indd
    A pesar de haberse extinguido hace 65 millones de años, los dinosaurios ocupan un lugar primordial en el imaginario po- pular. Su portentosa presencia llena mu- seos de historia natural y protagoniza pe- lículas, y sin embargo es poco lo que aún sabemos sobre ellos. Con un entusiasmo contagioso, Brian Switeck nos acerca a la vida de estas criaturas y nos descubre al- gunos de sus fascinantes secretos. «Una delicia. Es el libro defi nitivo sobre dinosaurios.» Th e New York Times BRIAN SWITEK es periodista científi co, y actualmente trabaja como reportero para National Geographic. PVP 20,90 € 10038994 www.ariel.es ,!7II4D4-ebhcdg! 25 mm Brian Switek Mi querido Brontosaurus Una expedición científi ca al encuentro de nuestros dinosaurios favoritos Traducción de Joandomènec Ros, catedrático de Ecología de la Universidad de Barcelona Título original: My Beloved Brontosaurus Publicado originalmente por Scientifi c American en colaboración con Farrar Straus & Giroux 1.ª edición: marzo de 2014 © 2013, Brian Switeck © 2014, de la traducción Joandomènec Ros Derechos exclusivos de edición en español reservados para todo el mundo y propiedad de la traducción: © 2014: Editorial Planeta, S. A. Avda. Diagonal, 662-664 - 08034 Barcelona Editorial Ariel es un sello editorial de Planeta, S. A. www.ariel.es www.espacioculturalyacademico.com ISBN: 978-84-344-1723-6 Depósito legal: B. 2.190 - 2014 Impreso en España Por Huertas Industrias Gráfi cas El papel utilizado para la impresión de este libro es cien por cien libre de cloro y está califi cado como papel ecológico. No se permite la reproducción total o parcial de este libro, ni su incorporación a un sistema informático, ni su transmisión en cualquier forma o por cualquier medio, sea éste electrónico, mecánico, por fotocopia, por grabación u otros métodos, sin el permiso previo y por escrito del editor.
    [Show full text]
  • Dinosaur Species List E to M
    Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon
    [Show full text]
  • Redalyc.Angolatitan Adamastor, a New Sauropod Dinosaur and the First Record from Angola
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil MATEUS, OCTÁVIO; JACOBS, LOUIS L.; SCHULP, ANNE S.; POLCYN, MICHAEL J.; TAVARES, TATIANA S.; BUTA NETO, ANDRÉ; MORAIS, MARIA LUÍSA; ANTUNES, MIGUEL T. Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola Anais da Academia Brasileira de Ciências, vol. 83, núm. 1, marzo, 2011, pp. 221-233 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32717681011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/2/10 — 15:47 — page 221 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 221-233 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola , OCTÁVIO MATEUS1 2, LOUIS L. JACOBS3, ANNE S. SCHULP4, MICHAEL J. POLCYN3, TATIANA S. TAVARES5, ANDRÉ BUTA NETO5, MARIA LUÍSA MORAIS5 and MIGUEL T. ANTUNES6 1CICEGe, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 2Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal 3Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA 4Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL6211 KJ Maastricht, The Netherlands 5Geology Department, Universidade Agostinho Neto, Av.
    [Show full text]
  • Osteological Revision of the Holotype of the Middle
    Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979 Femke Holwerda, Oliver W.M. Rauhut, Pol Diego To cite this version: Femke Holwerda, Oliver W.M. Rauhut, Pol Diego. Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979. 2020. hal-02977029 HAL Id: hal-02977029 https://hal.archives-ouvertes.fr/hal-02977029 Preprint submitted on 27 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Osteological revision of the holotype of the Middle Jurassic sauropod 2 dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) 3 BONAPARTE 1979 4 5 Femke M Holwerda1234, Oliver W M Rauhut156, Diego Pol78 6 7 1 Staatliche Naturwissenscha�liche Sammlungen Bayerns (SNSB), Bayerische Staatssamlung für 8 Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333 München, Germany 9 10 2 Department of Geosciences, Utrecht University, Princetonlaan, 3584 CD Utrecht, 10 Netherlands 11 12 3 Royal Tyrrell Museum of Palaeontology, Drumheller, AlbertaT0J 0Y0, Canada (current) 13 14 4 Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen- 15 Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany 16 17 5 Department für Umwelt- und Geowissenscha�en, Ludwig-Maximilians-Universität München, Richard- 18 Wagner-Str.
    [Show full text]
  • Dinosaur Hall
    Dinosaur Hall 101 Dinosaur Hall Exhibit Overarching Stories In the exhibit, Dinosaurs: Explore Their Mysteries… • Experience the ways our scientists have assembled answers to many fascinating questions about their lives and their worlds. • By piecing together clues in the fossil record, we discover more about the fascinating world of dinosaurs. • How do Museum paleontologists know what they know …and what they don’t! 2 The Dinosaur Hall exhibit is broken up into sections with overarching questions. Dinosaur Hall Floor Layout, Level 1 Entrance/exit What F happened to dinosaurs? First Floor E What were What is a What was their dinosaurs dinosaur? world like? D like? Entrance/exit C A B Expeditions 3 Dinosaur Hall Floor Layout, Level 2 Mezzanine Level Work in the field I H Work in the lab Pterosaurs; Dinosaurs in California G 4 What is a dinosaur? 5 What are dinosaurs? • Origins from the Greek words deinos: “fearfully-great or terrible” and sauros lizard; name given by famous paleontologist Richard Owen in 1842 6 Characteristics of a Dinosaur Classifying Dinosaurs: Cladogram 8 When dinosaurs ruled on land*… Dinosaurs lived during the Mesozoic Era, a.k.a. ‘Age of Dinosaurs,’ which is divided into three periods *Not only did dinosaurs live on land, there is evidence of dinosaurs thriving in bodies of water… A commonly asked question: “Are those real fossils?” • Most skeletons on display have a mix of real fossils and casts, or reproductions. Most often the reproductions are based off a real fossil. • Labels will help you determine! Look for the specimen name, if there’s (cast) next to the name, it’s a reproduction or replica.
    [Show full text]