Copper Vapor Laser and Microsclerotherapy of Facial Telangiectases a Patient Questionnaire PAUL KENNETH THIBAULT, MBBS

Total Page:16

File Type:pdf, Size:1020Kb

Copper Vapor Laser and Microsclerotherapy of Facial Telangiectases a Patient Questionnaire PAUL KENNETH THIBAULT, MBBS FEATURES PHLEBOLOGY Copper Vapor Laser and Microsclerotherapy of Facial Telangiectases A Patient Questionnaire PAUL KENNETH THIBAULT, MBBS BACKGROUND.Facial telangiectasia due to photodamage is a RESULTS. Both treatments were found to be effective but common disfiguring condition in modern society. Over the patients who received the combined treatment gave signifi- past 10 years yellow light laser photocoagulation has be- cantly higher ratings in effectiveness and overall satisfac- come the treatment of choice. tion. There was also non-significant reduction in the inci- OBJECTIVE.To compare the effectiveness of copper vapor dence of adverse effects reported by patients treated by the laser alone with combined microsclerotherapy and copper combined method. vapor laser in the treatment of facial telangiectases. CONCLUSION. Supplementary microsclerotherapy enhances METHODS. Two hundred thirty-nine consecutive patients the effectiveness of copper vapor laser photocoagulation were asked to complete a questionnaire evaluating the two of facial telangiectases. J Dermatol Surg Oncol 1994; different treatments; 180 (75%) patients responded. 20~48-54. elangiectases are ectatic dermal vessels visible age, other common etiological factors for facial telangiec- to the human eye. They usually measure 0.1 to tases are genetic predisposition, rosacea, surgical trauma 1 mm in diameter and may originate from arte- (eg, postrhinoplasty), topical or systemic steroid use, rioles, capillaries, or venules.' Clinically, telan- postmenopausal hormonal supplements, and radiation giectasesT can be classified into four types: linear, arboriz- therapy.' ing, spider and punctiform.2 Punctiform telangiectases The predominant presenting symptom of patients are frequently associated with collagen diseases and ge- with facial telangiectasia is cosmetic disfigurement and netic syndromes such as hereditary hemorrhagic telangi- therefore effective treatment should be relatively free of ectasia.' Although punctiform telangiectases are rela- adverse sequelae. In recent years laser photocoagulation tively uncommon, the other three types are frequently of facial telangiectases using yellow light wavelengths of encountered on the face. 577 to 585 nm has become the treatment of ~hoice,~-'O The most common etiological factor in the occurrence displacing earlier techniques using diathermy and argon of facial telangiectasia is chronic sun exp~sure.',~Invari- laser. Adverse sequelae such as pain, hypo- and hyper- ably, the presence of facial telangiectasia will be asso- pigmentation, hyper- and atrophic scamng which were ciated with other manifestations of photodamage such as frequently reported with diathermy and argon laser irregular pigmentation, dermal elastosis, epidermal atro- therapy7J1-'3 theoretically should occur less frequently phy, and actinic kerat~ses.~-~In actinically damaged skin with laser therapy utilizing wavelengths of 577 to 585 histologic changes can be found in dermal arterioles, cap- nm." These wavelengths result in optimum absorption illaries, and venules, with the postcapillary venules by hemoglobin when treating ectatic dermal blood ves- showing the most obvious effects.6 Spider telangiectases sels. Despite this there have been reports of the occur- arise from a central filling vessel of arteriolar origin' while rence of these adverse sequelae following treatment of facial linear and arborizing telangiectases usually arise facial telangiectases using yellow light lasers.8J0 from the postcapillary venule. Frequently all three types Microinjection of sclerosant solutions to treat telan- will coexist in the same patient. Apart from actinic dam- giectases was first described by Biegelei~en'~in 1934. While this method has become the treatment of choice for lower limb telangiectases,I6there has been only an occa- From Central Vein and Laser, New South Wales, Australia. sional report of successful application of this technique to Address correspondence and reprint requests to: Paul Kenneth Thibault, treat facial telangie~tases.'~Goldman18 has hypothesized MBBS, Suite 1, 41 Belford Street, Broad Meadow NSW 2292, Australia. that there may be theoretical advantages in combining 48 0 1994 by Elseuier Science Inc. 0148-0812/94/$7.00 J Dematol Surg Oncol THIBAULT 49 1994;20:48-54 COPPER VAPOR LASER FOR TELANGIECTASES sclerotherapy with pulsed dye laser when treating leg as well as treatment type (copper vapor laser alone or telangiectases. Similarly, combined microsclerotherapy combined) and whether linear or spider separately. P and laser photocoagulation offers both theoretical and values are presented in the tables, with P 5 .05 being practical advantages over either modality alone when taken as statistically significant. treating facial telangiectases. When treating larger facial The treatment method chosen for each patient was not telangiectases, particularly on the nasolabial folds, laser randomized but resulted from the development of the treatment has often been ineffective or has caused combined technique in July 1990 that was thereafter ap- atrophic scaning10*19~20owing to the high powers required plied to all patients presenting with spider telangiectases to photocoagulate these vessels. It is possible that more and those patients with linear/arborizing telangiectases reliable results with a lower incidence of scarring may be whose vessels were technically possible to inject. The achieved by obliterating or reducing the size of larger number of patients responding to the questionnaire in telangiectases using microsclerotherapy prior to laser each group is shown in Table 1. The response rate com- photocoagulation. pared favorably with Pickering's study in which 59% of The aim of this study was to evaluate the effectiveness patients with facial telangiectases and 66% of spider nevi of copper vapor laser photocoagulation with and without patients returned completed questionnaires. supplementary microsclerotherapy in the treatment of The copper vapor laser used in this study was a Vis- linear, arborizing, and spider telangiectases affecting the Erase 3w (Visiray Pty Limited, Hornsby, N.S.W., Austra- face. As the symptoms of these lesions are usually con- lia). This freestanding mobile unit uses a vaporized me- fined to the patient's perception of disfigurement, the tallic copper discharge tube to produce yellow light at 578 patient's own assessment has become the accepted nm. Laser light is delivered to the patient via a fiber optic method of comparing the effectiveness of various treat- delivery system made up of a 5 m length of 200-pm fiber ment method^.^,^' cable terminated with a lightweight optical delivery handpiece that is fitted with a lens holder. The laser beam could be focused to either a spot size of 150-pm diameter Materials and Methods or 400-pm diameter by a simple interchange of lenses. A questionnaire similar to that of Pickering et all* was The operator used 8X magnifying loupes (Zeiss, Ger- distributed to 239 consecutive patients treated for facial many) with a specific eye protection filter for the wave- telangiectasia. The patients had all completed treatment length of 578 nm. The patients' eyes were protected at all at least 6 months prior to entering the study. There were times with occlusive shields. 13 questions covering the following areas: When treating linear and arborizing telangiectases, the operator traced individual vessels precisely from distal 1. Pain experienced during treatment (thinnest) to proximal (thickest) utilizing the 150-pm spot 2. Effectiveness of treatment size. This ensured that the minimum power necessary to 3. Adverse effects of treatment photocoagulate the vessel was used. The end point was 4. Overall satisfaction with treatment complete disappearance or blanching of the vessel. Most questions were constructed with a bipolar scale Powers ranging between 300 and 500 mW were used. with patient responses being collated on Claris Filemaker When treating spider telangiectases with the copper I1 database (Claris Corporation, Santa Clara, CA) on an vapor laser alone, a similar method was used with the Apple MacIntosh 30SE computer (Apple Computer, Inc., operator tracing the peripheral "arms" fmt using the Cupertino CA). For analysis, patients were categorized 150-pm spot then changing to the 400-pm spot to vapor- into four groups according to type of telangiectasia and ize the central vessel. The end point of this latter proce- treatment method: dure was a visible and audible "popping" of the central feeding arteriole which usually required powers in the 1. Linear and/or arborizing telangiectasia treated with range of 600 to 700 mW impinging on the vessel for less copper vapor labor alone. than one second. 2. Linear and/or arborizing telangiectasia treated with Microsclerotherapy of facial telangiectases requires a combined microsclerotherapy and copper vapor laser. modified technique compared with that used in treating 3. Spider telangiectasia treated with copper vapor laser lower limb telangiectases. Sodium tetradecyl sulphate alone. (STD, STD Pharmaceuticals, Hereford, England) was 4. Spider telangiectasia treated with combined micro- used because of its highly specific sclerosant action, in- sclerotherapy and copper vapor laser. trinsic vasospastic activity, and safety when injected (in- Pearson's xz statistic was used to test for association advertently) extravascularly in concentrations of less between the treatment groups and the outcome variable, than 0.3%.16,22-24Sodium tetradecyl sulphate has
Recommended publications
  • Second Nasa Conference on Laser Energy Conversion
    NASA SP-395 SECOND NASA CONFERENCE ON LASER ENERGY CONVERSION (NASA-SP-395) SECOND NASA CONFERENCE ON N76-21505 LASEB ENERGY CONVERSION (NASA) 196 p HC THRU CSCL 20E N76-2152U- Unclas H1/36 24950 A conference held at NASA AMES RESEARCH CENfER Moffett Field, California January 27-28, 1975 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION REPRODUCED BY *irfiffn'"' *" "IJ*<^ U-S. DEPARTMENT OF COMMERCE NATIONAL TECHN.CAT ERCE INFORMATION SERVICE SPRINGRELD. VA 22161 NASA SP-395 SECOND NASA CONFERENCE ON LASER ENERGY CONVERSION Proceedings of a conference held at the NASA Ames Research Center, Moffett Field, California, on January 27—28, 1975 Edited by Kenneth W. Billman Scientific and Technical Information Office 1976 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. For sale by the National Technical Information Service Springfield, Virginia 22161 Price - $7.00 PREFACE Approximately 75 scientists gathered at Ames Research Center, NASA, Moffett Field, California on 27-28 January 1975 to attend the 2nd NASA Conference on Laser Energy Conversion. They heard the presentations of 18 technical papers and participated enthusiastically in « the discussions that followed. It was generally agreed, and evidenced by comments made during the final summary discussion, that they were both informed and stimulated by the results of initial studies and developments made in certain converter areas, by the advances made in ancillary devices and techniques, and by the possibilities of the more speculative approaches to this newly developing area of advanced technology. Why hold a laser energy conversion conference? To answer this we must first answer another question: why is NASA interested in laser power transmission? Quite simply because it may _ ultimately allow space missions which would be impossible by other means.
    [Show full text]
  • Laser Precision Microprocessing of Materials
    Laser Precision Microprocessing of Materials Laser Precision Microprocessing of Materials A.G. Grigor’yants M.A. Kazaryan N.A. Lyabin Translated from Russian by V.E. Riecansky CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by CISP CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-59454-8 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Laser Applications to Medicine and Biology
    BASIC PRINCIPLES OF MEDICAL LASERS leactur 7 Dr.khitam Y. Elwasife special Topics 2019-2020 Layout Fundamentals of Laser • Introduction– Properties of Laser Light– Basic Components of Laser– Basic laser operation– Types of Lasers– Laser Applications Principles – of Medical Lasers Types of Medical Lasers– Laser: Medical Applications– Laser: Surgery and Diagnostics– Laser Hazards– Laser Safety– LASER STAND FOR LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION Introduction LASER Light Amplification by Stimulated Emission of Radiation. •An optical source that emits photons in a coherent beam. •optical lasers, a device which produces any particles or electromagnetic radiations in a coherent state is called “Laser”, e.g., Atom Laser. •In most cases “laser” refers to a source of coherent photons i.e., light or other electromagnetic radiations. It is not limited to photons in the visible spectrum. There are 3 x-ray lasers, infrared lasers, UV lasers etc. Properties of Laser Light • The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light is a combination of many colors • Lasers emit light that is highly directional, that is, laser light is emitted as a relatively narrow beam in a specific direction. Ordinary light, such as from a light bulb, is emitted in many directions away from the source. • The light from a laser is said to be coherent, which means that the wavelengths of the laser light are in phase in space and time. Ordinary light can be a mixture of many wavelengths. Ordinary Light vs. Laser Light Ordinar Laser y Light Light Basic Concepts: Laser is a narrow beam of light of a single wavelength (monochromatic) in which each wave is in phase (coherent) with other near it.
    [Show full text]
  • Blackbody Radiation and Optical Sources
    01/03/2021 Blackbody Radiation and Optical Sources Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Prof. Elias N. Glytsis, School of ECE, NTUA 2 Wave-Particle Duality of Light De Broglie (1924): λ = h / p, h = 6.62607015 × 10-34 J sec, p = momentum (exact according to NIST 2018-2019) Φορτίο Ηλεκτρονίου: e = 1.602176634 × 10-19 Coulombs (exact according to NIST 2018-2019) Photons (zero rest mass) Particles (non-zero rest mass) https://physics.nist.gov/cgi-bin/cuu/Category?view=pdf&All+values.x=71&All+values.y=12 Prof. Elias N. Glytsis, School of ECE, NTUA 3 Light Sources Incoherent Light Sources Incandescent Sources Blackbody Radiators Discharge Lamps Line (Spectral) Sources) High-Intensity Sources Fluorescent Lamps Light Emitting Diodes (LED) Coherent Light Sources LASERS (Light Amplification via Stimulated Emission of Radiation) Prof. Elias N. Glytsis, School of ECE, NTUA 4 Blackbody Radiation https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_C hemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.01%3A_Blackbody_Radiation_Can not_Be_Explained_Classically Prof. Elias N. Glytsis, School of ECE, NTUA 5 Blackbody Radiation Prof. Elias N. Glytsis, School of ECE, NTUA 6 Electromagnetic Cavity Modes TEmpq Modes From Maxwell’s equations Electromagnetic Knowledge z a d TMmpq Modes y b x Dispersion Relation Prof. Elias N. Glytsis, School of ECE, NTUA 7 Blackbody Radiation 2ν q nd z c a R(ν) 1 1 2ν nb 1 c d p y 2ν b na x c m Density of Electromagnetic Modes per Frequency: Prof. Elias N. Glytsis, School of ECE, NTUA 8 Blackbody Radiation From Boltzmann’s statistics (energy of an em mode between E and E+dE): Normalization Average Energy per Electromagnetic Mode: Rayleigh-Jeans Equation Prof.
    [Show full text]
  • Surface Analysis Correlated with Structural and Mechanical Properties of Laser Irradiated Brass
    Materials Sciences and Applications, 2015, 6, 23-32 Published Online January 2015 in SciRes. http://www.scirp.org/journal/msa http://dx.doi.org/10.4236/msa.2015.61004 Surface Analysis Correlated with Structural and Mechanical Properties of Laser Irradiated Brass Shahbaz Ahmad*, Shazia Bashir, Daniel Yousaf, Nisar Ali, Tousif Hussain Center for Advanced Studies in Physics, Government College University, Lahore, Pakistan Email: *[email protected] Received 17 October 2014; revised 10 November 2014; accepted 8 December 2014 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Brass targets were irradiated with various laser pulses of Excimer laser ranging from 1200 to 3000 for constant fluence of 3.4 J/cm2 in oxygen atmosphere (100 Torr). The surface morphology and crystallographic analyses were performed by using Scanning Electron Microscope (SEM) and X-Ray Diffractometer (XRD). SEM analysis reveals the formation of laser-induced micro-sized cavi- ties, bumps, cones and wave-like ridges with non-uniform shape and density distribution. These features are formed for all number of pulses; however with increasing number of pulses from 1200 to 2400, the density of cavities decreases whereas, the wave-like ridges become more pro- nounced and bump-formation is vanished. For maximum number of 3000 shots, the appearance of cones and wave-like ridges becomes diffusive, whereas the density and size of cavities increase again. XRD analysis demonstrates that no new phases are formed in irradiated brass. However, the change in peak intensity along with lower and higher angle shifting is observed which is at- tributed to generation of laser induced stresses.
    [Show full text]
  • Copper Vapor Laser Drilling of Copper, Iron, and Titanium Foils In
    Copper vapor laser drilling of copper, iron,, and titanium foils In atmospheric pressure air and argon J. S. Lash and R. M. Gilgenbach fntense Energy Beam Interaction Laboratory, Nucieat Engineering Departmerzr. The University of Michigan, Ann Arbor, Michigan 48109-2104 (Received 19 March 1993; acceptedfor publication 27 July 1993) A copper vapor laser (5 11 and 578 nm) is used to drill submillimeter diameter holes in 0.025- 0.127 mm thick foils of copper, iron, and titanium. Foils are machined in atmospheric pressure air and argon. The laser is repetitively pulsed at 10 kHz with a per pulse energyof 0.5 mJ giving an averagepower of 5 W at the sample surface for a pulse width of 40 ns. A p-i-n photodiode and a photomultiplier tube detector are connectedto a digital-display timing circuit that records the number of incident laser pulses used to drill through the sample. The number of pulses is converted to an averagedrilling time and can provide an estimate for the averagelaser energy used to drill the hole. Typical data for all three materials with a per-pulse fluence of 0.7 J/cm2 ranged from 0.1 to 500 s to produce holes of -0.3 mm diameter. Drilling times decreasedin some casesby an order of magnitude when machining in air. This is attributed to the increased laser absorption of the metal-oxide layer formed in air and was especially noticeable with titanium. A continuous wave thermal model is used to compare experimental data as well as verify the thermal machining mechanism.
    [Show full text]
  • ∑ on the Delay Time of the Total Signal from a Set of Transmitters
    Technical Physics, Vol. 50, No. 1, 2005, pp. 1–10. Translated from Zhurnal TekhnicheskoÏ Fiziki, Vol. 75, No. 1, 2005, pp. 3–13. Original Russian Text Copyright © 2005 by Bukhman. THEORETICAL AND MATHEMATICAL PHYSICS On the Delay Time of the Total Signal from a Set of Transmitters N. S. Bukhman Samara State Academy of Architecture and Civil Engineering, 443001 Samara, Russia e-mail: [email protected] Received April 15, 2004 Abstract—The time dependence of the total signal from a group of closely spaced acoustic or electromagnetic transmitters radiating the same (up to an amplitude factor) signals is considered. If the duration of the partial signal is sufficiently long, the time dependence of the signal from the set of transmitters turns out to be close to that of the signal from a single transmitter up to a delay time. This delay does not necessarily coincide with the time it takes for an optical (or acoustic) signal to pass from the transmitters to the observation point. At different points of the space, this delay time may exceed, or be shorter than, the light (sound) delay time and also may be positive or negative. This follows from the backward or forward extrapolation of the time dependence of the signal when variously delayed and attenuated copies of the same signal that are produced by different transmit- ters are added up (i.e., interfere). One result of such an extrapolation, which arises upon transmitting a signal with its leading or trailing edge cut off, is the reconstruction of its time dependence, i.e., the detection of the nontransmitted part of the signal.
    [Show full text]
  • Optics Terminology Resource Optics Terminology Resource Version 1.0 (Last Updated: 2019-03-30)
    - Institute for scientific and technical information - Optics terminology resource Optics terminology resource Version 1.0 (Last updated: 2019-03-30) Terminology resource used for indexing bibliographical records dealing with “Optics” in the PASCAL database, until 2014. French, Spanish and German versions of this vocabulary are also available. This vocabulary is browsable online at: https://www.loterre.fr Legend • Syn: Synonym. • → : Corresponding Preferred Term. • FR: French Preferred Term. • ES: Spanish Preferred Term. • DE: German Preferred Term. • NT: Narrower Term. • BT: Broader Term. • RT: Related Term. • URI: Concept's URI (link to the online view). This resource is licensed under a Creative Commons Attribution 4.0 International license: TABLE OF CONTENTS Alphabetical Index 4 Terminological entries 5 List of entries 243 Alphabetical index from 1/f noise to 1/f noise p. 7 -7 from 2R signal regeneration to 2R signal regeneration p. 8 -8 from 3R signal regeneration to 3R signal regeneration p. 9 -9 from ABCD matrix to azo dye p. 10 -22 from backlighting to Butterworth filter p. 26 -30 from cadmium alloy to Czochralski method p. 36 -46 from dark cloud to dysprosium barium cuprate p. 50 -55 from EBIC to eye tracking p. 59 -66 from F2 laser to fuzzy logic p. 70 -76 from g-factor to gyrotron p. 78 -83 from H-like ion to hysteresis loop p. 87 -90 from ice to IV-VI semiconductor p. 99 -100 from Jahn-Teller effect to Josephson junction p. 101 -101 from Kagomé lattice to Kurtosis parameter p. 102 -103 from lab-on-a-chip to Lyot filter p.
    [Show full text]
  • Vocabulaire D'optique Vocabulaire D'optique Version 1.0 (Dernière Mise À Jour : 2019-03-30)
    - Institut de l'information scientifique et technique - Vocabulaire d'optique Vocabulaire d'optique Version 1.0 (dernière mise à jour : 2019-03-30) Vocabulaire utilisé pour l’indexation des références bibliographiques de la base de données PASCAL jusqu’en 2014, dans le domaine de l'optique. Des versions de cette ressource en anglais, espagnol et allemand sont également disponibles. La ressource est en ligne sur le portail terminologique Loterre : https://www.loterre.fr Légende • Syn : Synonyme. • → : Renvoi vers le terme préférentiel. • EN : Préférentiel anglais. • ES : Préférentiel espagnol. • DE : Préférentiel allemand. • TS : Terme spécifique. • TG : Terme générique. • TA : Terme associé. • URI : URI du concept (cliquer pour le voir en ligne). Cette ressource est diffusée sous licence Creative Commons Attribution 4.0 International : TABLE DES MATIÈRES Index alphabétique 4 Entrées terminologiques 5 Liste des entrées 240 Index alphabétique de aberration chromatique à axicon p. 7 -22 de balayage en Z à bruit quantique p. 23 -26 de calcul bidimensionnel à cytométrie en flux p. 27 -49 de décharge capillaire à dynamique spatio-temporelle p. 50 -65 de EBIC à extensométrie p. 66 -80 de fabrication à fusion superficielle p. 81 -91 de gain optique à gyrotron p. 92 -97 de halogénure à hyperpolarisabilité électrique p. 98 -101 de illusion de Müller-Lyer à isotope du carbone p. 102 -112 de jauge de contrainte à jonction supraconductrice p. 113 -113 de KGW à krypton p. 114 -114 de L-alanine à luminescence p. 129 -130 de macroparticule à myopie p. 131 -154 de nano-aimant à nuage sombre p. 155 -158 de objet de phase à ozone p.
    [Show full text]
  • Characterization of High-End State-Of-Art Copper Bromide Lasers
    BULGARIAN ACADEMY OF SCIENCES INSTITUTE OF SOLID STATE PHYSICS “ACAD. GEORGI NADJAKOV” Dimo N. Astadjov High-End State-of-Art Copper Bromide Vapor Lasers: Optical, Electric and Thermal Properties Research and development of copper bromide vapor lasers in Laboratory of metal vapor lasers Latest 20+ years 2017 Sofia - Bulgaria٠ To my parents, Kleopatra & Nikola, This book is devoted. 2 Copper bromide vapor laser is the most successful sealed-off version of a plenty of copper vapor lasers launched, studied and produced for the last half of century. Being first reported in 1975, it became the leading and long-lasting R&D&T project followed by the Laboratory of metal vapor lasers in Institute of solid state physics of the Bulgarian Academy of Sciences ever since. This manuscript gathers major research & development results of the last studies unfolding unexplored and unknown optical, electric and thermal properties of CuBr laser held in the Laboratory of metal vapor lasers during foregoing 20+ years. Some of these new aftermaths are record-high power, efficiency and lifetime of CuBr laser; comprehensive studies of energy dissipation and dynamics of the electric field of CuBr laser; achievement of high-brightness diffraction-limited throughout-pulse emission of master-oscillator power- amplifier (MOPA) CuBr laser and high focusability of CuBr laser emission low-affected by beam profile intensity variations. Dimo Nikolov Astadjov, 2017 3 CONTENTS Preface…………………………………………………………………………………6 1. Milestones in the history of copper bromide vapor laser……………………………...8 2. Power, efficiency and lifetime of copper bromide vapor laser………………….........11 2.1. Small-bore CuBr laser with 1.4 W/cm3 average output power.............................11 2.2.
    [Show full text]
  • Received ©St«
    Laser Ablation/Ionization Characterization of Solids: Second Interim Progress Report of the Strategic Environmental Research Development Program RECEIVED DEC171M7 ©ST« • by W. P. Hess, B. A. Bushaw, M. I. McCarthy, J. A. Campbell, S. D. Colsdh Pacific Northwest National Laboratory* PO Box 999, Richland, WA 99352 and J. T. Dickinson Washington State University Department of Physics Pullman, WA 99164-2814 USA DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED dT\ •Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by B attelle under Contract No. DE-AC06-76RLO 1830. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,.completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe- cific commercial product, process, or service by trade name, trademark, manufac- turer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Si- TABLE OF CONTENTS I. INTRODUCTION 1 H. PROJECT DESCRIPTION 2 m. ACCOMPLISHMENTS 3 A. Laser Ablation Mass Spectrometry 12 a. Resonant Laser Ablation 13 b. Nonresonant Laser Ablation 14 c. Theoretical Studies 16 B.
    [Show full text]
  • An Externally Heated Copper Vapour Laser
    — AECL—10757 CA9400047 AECL-10757 ATOMIC ENERGY ENERGIE ATOMIQUE OF CANADA LIMITED A> DU CANADA LIMITEE AN EXTERNALLY HEATED COPPER VAPOUR LASER UN LASER A VAPEURS DE CUIVRE CHAUFFE EXTERIEUREMENT P.A ROCHEFORT, F.C. SOPCHYSHYN, E.B. SELKIRK and L.W. GREEN Chalk River Laboratories Laboraloires de Chaik Rh/er Chalk River, Ontario KOJ 1JO August 1993 aout AECL Research AN EXTERNALLY HEATED COPPER VAPOUR LASER by P.A. Rochefort, F.C Sopchyshyn, E.B. Selkirk, and L.W. Green Physical Chemistry Branch Chalk River Laboratories Chalk River, Ontario, Canada KOJ 1J0 1993 August AECL-10757 EACL Recherche UN LASER À VAPEURS DE CUIVRE CHAUFFÉ EXTÉRIEUREMENT par P.A. Rochefort, F.C. Sopchyshyn, E.B. Selkirk et L.W. Green RÉSUMÉ On a conçu, construit et mis en service un Laser puisé à vapeurs de cuivre (LVC) (CVL) aux Laboratoires de Chalk River; sa fréquence nominale de répétition est de 5 kHz. On avait besoin de ce laser pour les essais à l'aide de la Spectroscopie de masse associée à l'ionisation résonnante (RIMS) et pour les projets associés aux études de la Séparation isotopique par laser à vapeurs atomiques (SILVA) (AVLIS). Pour que le laser fonctionne, il faut qu'on mette en place des coupons de cuivre sur la longueur d'un tube en céramique et qu'on les chauffe suffi- samment pour créer une pression de vapeurs appropriée. Le laser à vapeurs de cuivre (CVL) d'EACL comporte un élément chauffant extérieur dont la conception unique permet d'augmenter la température du tube. La forme de l'élément chauffant cylindrique en graphite permet de compenser les pertes importantes aux extrémités du tube du laser par radiation.
    [Show full text]