Geological Survey of Alabama Calibration of The

Total Page:16

File Type:pdf, Size:1020Kb

Geological Survey of Alabama Calibration of The GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist ECOSYSTEMS INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE PLATEAU ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 1111 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2011 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 2 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Plateau ichthyoregion ............................................ 7 Methods ............................................................ 9 IBI sample collection ............................................. 9 Habitat measures............................................... 11 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 16 IBI metrics and scoring criteria..................................... 20 Designation of guilds....................................... 21 Results and discussion................................................ 23 Sampling sites and collection results . 23 Selection and scoring of Plateau IBI metrics . 40 Metrics selected for the Plateau IBI ................................. 46 1. Number of native species ................................. 46 2. Number of cyprinid species ............................... 47 3. Number of sucker species................................. 50 4. Number of Lepomis species ............................... 50 5. Number of darter + madtom species . 50 6. Percent dominant species................................. 53 7. Percent as tolerant species................................ 53 8. Percent as Lepomis ..................................... 56 9. Percent as omnivores and herbivores . 56 10. Percent as top carnivores ................................ 60 11. Percent with DELT+hybrids............................... 60 12. Percent as simple lithophilic spawners . 62 IBI development for the Plateau ichthyoregion . 62 Conclusions ........................................................ 76 References cited..................................................... 77 Appendix A. Habitat evaluation forms..................................... 82 Appendix B. Reproduction and trophic guild classifications for Alabama fishes . 85 Appendix C. Plateau ichthyoregion fish community sampling data ......................................................... 96 TABLES Table 1. IBI sampling sites in the Plateau ichthyoregion, 2008-11 . 25 Table 2. Fish species collected in the Black Warrior, Coosa, and Tennessee River systems ...................................................... 29 ii Table 3. Rapid habitat assessment scores for sites in the Plateau ichthyoregion . 33 Table 4. Human disturbance metrics for sites in the Plateau ichthyoregion . 36 Table 5. LDI-weighted human disturbance metrics for sites in the Plateau ichthyoregion .................................................. 38 Table 6. Correlation coefficients between candidate IBI metrics and habitat assessment metrics ............................................. 41 Table 7. Correlation coefficients between candidate IBI metrics and human disturbance metrics ............................................. 42 Table 8. Statistical and responsive measures for candidate IBI metrics . 44 Table 9. Redundancy analysis for Plateau ichthyoregion IBI metrics . 45 Table 10. Fish community values for Plateau IBI metrics . 65 Table 11. Scores for Plateau IBI metrics . 67 Table 12. IBI integrity classes for the Plateau, Southern Plains, Tennessee Valley, and Ridge and Valley/Piedmont ichthyoregions . 69 FIGURES Figure 1. Preliminary ichthyoregion classification for Alabama . 5 Figure 2. Ecoregions and river systems in Alabama . 8 Figure 3. Conceptual model illustrating the relationship between disturbance, stressor, and response. .......................................... 17 Figure 4. Location of IBI sampling sites in the Plateau ichthyoregion . 24 Figure 5. Frequency distribution of sampling sites in the Plateau ichthyoregion by watershed area and human disturbance . 28 Figure 6. Relationships between the IBI metric number of native species and watershed area, disturbance, and habitat. 48 Figure 7. Relationships between the IBI metric number of cyprinid species and watershed area, disturbance, and habitat . 49 Figure 8. Relationships between the IBI metric number of sucker species and watershed area, disturbance, and habitat . 51 Figure 9. Relationships between the IBI metric number of Lepomis species and watershed area, disturbance, and habitat . 52 Figure 10. Relationships between the IBI metric number of darter+madtom species and watershed area, disturbance, and habitat . 54 Figure 11. Relationships between the IBI metric percent dominant species and watershed area, disturbance, and habitat . 55 Figure 12. Relationships between the IBI metric percent tolerant species and watershed area, disturbance, and habitat . 57 Figure 13. Relationships between the IBI metric percent Lepomis and watershed area, disturbance, and habitat ..................................... 58 Figure 14. Relationships between the IBI metric percent omnivores-herbivores and watershed area, disturbance, and habitat. 59 iii Figure 15. Relationships between the IBI metric percent top carnivores and watershed area, disturbance, and habitat . 61 Figure 16. Relationships between the IBI metric percent DELT + hybrids and watershed area, disturbance, and habitat . 63 Figure 17. Relationships between the IBI metric percent simple lithophilic spawners and watershed area, disturbance, and habitat . 64 Figure 18. Frequency distribution of IBI integrity classes for sites in the Plateau ichthyoregion .................................................. 69 Figure 19. Comparison of the IBI in level IV ecoregions and drainages relative to habitat quality and a comparison of IBI scores for small and large watersheds relative to habitat quality ......................................... 70 Figure 20. Comparison of the IBI in level IV ecoregions and drainages relative to human disturbance and a comparison of IBI scores for small and large watersheds relative to human disturbance . 72 Figure 21. Tiered aquatic life use relationships between the IBI, habitat quality, and human disturbance for sites in the Plateau ichthyoregion . 73 Figure 22. Biological condition gradient models for the Plateau ichthyoregion . 75 iv ABSTRACT The Plateau ichthyoregion in north Alabama was sampled from 2008 through 2011 to develop data for creating and calibrating the Index of Biotic Integrity (IBI). Eighty-seven sites were selected to represent a range of watershed areas and levels of human disturbance. Watershed areas at sampled sites ranged from 3.90 mi2 up to 921 mi2 with 36 percent (33 sites) of the watersheds <20 mi2, 40 percent (36 sites) ranging from 21 to 100 mi22, and 24 percent (22 sites) >100 mi in area. Rapid habitat assessments were completed for each sample and eight measures of human disturbance were derived for each site from a geographic information system (GIS). Thirty-four candidate IBI metrics were screened for inclusion in the IBI by evaluating their relationship to the habitat assessment and human disturbance metrics. Both human disturbance metrics and habitat metrics were correlated with IBI metrics. Twelve metrics were selected for the Plateau IBI: number of native species, number of cyprinid species, number of sucker species, number of Lepomis species, number of darter+madtom species, percent of the dominant species, percent of tolerant species, percent of Lepomis species, percent of omnivores and herbivores, percent of top carnivores, percent with DELT+hybrids (DELT=deformities, eroded fins, lesions, tumors) and the percent of simple lithophilic spawners. Only disturbance measures were effective in discriminating sites with good biological condition from sites with poor condition. Habitat measures did not discriminate sites with good biological condition from sites with poor biological condition. Thirty-four percent of the sites scored in the poor to very poor range, 38 percent in the fair range, and 28 percent in the good to excellent range. The range of scores for each integrity class of the Plateau IBI were similar to those developed for the Southern Plains and Ridge and Valley/Piedmont IBI and slightly higher than criteria developed for the Tennessee Valley IBI. The Plateau IBI integrity classes were applied to the USEPA biological condition gradient concept for tiered aquatic life uses to model the response of biological condition to ecosystem stress in the region. This model can be used to better assess stream aquatic life use in Plateau streams and provide an additional water quality screening tool for locating and defining use-impaired streams. 1 INTRODUCTION The Geological Survey of Alabama (GSA), in cooperation with the Alabama Department of Environmental Management (ADEM) and the Wildlife and Freshwater Fisheries Division (WFFD) of the Alabama Department of Conservation and Natural Resources (ADCNR), has initiated a multi-year research effort to develop and calibrate a comprehensive fish community bioassessment tool, known as the Index
Recommended publications
  • Species Status Assessment (SSA) Report for the Ozark Chub (Erimystax Harryi) Version 1.2
    Species Status Assessment (SSA) Report for the Ozark Chub (Erimystax harryi) Version 1.2 Ozark chub (Photo credit: Dustin Lynch, Arkansas Natural Heritage Commission) August 2019 U.S. Fish and Wildlife Service - Arkansas Ecological Services Field Office This document was prepared by Alyssa Bangs (U. S. Fish and Wildlife Service (USFWS) – Arkansas Ecological Services Field Office), Bryan Simmons (USFWS—Missouri Ecological Services Field Office), and Brian Evans (USFWS –Southeast Regional Office). We greatly appreciate the assistance of Jeff Quinn (Arkansas Game and Fish Commission), Brian Wagner (Arkansas Game and Fish Commission), and Jacob Westhoff (Missouri Department of Conservation) who provided helpful information and review of the draft document. We also thank the peer reviewers, who provided helpful comments. Suggested reference: U.S. Fish and Wildlife Service. 2019. Species status assessment report for the Ozark chub (Erimystax harryi). Version 1.2. August 2019. Atlanta, GA. CONTENTS Chapter 1: Executive Summary 1 1.1 Background 1 1.2 Analytical Framework 1 CHAPTER 2 – Species Information 4 2.1 Taxonomy and Genetics 4 2.2 Species Description 5 2.3 Range 6 Historical Range and Distribution 6 Current Range and Distribution 8 2.4 Life History Habitat 9 Growth and Longevity 9 Reproduction 9 Feeding 10 CHAPTER 3 –Factors Influencing Viability and Current Condition Analysis 12 3.1 Factors Influencing Viability 12 Sedimentation 12 Water Temperature and Flow 14 Impoundments 15 Water Chemistry 16 Habitat Fragmentation 17 3.2 Model 17 Analytical
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • Part IV: Scoring Criteria for the Index of Biotic Integrity to Monitor
    Part IV: Scoring Criteria for the Index of Biotic Integrity to Monitor Fish Communities in Wadeable Streams in the Coosa and Tennessee Drainage Basins of the Ridge and Valley Ecoregion of Georgia Georgia Department of Natural Resources Wildlife Resources Division Fisheries Management Section 2020 Table of Contents Introduction………………………………………………………………… ……... Pg. 1 Map of Ridge and Valley Ecoregion………………………………..……............... Pg. 3 Table 1. State Listed Fish in the Ridge and Valley Ecoregion……………………. Pg. 4 Table 2. IBI Metrics and Scoring Criteria………………………………………….Pg. 5 References………………………………………………….. ………………………Pg. 7 Appendix 1…………………………………………………………………. ………Pg. 8 Coosa Basin Group (ACT) MSR Graphs..………………………………….Pg. 9 Tennessee Basin Group (TEN) MSR Graphs……………………………….Pg. 17 Ridge and Valley Ecoregion Fish List………………………………………Pg. 25 i Introduction The Ridge and Valley ecoregion is one of the six Level III ecoregions found in Georgia (Part 1, Figure 1). It is drained by two major river basins, the Coosa and the Tennessee, in the northwestern corner of Georgia. The Ridge and Valley ecoregion covers nearly 3,000 square miles (United States Census Bureau 2000) and includes all or portions of 10 counties (Figure 1), bordering the Piedmont ecoregion to the south and the Blue Ridge ecoregion to the east. A small portion of the Southwestern Appalachians ecoregion is located in the upper northwestern corner of the Ridge and Valley ecoregion. The biotic index developed by the GAWRD is based on Level III ecoregion delineations (Griffith et al. 2001). The metrics and scoring criteria adapted to the Ridge and Valley ecoregion were developed from biomonitoring samples collected in the two major river basins that drain the Ridge and Valley ecoregion, the Coosa (ACT) and the Tennessee (TEN).
    [Show full text]
  • Geological Survey of Alabama Biological
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist ECOSYSTEMS INVESTIGATIONS PROGRAM BIOLOGICAL ASSESSMENT OF THE LITTLE CHOCTAWHATCHEE RIVER WATERSHED IN ALABAMA OPEN-FILE REPORT 1105 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Choctawhatchee, Pea and Yellow Rivers Watershed Management Authority Tuscaloosa, Alabama 2011 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 1 Acknowledgments .................................................... 3 Study area .......................................................... 3 Methods ............................................................ 3 IBI sample collection ............................................. 3 Habitat measures................................................ 8 Habitat metrics ............................................ 9 IBI metrics and scoring criteria..................................... 12 Results and discussion................................................ 17 Sampling sites and collection results . 17 Relationships between habitat and biological condition . 28 Conclusions ........................................................ 31 References cited..................................................... 33 LIST OF TABLES Table 1. Habitat evaluation form......................................... 10 Table 2. Fish community sampling sites in the Little Choctawhatchee River watershed ...................................................
    [Show full text]
  • Geological Survey of Alabama Calibration of The
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist WATER INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 0908 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2009 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 1 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 8 IBI sample collection ............................................. 8 Habitat measures............................................... 10 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 15 IBI metrics and scoring criteria..................................... 19 Designation of guilds....................................... 20 Results and discussion................................................ 22 Sampling sites and collection results . 22 Selection and scoring of Southern Plains IBI metrics . 41 1. Number of native species ................................
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86
    2009. Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86 THE "LOST" JORDAN AND HAY FISH COLLECTION AT BUTLER UNIVERSITY Carter R. Gilbert: Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA ABSTRACT. A large fish collection, preserved in ethanol and assembled by Drs. David S. Jordan and Oliver P. Hay between 1875 and 1892, had been stored for over a century in the biology building at Butler University. The collection was of historical importance since it contained some of the earliest fish material ever recorded from the states of South Carolina, Georgia, Mississippi and Kansas, and also included types of many new species collected during the course of this work. In addition to material collected by Jordan and Hay, the collection also included specimens received by Butler University during the early 1880s from the Smithsonian Institution, in exchange for material (including many types) sent to that institution. Many ichthyologists had assumed that Jordan, upon his departure from Butler in 1879. had taken the collection. essentially intact, to Indiana University, where soon thereafter (in July 1883) it was destroyed by fire. The present study confirms that most of the collection was probably transferred to Indiana, but that significant parts of it remained at Butler. The most important results of this study are: a) analysis of the size and content of the existing Butler fish collection; b) discovery of four specimens of Micropterus coosae in the Saluda River collection, since the species had long been thought to have been introduced into that river; and c) the conclusion that none of Jordan's 1878 southeastern collections apparently remain and were probably taken intact to Indiana University, where they were lost in the 1883 fire.
    [Show full text]
  • Geological Survey of Alabama Calibration of The
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist ECOSYSTEMS INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 1210 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2012 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 2 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 9 IBI sample collection ............................................. 9 Habitat measures............................................... 11 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 16 IBI metrics and scoring criteria..................................... 20 Designation of guilds....................................... 21 Results and discussion................................................ 23 Sampling sites and collection results . 23 Selection and scoring of Southern Plains IBI metrics . 48 Metrics selected for the
    [Show full text]
  • Abstracts Part 1
    375 Poster Session I, Event Center – The Snowbird Center, Friday 26 July 2019 Maria Sabando1, Yannis Papastamatiou1, Guillaume Rieucau2, Darcy Bradley3, Jennifer Caselle3 1Florida International University, Miami, FL, USA, 2Louisiana Universities Marine Consortium, Chauvin, LA, USA, 3University of California, Santa Barbara, Santa Barbara, CA, USA Reef Shark Behavioral Interactions are Habitat Specific Dominance hierarchies and competitive behaviors have been studied in several species of animals that includes mammals, birds, amphibians, and fish. Competition and distribution model predictions vary based on dominance hierarchies, but most assume differences in dominance are constant across habitats. More recent evidence suggests dominance and competitive advantages may vary based on habitat. We quantified dominance interactions between two species of sharks Carcharhinus amblyrhynchos and Carcharhinus melanopterus, across two different habitats, fore reef and back reef, at a remote Pacific atoll. We used Baited Remote Underwater Video (BRUV) to observe dominance behaviors and quantified the number of aggressive interactions or bites to the BRUVs from either species, both separately and in the presence of one another. Blacktip reef sharks were the most abundant species in either habitat, and there was significant negative correlation between their relative abundance, bites on BRUVs, and the number of grey reef sharks. Although this trend was found in both habitats, the decline in blacktip abundance with grey reef shark presence was far more pronounced in fore reef habitats. We show that the presence of one shark species may limit the feeding opportunities of another, but the extent of this relationship is habitat specific. Future competition models should consider habitat-specific dominance or competitive interactions.
    [Show full text]
  • Checklist of the Inland Fishes of Louisiana
    Southeastern Fishes Council Proceedings Volume 1 Number 61 2021 Article 3 March 2021 Checklist of the Inland Fishes of Louisiana Michael H. Doosey University of New Orelans, [email protected] Henry L. Bart Jr. Tulane University, [email protected] Kyle R. Piller Southeastern Louisiana Univeristy, [email protected] Follow this and additional works at: https://trace.tennessee.edu/sfcproceedings Part of the Aquaculture and Fisheries Commons, and the Biodiversity Commons Recommended Citation Doosey, Michael H.; Bart, Henry L. Jr.; and Piller, Kyle R. (2021) "Checklist of the Inland Fishes of Louisiana," Southeastern Fishes Council Proceedings: No. 61. Available at: https://trace.tennessee.edu/sfcproceedings/vol1/iss61/3 This Original Research Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Southeastern Fishes Council Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/sfcproceedings. Checklist of the Inland Fishes of Louisiana Abstract Since the publication of Freshwater Fishes of Louisiana (Douglas, 1974) and a revised checklist (Douglas and Jordan, 2002), much has changed regarding knowledge of inland fishes in the state. An updated reference on Louisiana’s inland and coastal fishes is long overdue. Inland waters of Louisiana are home to at least 224 species (165 primarily freshwater, 28 primarily marine, and 31 euryhaline or diadromous) in 45 families. This checklist is based on a compilation of fish collections records in Louisiana from 19 data providers in the Fishnet2 network (www.fishnet2.net).
    [Show full text]
  • Appendix A: Equipment & Supplies
    National Rivers and Streams Assessment 2018/19 Field Operations Manual Version 1.1 April 2018 Appendix A: Equipment & Supplies T & SUPPLIES & T APPENDIX A: EQUIPMEN A: APPENDIX A-1 National Rivers and Streams Assessment 2018/19 Field Operations Manual Version 1.1 April 2018 T & SUPPLIES & T APPENDIX A: EQUIPMEN A: APPENDIX A-2 National Rivers and Streams Assessment 2018/19 Field Operations Manual Version 1.1 April 2018 Base Kit A Base Kit will be provided to the field crews for all sampling sites that they will go to. Some items are sent in the base kit as extra supplies to be used as needed. Base Kit Item Quantity Protocol Antibiotic Salve 1 Fish Plug Aspirator bulb 1 Fish Plug Beaker (3 L, Nalgene) 1 Water Chemistry Centrifuge tube stand 1 Chlorophyll A Centrifuge tubes (sterile, green screw-top, 50-mL) (10/pack) 1 pack Chlorophyll A Periphyton Chlorophyll bottle (2 L, brown) 1 Chlorophyll A Clinometer† 1 Physical Habitat Compass† 1 Physical Habitat Delimiter – 12 cm2 area 1 Periphyton Densiometer - Convex spherical (modified with taped V)† 1 Physical Habitat D-frame Kick Net (500 µm mesh, 52” handle) † 1 Benthics Dry ice label (Class 9)* 5 Shipping Electrical tape - roll* 1 General FedEx labels, 5 sets of each in file folder (T1, T2, T3, T5)* 1 Shipping Filtration chamber adapter 3 Enterococci, Chlorophyll A, Periphyton Filtration flask 1 Enterococci, Chlorophyll A, Periphyton Filtration flask stopper (silicone, blue) 2 Enterococci, Chlorophyll A, Periphyton Filtration unit (sterile 250 ml funnel, cap and filter holder) - spares 5 Enterococci,
    [Show full text]