From Metagenomics to Pure Culture: Isolation and Characterization of the Moderately Halophilic Bacterium Spiribacter Salinus Gen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metagenomic Insights Into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines
Lawrence Berkeley National Laboratory Recent Work Title Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Permalink https://escholarship.org/uc/item/9xc5s0v5 Journal Frontiers in microbiology, 7(FEB) ISSN 1664-302X Authors Vavourakis, Charlotte D Ghai, Rohit Rodriguez-Valera, Francisco et al. Publication Date 2016 DOI 10.3389/fmicb.2016.00211 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH published: 25 February 2016 doi: 10.3389/fmicb.2016.00211 Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines Charlotte D. Vavourakis 1, Rohit Ghai 2, 3, Francisco Rodriguez-Valera 2, Dimitry Y. Sorokin 4, 5, Susannah G. Tringe 6, Philip Hugenholtz 7 and Gerard Muyzer 1* 1 Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands, 2 Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain, 3 Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Ceskéˇ Budejovice,ˇ Czech Republic, 4 Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia, 5 Department of Biotechnology, Delft University of Technology, Delft, Netherlands, 6 The Department of Energy Joint Genome Institute, Walnut Creek, CA, USA, 7 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration Edited by: of sodium carbonates in the absence of major divalent cations. -
Complete Genome Sequence of Strain BW-2, a Magnetotactic
Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae , Isolated from a Brackish Spring in Death Valley, California Corey Geurink, Christopher Lefèvre, Caroline Monteil, Viviana Morillo-Lopez, Fernanda Abreu, Dennis Bazylinski, Denis Trubitsyn To cite this version: Corey Geurink, Christopher Lefèvre, Caroline Monteil, Viviana Morillo-Lopez, Fernanda Abreu, et al.. Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae , Isolated from a Brackish Spring in Death Valley, California. Microbiology Resource Announcements, American Society for Microbiology, 2020, 9 (1), 10.1128/mra.01144-19. cea-02462734 HAL Id: cea-02462734 https://hal-cea.archives-ouvertes.fr/cea-02462734 Submitted on 3 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GENOME SEQUENCES crossm Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae, Downloaded from Isolated from a Brackish Spring in Death -
Genomes of “Spiribacter”, a Streamlined, Successful Halophilic
López-Pérez et al. BMC Genomics 2013, 14:787 http://www.biomedcentral.com/1471-2164/14/787 RESEARCH ARTICLE Open Access Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium Mario López-Pérez1, Rohit Ghai1, Maria Jose Leon2, Ángel Rodríguez-Olmos3, José Luis Copa-Patiño3, Juan Soliveri3, Cristina Sanchez-Porro2, Antonio Ventosa2 and Francisco Rodriguez-Valera1* Abstract Background: Thalassosaline waters produced by the concentration of seawater are widespread and common extreme aquatic habitats. Their salinity varies from that of sea water (ca. 3.5%) to saturation for NaCl (ca. 37%). Obviously the microbiota varies dramatically throughout this range. Recent metagenomic analysis of intermediate salinity waters (19%) indicated the presence of an abundant and yet undescribed gamma-proteobacterium. Two strains belonging to this group have been isolated from saltern ponds of intermediate salinity in two Spanish salterns and were named “Spiribacter”. Results: The genomes of two isolates of “Spiribacter” have been fully sequenced and assembled. The analysis of metagenomic datasets indicates that microbes of this genus are widespread worldwide in medium salinity habitats representing the first ecologically defined moderate halophile. The genomes indicate that the two isolates belong to different species within the same genus. Both genomes are streamlined with high coding densities, have few regulatory mechanisms and no motility or chemotactic behavior. Metabolically they are heterotrophs with a subgroup II xanthorhodopsin as an additional energy source when light is available. Conclusions: This is the first bacterium that has been proven by culture independent approaches to be prevalent in hypersaline habitats of intermediate salinity (half a way between the sea and NaCl saturation). -
Microbial Diversity of Soda Lake Habitats
Microbial Diversity of Soda Lake Habitats Von der Gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Susanne Baumgarte aus Fritzlar 1. Referent: Prof. Dr. K. N. Timmis 2. Referent: Prof. Dr. E. Stackebrandt eingereicht am: 26.08.2002 mündliche Prüfung (Disputation) am: 10.01.2003 2003 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Gemeinsamen Naturwissenschaftlichen Fakultät, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Baumgarte, S., Moore, E. R. & Tindall, B. J. (2001). Re-examining the 16S rDNA sequence of Halomonas salina. International Journal of Systematic and Evolutionary Microbiology 51: 51-53. Tagungsbeiträge Baumgarte, S., Mau, M., Bennasar, A., Moore, E. R., Tindall, B. J. & Timmis, K. N. (1999). Archaeal diversity in soda lake habitats. (Vortrag). Jahrestagung der VAAM, Göttingen. Baumgarte, S., Tindall, B. J., Mau, M., Bennasar, A., Timmis, K. N. & Moore, E. R. (1998). Bacterial and archaeal diversity in an African soda lake. (Poster). Körber Symposium on Molecular and Microsensor Studies of Microbial Communities, Bremen. II Contents 1. Introduction............................................................................................................... 1 1.1. The soda lake environment ................................................................................. -
Menaquinone As Pool Quinone in a Purple Bacterium
Menaquinone as pool quinone in a purple bacterium Barbara Schoepp-Cotheneta,1, Cle´ ment Lieutauda, Frauke Baymanna, Andre´ Verme´ gliob, Thorsten Friedrichc, David M. Kramerd, and Wolfgang Nitschkea aLaboratoire de Bioe´nerge´tique et Inge´nierie des Prote´ines, Unite´Propre de Recherche 9036, Institut Fe´de´ ratif de Recherche 88, Centre National de la Recherche Scientifique, F-13402 Marseille Cedex 20, France; bLaboratoire de Bioe´nerge´tique Cellulaire, Unite´Mixte de Recherche 163, Centre National de la Recherche Scientifique–Commissariat a`l’E´ nergie Atomique, Universite´ delaMe´ diterrane´e–Commissariat a`l’E´ nergie Atomique 1000, Commissariat a` l’E´ nergie Atomique Cadarache, Direction des Sciences du Vivant, De´partement d’Ecophysiologie Ve´ge´ tale et Microbiologie, F-13108 Saint Paul Lez Durance Cedex, France; cInstitut fu¨r Organische Chemie und Biochemie, Albert-Ludwigs-Universita¨t Freiburg, Albertstr. 21, D-79104 Freiburg, Germany; and dInstitute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340 Edited by Pierre A. Joliot, Institut de Biologie Physico-Chimique, Paris, France, and approved March 31, 2009 (received for review December 23, 2008) Purple bacteria have thus far been considered to operate light- types of pool-quinones, such as ubi-, plasto-, mena-, rhodo-, driven cyclic electron transfer chains containing ubiquinone (UQ) as caldariella- or sulfolobus-quinones (to cite only the best-studied liposoluble electron and proton carrier. We show that in the purple cases) have been identified so far individually in different species ␥-proteobacterium Halorhodospira halophila, menaquinone-8 or coexisting in single organisms (2–4). (MK-8) is the dominant quinone component and that it operates in Menaquinone (MK) is the most widely distributed quinone on the QB-site of the photosynthetic reaction center (RC). -
Bibliography
Bibliography Abella, C.A., X.P. Cristina, A. Martinez, I. Pibernat and X. Vila. 1998. on moderate concentrations of acetate: production of single cells. Two new motile phototrophic consortia: "Chlorochromatium lunatum" Appl. Microbiol. Biotechnol. 35: 686-689. and "Pelochromatium selenoides". Arch. Microbiol. 169: 452-459. Ahring, B.K, P. Westermann and RA. Mah. 1991b. Hydrogen inhibition Abella, C.A and LJ. Garcia-Gil. 1992. Microbial ecology of planktonic of acetate metabolism and kinetics of hydrogen consumption by Me filamentous phototrophic bacteria in holomictic freshwater lakes. Hy thanosarcina thermophila TM-I. Arch. Microbiol. 157: 38-42. drobiologia 243-244: 79-86. Ainsworth, G.C. and P.H.A Sheath. 1962. Microbial Classification: Ap Acca, M., M. Bocchetta, E. Ceccarelli, R Creti, KO. Stetter and P. Cam pendix I. Symp. Soc. Gen. Microbiol. 12: 456-463. marano. 1994. Updating mass and composition of archaeal and bac Alam, M. and D. Oesterhelt. 1984. Morphology, function and isolation terial ribosomes. Archaeal-like features of ribosomes from the deep of halobacterial flagella. ]. Mol. Biol. 176: 459-476. branching bacterium Aquifex pyrophilus. Syst. Appl. Microbiol. 16: 629- Albertano, P. and L. Kovacik. 1994. Is the genus LeptolynglYya (Cyano 637. phyte) a homogeneous taxon? Arch. Hydrobiol. Suppl. 105: 37-51. Achenbach-Richter, L., R Gupta, KO. Stetter and C.R Woese. 1987. Were Aldrich, H.C., D.B. Beimborn and P. Schönheit. 1987. Creation of arti the original eubacteria thermophiles? Syst. Appl. Microbiol. 9: 34- factual internal membranes during fixation of Methanobacterium ther 39. moautotrophicum. Can.]. Microbiol. 33: 844-849. Adams, D.G., D. Ashworth and B. -
Photosynthesis Is Widely Distributed Among Proteobacteria As Demonstrated by the Phylogeny of Puflm Reaction Center Proteins
fmicb-08-02679 January 20, 2018 Time: 16:46 # 1 ORIGINAL RESEARCH published: 23 January 2018 doi: 10.3389/fmicb.2017.02679 Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins Johannes F. Imhoff1*, Tanja Rahn1, Sven Künzel2 and Sven C. Neulinger3 1 Research Unit Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 Max Planck Institute for Evolutionary Biology, Plön, Germany, 3 omics2view.consulting GbR, Kiel, Germany Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Edited by: Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the Marina G. Kalyuzhanaya, phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria San Diego State University, United States employing this photosystem in nature. Almost complete pufLM gene sequences and Reviewed by: the derived protein sequences from 152 type strains and 45 additional strains of Nikolai Ravin, phototrophic Proteobacteria employing photosystem II were compared. The results Research Center for Biotechnology (RAS), Russia give interesting and comprehensive insights into the phylogeny of the photosynthetic Ivan A. Berg, apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as Universität Münster, Germany major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from *Correspondence: Caulobacterales (Brevundimonas subvibrioides). -
Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A. -
Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju. -
Arhodomonas Aquaeolei Gen
INTERNATIONAL JOURNAL OF SYSTEMATICBACTERIOU)GY, July 1993, p. 514-520 Vol. 43, No. 3 oO20-7713/93/030514-07$02.oO/O Copyright 0 1993, International Union of Microbiological Societies Arhodomonas aquaeolei gen. nov., sp. nov., an Aerobic, Halophilic Bacterium Isolated from a Subterranean Brine JON P. ADKINS,l MICHAEL T. MADIGAN,2 LINDA MANDELCO,, CARL R. WOESE,, AND RALPH S. TANNER'* Department of Botany and Microbiology, University of Oklahoma? Norman, Oklahoma 73019'; Department of Microbwlogy9 Southern Illinois University, Carbondale, Illinois 629012; and Department of Microbiology, University of Illinois, Urbana, Illinois 61801 Arhodomonas uquueolei gen. nov., sp. nov., isolated from a petroleum reservoir production fluid, is described. The single isolate was an obligately halophilic, aerobic, gram-negative, oval rod-shaped bacterium that was actively motile by means of a single polar flagellum. It was catalase and oxidase positive. The isolate had a specific requirement for NaCI; growth occurred at NaCI concentrations between 6 and 20%, and optimal growth occurred in the presence of 15% NaCI. This species metabolized primarily organic acids and required biotin for growth. The name Arhodomonas is proposed for the new genus, which was placed in the gamma subclass of the Proteobactek on the basis of the results of a 16s rRNA sequence analysis. Although A. uquaeohi is most closely related to purple sulfur bacteria (the genera Ectothwrhodospiru and Chromatiurn),it is not a phototrophic microorganism, which is consistent with its isolation from a subterranean environment. The major components of its cellular fatty acids were C16:., Cis:., CI9:., C16:1,and Clsz0 acids. The DNA base composition of the type strain is 67 mol% G+C. -
Seasonal Dynamics of Extremely Halophilic Microbial Communities in Three Argentinian Downloaded From
FEMS Microbiology Ecology Advance Access published September 7, 2016 A manuscript submitted to FEMS Microbiology Ecology Seasonal dynamics of extremely halophilic microbial communities in three Argentinian Downloaded from salterns http://femsec.oxfordjournals.org/ Leonardo Di Meglioa, Fernando Santosb, María Gomarizb, Cristina Almansac, Cristina Lópezb, Josefa Antónb and Débora Nercessiana*. a. Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, UNMDP – CONICET, Funes 3250 4º nivel, 7600 Mar del Plata, Argentina. by guest on September 11, 2016 b. Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03690 San Vicente del Raspeig, España. c. Servicios Técnicos de Investigación (SSTTI), Unidad de Microscopía, Universidad de Alicante, Alicante, 03690 San Vicente del Raspeig, España *Correspondence to: Débora Nercessian E-mail: [email protected] Phone: (54) 223-4753030 Fax: (54) 223-4724143 Keywords: Halophilic microorganisms; haloviruses; microbial dynamics; prokaryotic diversity; hypersaline environments; environmental parameters. Downloaded from Running title: Microbial dynamics in three Argentinian salterns http://femsec.oxfordjournals.org/ Abstract A seasonal sampling was carried out in three Argentinian salterns: Salitral Negro (SN), Colorada Grande (CG) and Guatraché (G), aimed to analyze abiotic parameters and microbial diversity and dynamics. Microbial assemblages were correlated to environmental factors by statistical analyses. Principal- Component-Analysis -
DMSP) Demethylation Enzyme Dmda in Marine Bacteria
Evolutionary history of dimethylsulfoniopropionate (DMSP) demethylation enzyme DmdA in marine bacteria Laura Hernández1, Alberto Vicens2, Luis E. Eguiarte3, Valeria Souza3, Valerie De Anda4 and José M. González1 1 Departamento de Microbiología, Universidad de La Laguna, La Laguna, Spain 2 Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, Vigo, Spain 3 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico D.F., Mexico 4 Department of Marine Sciences, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA ABSTRACT Dimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton and bacteria, is primarily degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP- producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: (1) a recent common ancestor of DmdA and GcvT, (2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and (3) an enzymatic adaptation for utilizing DMSP in marine bacteria prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and Submitted 6 April 2020 functional divergence driven by positive selection before a coevolution between Accepted 12 August 2020 Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA Published 10 September 2020 by horizontal gene transfer prior to an environment with higher DMSP.