Arhodomonas Aquaeolei Gen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arhodomonas Aquaeolei Gen
INTERNATIONAL JOURNAL OF SYSTEMATICBACTERIOU)GY, July 1993, p. 514-520 Vol. 43, No. 3 oO20-7713/93/030514-07$02.oO/O Copyright 0 1993, International Union of Microbiological Societies Arhodomonas aquaeolei gen. nov., sp. nov., an Aerobic, Halophilic Bacterium Isolated from a Subterranean Brine JON P. ADKINS,l MICHAEL T. MADIGAN,2 LINDA MANDELCO,, CARL R. WOESE,, AND RALPH S. TANNER'* Department of Botany and Microbiology, University of Oklahoma? Norman, Oklahoma 73019'; Department of Microbwlogy9 Southern Illinois University, Carbondale, Illinois 629012; and Department of Microbiology, University of Illinois, Urbana, Illinois 61801 Arhodomonas uquueolei gen. nov., sp. nov., isolated from a petroleum reservoir production fluid, is described. The single isolate was an obligately halophilic, aerobic, gram-negative, oval rod-shaped bacterium that was actively motile by means of a single polar flagellum. It was catalase and oxidase positive. The isolate had a specific requirement for NaCI; growth occurred at NaCI concentrations between 6 and 20%, and optimal growth occurred in the presence of 15% NaCI. This species metabolized primarily organic acids and required biotin for growth. The name Arhodomonas is proposed for the new genus, which was placed in the gamma subclass of the Proteobactek on the basis of the results of a 16s rRNA sequence analysis. Although A. uquaeohi is most closely related to purple sulfur bacteria (the genera Ectothwrhodospiru and Chromatiurn),it is not a phototrophic microorganism, which is consistent with its isolation from a subterranean environment. The major components of its cellular fatty acids were C16:., Cis:., CI9:., C16:1,and Clsz0 acids. The DNA base composition of the type strain is 67 mol% G+C. -
Thiorhodospira Sibirica Gen. Nov., Sp. Nov., a New Alkaliphilic Purple Sulfur Bacterium from a Siberian Soda Lake
International Journal of Systematic Bacteriology (1 999),49, 697-703 Printed in Great Britain Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake kina Bryantseva,’ Vladimir M. Gorlenko,’ Elena 1. Kompantseva,’ Johannes F. Imhoff,2 Jdrg Suling’ and Lubov’ Mityushina’ Author for correspondence : Johannes F. Imhoff. Tel : + 49 43 1 697 3850. Fax : + 49 43 1 565 876. e-mail : [email protected] 1 Institute of Microbiology, A new purple sulfur bacterium was isolated from microbial films on decaying Russian Academy of plant mass in the near-shore area of the soda lake Malyi Kasytui (pH 95,02% Sciences, pr. 60-letiya Oktyabrya 7 k. 2, Moscow salinity) located in the steppe of the Chita region of south-east Siberia. Single 11781 1, Russia cells were vibrioid- or spiral-shaped (34 pm wide and 7-20 pm long) and motile * lnstitut fur Meereskunde, by means of a polar tuft of flagella. Internal photosynthetic membranes were Abt. Marine of the lamellar type. Lamellae almost filled the whole cell, forming strands Mikro biolog ie, and coils. Photosynthetic pigments were bacteriochlorophyll a and carotenoids Dusternbrooker Weg 20, 24105 Kiel, Germany of the spirilloxanthin group. The new bacterium was strictly anaerobic. Under anoxic conditions, hydrogen sulfide and elemental sulfur were used as photosynthetic electron donors. During growth on sulfide, sulfur globules were formed as intermediate oxidation products. They were deposited outside the cytoplasm of the cells, in the peripheral periplasmic space and extracellularly. Thiosulfate was not used. Carbon dioxide, acetate, pyruvate, propionate, succinate, f umarate and malate were utilized as carbon sources. -
Arhodomonas Aquaeolei Gen
INTERNATIONAL JOURNAL OF SYSTEMATICBACTERIOU)GY, July 1993, p. 514-520 Vol. 43, No. 3 oO20-7713/93/030514-07$02.oO/O Copyright 0 1993, International Union of Microbiological Societies Arhodomonas aquaeolei gen. nov., sp. nov., an Aerobic, Halophilic Bacterium Isolated from a Subterranean Brine JON P. ADKINS,l MICHAEL T. MADIGAN,2 LINDA MANDELCO,, CARL R. WOESE,, AND RALPH S. TANNER'* Department of Botany and Microbiology, University of Oklahoma? Norman, Oklahoma 73019'; Department of Microbwlogy9 Southern Illinois University, Carbondale, Illinois 629012; and Department of Microbiology, University of Illinois, Urbana, Illinois 61801 Arhodomonas uquueolei gen. nov., sp. nov., isolated from a petroleum reservoir production fluid, is described. The single isolate was an obligately halophilic, aerobic, gram-negative, oval rod-shaped bacterium that was actively motile by means of a single polar flagellum. It was catalase and oxidase positive. The isolate had a specific requirement for NaCI; growth occurred at NaCI concentrations between 6 and 20%, and optimal growth occurred in the presence of 15% NaCI. This species metabolized primarily organic acids and required biotin for growth. The name Arhodomonas is proposed for the new genus, which was placed in the gamma subclass of the Proteobactek on the basis of the results of a 16s rRNA sequence analysis. Although A. uquaeohi is most closely related to purple sulfur bacteria (the genera Ectothwrhodospiru and Chromatiurn),it is not a phototrophic microorganism, which is consistent with its isolation from a subterranean environment. The major components of its cellular fatty acids were C16:., Cis:., CI9:., C16:1,and Clsz0 acids. The DNA base composition of the type strain is 67 mol% G+C. -
Thioalkalimicrobium Aerophilum Gen. Nov., Sp. Nov. and Thioalkalimicrobium Sibericum Sp
International Journal of Systematic and Evolutionary Microbiology (2001), 51, 565–580 Printed in Great Britain Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes Dimitry Yu. Sorokin,1 Anatoly M. Lysenko,1 Lubov’ L. Mityushina,1 Tat’yana P. Tourova,1 Brian E. Jones,2 Fred A. Rainey,3 Lesley A. Robertson4 and Gijs J. Kuenen4 Author for correspondence: Lesley A. Robertson. Tel: j31 15 2782421. Fax: j31 15 2782355. e-mail: L.A.Robertson!stm.tudelft.nl 1 Institute of Microbiology, Forty-three strains of obligately chemolithoautotrophic sulfur-oxidizing Russian Academy of bacteria were isolated from highly alkaline soda lakes in south-east Siberia Science, Prospect 60-let (Russia) and in Kenya using a specific enrichment procedure at pH 10. The main Octyabrya 7/2, 117811 Moscow, Russia difference between the novel isolates and known sulfur bacteria was their potential to grow and oxidize sulfur compounds at pH 10 and higher. The 2 Genencor International, isolates fell into two groups that were substantially different from each other PO Box 218, 2300 AE, Leiden, The Netherlands physiologically and genetically. Most of the Siberian isolates belonged to the group with a low DNA GMC content (480–512 mol%). They were characterized 3 Department of Biological by a high growth rate, a low growth yield, a high cytochrome content, and Sciences, Louisiana State University, Baton Rouge, high rates of oxidation of sulfide and thiosulfate. -
From Metagenomics to Pure Culture: Isolation and Characterization of the Moderately Halophilic Bacterium Spiribacter Salinus Gen
From Metagenomics to Pure Culture: Isolation and Characterization of the Moderately Halophilic Bacterium Spiribacter salinus gen. nov., sp. nov. María José León,a Ana B. Fernández,a Rohit Ghai,b Cristina Sánchez-Porro,a Francisco Rodriguez-Valera,b Antonio Ventosaa Downloaded from Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spaina; Evolutionary Genomics Group, Division of Microbiology, Miguel Hernández University, San Juan, Alicante, Spainb Recent metagenomic studies on saltern ponds with intermediate salinities have determined that their microbial communities are dom- inated by both Euryarchaeota and halophilic bacteria, with a gammaproteobacterium closely related to the genera Alkalilimni- cola and Arhodomonas being one of the most predominant microorganisms, making up to 15% of the total prokaryotic popula- tion. Here we used several strategies and culture media in order to isolate this organism in pure culture. We report the isolation and taxonomic characterization of this new, never before cultured microorganism, designated M19-40T, isolated from a saltern http://aem.asm.org/ located in Isla Cristina, Spain, using a medium with a mixture of 15% salts, yeast extract, and pyruvic acid as the carbon source. Morphologically small curved cells (young cultures) with a tendency to form long spiral cells in older cultures were observed in pure cultures. The organism is a Gram-negative, nonmotile bacterium that is strictly aerobic, non-endospore forming, hetero- trophic, and moderately halophilic, and it is able to grow at 10 to 25% (wt/vol) NaCl, with optimal growth occurring at 15% (wt/ vol) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that strain M19-40T has a low similarity with other previously described bacteria and shows the closest phylogenetic similarity with species of the genera Alkalilimnicola (94.9 to 94.5%), Alkalispirillum (94.3%), and Arhodomonas (93.9%) within the family Ectothiorhodospiraceae. -
Download the File
CALIFORNIA STATE UNIVERSITY SAN MARCOS THESIS SIGNATURE PAGE THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE IN BIOLOGICAL SCIENCES THESIS TITLE: The Isolation and Characterization ofa Novel Haloalkaliphilic Purple Sulfur Bacterium, Ectothiorhodospira monomense, sp. nov., from Mono Lake AUTHOR: Crista DiBernardo DATE OF SUCCESSFUL DEFENSE: May 25, 2001 THE THESIS HAS BEEN ACCEPTED BY THE THESIS COMMITTEE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGICAL SCIENCES. Thomas Wahlund, Ph.D. ~idJ-fJ{.Wt<-~aY25'OI THESIS COMMITTEE CHAIR (TYPED) SIGNATURE DATE Betsy Read, Ed.D. ~a R~c~ May25,01 THESIS COMMITTEE MEMBER (TYPED) SI URE DATE Victoria Fabry, Ph.D. THESIS COMMITTEE MEMBER (TYPED) ii The Isolation and Characterization of a Novel Haloalkaliphilic Purple Sulfur Bacterium, Ectothiorhodospira monomense, sp. nov., from Mono Lake by Crista Danielle DiBernardo Bachelor of Science, Biological Sciences A thesis written in partial fulfillment of the requirements for Master of Science in Biological Sciences Department of Graduate Studies California State University San Marcos June 2001 iii ACKNOWLEDGMENTS Getting a Master's Degree has been an experience that I never would have made it through without the support and encouragement of family and friends. It is because of you that this thesis is finally published. Thank you, from the bottom of my heart! Dr. Tom Wahlund, thanks for taking on a graduate student, wholly uneducated in microbiology, and teaching me to love germs! Your support, feedback and high expectations have helped me to look back on the past few years with pride and accomplishment. -
Supplementary Material V3
Supplementary material Evaluating the impacts of microbial activity and species interactions on passive bioremediation of a coastal acid sulfate soil (CASS) ecosystem Yu-Chen Ling1, John W. Moreau1,2* 1School of Earth Sciences, The University of Melbourne, Parkville, VIC, Australia 3010 2School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK *Corresponding author: John W Moreau, [email protected] 1. Supplementary Figures Supplementary Figure 1. (A) Acid sulfate soil taxonomic structures dissimilarity at 16S ribosomal cDNA level, as estimated using the Jaccard index. (B) Taxonomic structure analysis (ANOSIM) of soil 16S ribosomal DNA, soil 16S ribosomal cDNA, biofilm 16S ribosomal DNA, and biofilm 16S ribosomal cDNA. Low tide Flood tide High tide Ebb tide 0 0 0 0 5 5 5 5 10 10 10 10 Depth (cm) Depth (cm) Depth (cm) Depth (cm) 15 Site A 15 Site A 15 Site A 15 Site A Site B Site B Site B Site B Site C Site C Site C Site C 0 2000 6000 10000 14000 0 2000 6000 10000 14000 0 2000 6000 10000 14000 0 2000 6000 10000 14000 FeS (ug/g dry soil) FeS (ug/g dry soil) FeS (ug/g dry soil) FeS (ug/g dry soil) 0 0 0 0 5 5 5 5 10 10 10 10 Depth (cm) Depth (cm) Depth (cm) Depth (cm) 15 Site A 15 Site A 15 Site A 15 Site A Site B Site B Site B Site B Site C Site C Site C Site C 0 1000 3000 5000 7000 0 1000 3000 5000 7000 0 1000 3000 5000 7000 0 1000 3000 5000 7000 FeS2 (ug/g dry soil) FeS2 (ug/g dry soil) FeS2 (ug/g dry soil) FeS2 (ug/g dry soil) Supplementary Figure 2.