Genome-Based Classification of Two

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Based Classification of Two TAXONOMIC DESCRIPTION Khaleque et al., Int J Syst Evol Microbiol DOI 10.1099/ijsem.0.003313 Genome-based classification of two halotolerant extreme acidophiles, Acidihalobacter prosperus V6 (=DSM 14174 =JCM 32253) and ’Acidihalobacter ferrooxidans’ V8 (=DSM 14175 =JCM 32254) as two new species, Acidihalobacter aeolianus sp. nov. and Acidihalobacter ferrooxydans sp. nov., respectively Himel N. Khaleque,1,2† Carolina Gonzalez, 3† Anna H. Kaksonen,2 Naomi J. Boxall,2 David S. Holmes3,* and Elizabeth L. J. Watkin1,* Abstract Phylogenomic analysis of recently released high-quality draft genome sequences of the halotolerant acidophiles, Acidihalobacter prosperus V6 (=DSM 14174=JCM 32253) and ‘Acidihalobacter ferrooxidans’ V8 (=DSM 14175=JCM 32254), was undertaken in order to clarify their taxonomic relationship. Sequence based phylogenomic approaches included 16S rRNA gene phylogeny, multi-gene phylogeny from the concatenated alignment of nine selected housekeeping genes and multiprotein phylogeny using clusters of orthologous groups of proteins from ribosomal protein families as well as those from complete sets of markers based on concatenated alignments of universal protein families. Non-sequence based approaches for species circumscription were based on analyses of average nucleotide identity, which was further reinforced by the correlation indices of tetra-nucleotide signatures as well as genome-to-genome distance (digital DNA–DNA hybridization) calculations. The different approaches undertaken in this study for species tree reconstruction resulted in a tree that was phylogenetically congruent, revealing that both micro-organisms are members of separate species of the genus Acidihalobacter. In accordance, it is proposed that A. prosperus V6T (=DSM 14174 T=JCM 32253 T) be formally classified as Acidihalobacter aeolianus sp. nov., and ‘Acidihalobacter ferrooxidans’ V8T (=DSM 14175 T=JCM 32254 T) as Acidihalobacter ferrooxydans sp. nov., and that both represent the type strains of their respective species. Only a few bacteria capable of simultaneously tolerating The genus Acidihalobacter includes only one formally recog- both low pH and high salt have been isolated [1, 2]. There- nized species name, Acidihalobacter prosperus [4]. A. pros- fore, the discovery and characterization of new species of perus DSM 5130T is an iron- and sulfur-oxidizing, halotolerant acidophiles enriches the opportunities to map mesophilic, halotolerant acidophile that was isolated from a the microbial diversity and shed new light on the metabolic geothermally heated seafloor at Porto di Levante, Vulcano, capabilities in this mostly unexplored geochemical environ- Italy [5]. Based on its phenotype and a G+C content of ment. It could also suggest novel routes by which the meta- 64 mol%, it was originally taxonomically classified as bolic potential of halotolerant acidophiles could be ‘ ’ exploited for industrial applications such as copper biol- Thiobacillus prosperus by Huber and Stetter [5]. However, eaching from chalcopyrite [3]. This is an especially import- after the release of its draft genome sequence [6], further phy- ant consideration in regions with scarce water resources logenomic studies were undertaken and it was formally such as Australia and Chile where sea water could be substi- reclassified into the family Ectothiorhodospiraceae of the class tuted for fresh water in the bioleaching process [2]. Gammaproteobacteria in the new genus Acidihalobacter, Author affiliations: 1School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia; 2CSIRO Land and Water, Floreat, Australia; 3Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida and Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile. *Correspondence: David S. Holmes, [email protected]; Elizabeth L. J. Watkin, [email protected] Keywords: Acidophile; iron and sulfur oxidising; halotolerant. Abbreviations: AIC, Akaike information criteria; ANI, average nucleotide identity; ANIb, average nucleotide identity based on BLAST; BIC, Bayesian information criteria; COGs, clusters of orthologous groups of proteins; dDDH, digital DNA–DNA hybridization; MLSA, multilocus sequence analysis; NIB, nucleotide identity by BLAST; Tetra, tetra-nucleotide signatures. †These authors contributed equally to this work. Acidihalobacter prosperus V6: chromosome, CP017448.1; plasmid, CP017449.1. ‘Acidihalobacter ferrooxidans’ V8: CP019434.1. Four supplementary tables are available with the online version of this article. 003313 ã 2019 The Authors Downloaded from www.microbiologyresearch.org by This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. IP: 190.153.178.170 1 On: Thu, 11 Apr 2019 18:47:41 Khaleque et al., Int J Syst Evol Microbiol with A. prosperus DSM 5130T (JCM 30709T) being named [15, 16]. Whole-genome sequencing has shown the pres- the type strain of its species [4]. ence of a 162 484 bp plasmid in A. prosperus V6 that is not present in either the type strain of A. prosperus or in More recently, two new halotolerant acidophiles, A. pros- ‘A. ferrooxidans’ V8 [6, 15, 16]. We term this plasmid perus V6 and ‘A. ferrooxidans’ V8, were isolated from mixed pABPV6. The availability of the high quality draft environmental cultures obtained from shallow acidic pools genomes of these strains has provided an opportunity to on the Aeolian Islands, Vulcano, Italy [7]. A. prosperus V6 use phylogenomic strategies for the re-evaluation of the was recognized to be similar to the type strain in its 16S taxonomical positions of both species in order to properly rRNA gene phylogeny as well as its morphological charac- classify them [17]. Predicted terminal oxidases from the teristics [8, 9], but showed superior growth to the type strain genomes of A. prosperus V6 and ‘A. ferrooxidans’ V8 on ferrous iron [5, 10]. A. prosperus V6 was shown to be a include aa (EC 1.9.3.1), bo (EC 1.10.3.10), bd-I (EC member of the family Ectothiorhodospiraceae of the class 3 3 1.10.3.14) and fumarate reductase (quinol, EC 1.3.5.1– Gammaproteobacteria [11]. It has previously been referred 1.3.5.4). Predicted respiratory quinones from the genomes to as ‘Acidihalobacter aeolicus’ [12]; however, based on 99 % include ubiquinone (EC 1.14.13.-, 2.1.1.64, 2.1.1.63, 16S rRNA gene sequence similarity as well as similarity in T 2.1.1.201, 2.1.1.222, 2.5.1.39, 2.5.1.129, 4.1.1.98). its morphological characteristics to A. prosperus DSM 5130 (‘Thiobacillus prosperus’ at the time), it was submitted to the Recent proteomic studies have found ectoine to be the DSMZ culture collection as a strain of the A. prosperus spe- major osmoprotectant in A. prosperus DSM 5130T [18] and cies and was never formally classified or named. A. prosperus V6 [19] and it is presumed it will also play a key role in osmoprotection of ‘A. ferrooxidans’ V8, as pre- A. prosperus V6 is an aerobe, grows autotrophically and is able to oxidize ferrous iron, the sulfur sources elemental sul- liminary analysis of the genomes of all three isolates has fur and tetrathionate and the sulfide mineral pyrite. It is shown the presence of genes for the synthesis of ectoine unable to grow in the absence of chloride, requiring a mini- [6, 15, 16]. However, differences in the genomes of the three mum of 60 mM NaCl, is able to grow at up to 1283 mM NaCl isolates included the presence of a truncated SOX operon (soxAXBYZ) in A. prosperus DSM 5130 T and A. prosperus with maximum growth at 428 mM NaCl [8, 13]. It is able to ‘ ’ oxidize pyrite at an optimum 256 mM NaCl [13]. The tem- V6 that was not found on the genome of A. ferrooxidans perature range for growth of A. prosperus V6 was 26–42 C V8 [6, 15, 16]. with an optimum of 36 C [14]. Growth at various pH values The bioinformatically inferred G+C contents for the À1 was determined in basal salts medium [2] at 25 g l NaCl genomes of A. prosperus V6 and ‘A. ferrooxidans’ V8 are Á with 50 mM FeSO4 7H2O and 5 mM K2S4O6 [13]. A. pros- 62.2 and 61.6 mol%, respectively [15]. These values fall perus V6 was able to grow between pH 1.5 and 3.0, but not at within the range of 50.5–69.7 mol% DNA G+C for members pH 1.0 and 3.5 with optimum growth observed at pH 1.8. of the family Ectothiorhodospiraceae [20]. It is also consis- Similarly, ‘A. ferrooxidans’ V8 was submitted to the DSMZ tent with the placement of the two species in the genus culture collection with its current name as it was was Acidihalobacter, which is nearest to the Ectothiorhodospira thought to belong to a new species of the genus Acidihalo- genus, both of which show a requirement of chloride for bacter based on its 16S rRNA gene sequence and pheno- growth [4, 5, 8, 20]. Phenotypic and genomic features of the typic characteristics such as slightly greater chloride ion three species of the genus Acidihalobacter are shown in tolerance than A. prosperus V6 when grown on the sulfide Table 1. mineral pyrite [9, 10]. However, it was never characterized In order to infer preliminary phylogenetic relationships, the taxonomically in detail. It is aerobic and autotrophic, able 16S rRNA gene sequence similarity of A. prosperus V6, ‘A. to oxidize ferrous iron, elemental sulfur and tetrathionate ferrooxidans’ V8 and A. prosperus DSM 5130T was com- and the sulfide mineral pyrite, and is unable to grow in the pared by aligning the sequences using the default settings of absence of chloride, having a minimum requirement of the nucleotide Basic Local Alignment Search Tool (BLASTn) more than 60 mM NaCl when grown in the presence of tool [21] and MAFFT alignment (using the L-INS-i iterative soluble iron [13]. Maximum growth on ferrous iron and refinement) [22, 23].
Recommended publications
  • Coupled Reductive and Oxidative Sulfur Cycling in the Phototrophic Plate of a Meromictic Lake T
    Geobiology (2014), 12, 451–468 DOI: 10.1111/gbi.12092 Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake T. L. HAMILTON,1 R. J. BOVEE,2 V. THIEL,3 S. R. SATTIN,2 W. MOHR,2 I. SCHAPERDOTH,1 K. VOGL,3 W. P. GILHOOLY III,4 T. W. LYONS,5 L. P. TOMSHO,3 S. C. SCHUSTER,3,6 J. OVERMANN,7 D. A. BRYANT,3,6,8 A. PEARSON2 AND J. L. MACALADY1 1Department of Geosciences, Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA 2Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 3Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 4Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA 6Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Nanyang, Singapore 7Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany 8Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA ABSTRACT Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacte- ria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary pro- duction in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate – including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data – as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction.
    [Show full text]
  • Arsenite As an Electron Donor for Anoxygenic Photosynthesis: Description of Three Strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada
    life Article Arsenite as an Electron Donor for Anoxygenic Photosynthesis: Description of Three Strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada Shelley Hoeft McCann 1,*, Alison Boren 2, Jaime Hernandez-Maldonado 2, Brendon Stoneburner 2, Chad W. Saltikov 2, John F. Stolz 3 and Ronald S. Oremland 1,* 1 U.S. Geological Survey, Menlo Park, CA 94025, USA 2 Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA; [email protected] (A.B.); [email protected] (J.H.-M.); [email protected] (B.S.); [email protected] (C.W.S.) 3 Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA; [email protected] * Correspondence: [email protected] (S.H.M.); [email protected] (R.S.O.); Tel.: +1-650-329-4474 (S.H.M.); +1-650-329-4482 (R.S.O.) Academic Editors: Rafael Montalvo-Rodríguez, Aharon Oren and Antonio Ventosa Received: 5 October 2016; Accepted: 21 December 2016; Published: 26 December 2016 Abstract: Three novel strains of photosynthetic bacteria from the family Ectothiorhodospiraceae were isolated from soda lakes of the Great Basin Desert, USA by employing arsenite (As(III)) as the sole electron donor in the enrichment/isolation process. Strain PHS-1 was previously isolated from a hot spring in Mono Lake, while strain MLW-1 was obtained from Mono Lake sediment, and strain BSL-9 was isolated from Big Soda Lake. Strains PHS-1, MLW-1, and BSL-9 were all capable of As(III)-dependent growth via anoxygenic photosynthesis and contained homologs of arxA, but displayed different phenotypes.
    [Show full text]
  • Complete Genome Sequence of Strain BW-2, a Magnetotactic
    Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae , Isolated from a Brackish Spring in Death Valley, California Corey Geurink, Christopher Lefèvre, Caroline Monteil, Viviana Morillo-Lopez, Fernanda Abreu, Dennis Bazylinski, Denis Trubitsyn To cite this version: Corey Geurink, Christopher Lefèvre, Caroline Monteil, Viviana Morillo-Lopez, Fernanda Abreu, et al.. Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae , Isolated from a Brackish Spring in Death Valley, California. Microbiology Resource Announcements, American Society for Microbiology, 2020, 9 (1), 10.1128/mra.01144-19. cea-02462734 HAL Id: cea-02462734 https://hal-cea.archives-ouvertes.fr/cea-02462734 Submitted on 3 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GENOME SEQUENCES crossm Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae, Downloaded from Isolated from a Brackish Spring in Death
    [Show full text]
  • Description of Ectothiorhodospira Salini Sp. Nov
    J. Gen. Appl. Microbiol., 56, 313‒319 (2010) Full Paper Description of Ectothiorhodospira salini sp. nov. Vemuluri Venkata Ramana,1 Chintalapati Sasikala,1,* Eedara Veera Venkata Ramaprasad,2 and Chintalapati Venkata Ramana2 1 Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J.N.T. University Hyderabad, Kukakatpally, Hyderabad 500 085, India 2 Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India (Received October 26, 2009; Accepted April 28, 2010) Strain JA430T is a Gram-negative, vibrioid to spiral shaped phototrophic purple sulfur bacterium isolated from anoxic sediment of a saltern at Kanyakumari in a mineral salts medium that con- tained 2% NaCl (w/v). Strain JA430T grows optimally at 5‒6% NaCl and tolerates up to 12% NaCl. Intracellular photosynthetic membranes were of the lamellar type. Bacteriochlorophyll a and carotenoids of the spirilloxanthin series are present as photosynthetic pigments. Major cellular T fatty acids are C18:1ω7c, C16:0, C19:0cycloω8c and C16:1ω7c/C16:1ω6c. Strain JA430 exhibits pho- toorganoheterotrophy and chemoorganoheterotrophy and requires para-aminobenzoic acid, pantothenate and pyridoxal phosphate for growth. Phylogenetic analysis on the basis of 16S rRNA gene sequence analysis showed that strain JA430T forms monophyletic group in the genus Ectothiorhodospira. The highest sequence similarity for strain JA430T was found with the type strains of Ectothiorhodospira variabilis DSM 21381T (96.1%) and Ectothiorhodospira haloalka- liphila ATCC 51935T (96.2%). Morphological and physiological characteristics discriminate strain JA430T from other species of the genus Ectothiorhodospira, for which we describe this as a novel species, Ectothiorhodospira salini sp.
    [Show full text]
  • 1 Anoxygenic Phototrophic Chloroflexota Member Uses a Type
    Anoxygenic phototrophic Chloroflexota member uses a Type I reaction center Supplementary Materials J. M. Tsuji, N. A. Shaw, S. Nagashima, J. J. Venkiteswaran, S. L. Schiff, S. Hanada, M. Tank, J. D. Neufeld Correspondence to: [email protected]; [email protected]; [email protected] This PDF file includes: Materials and Methods Supplementary Text, Sections S1 to S4 Figs. S1 to S9 Tables S1 to S3 1 Materials and Methods Enrichment cultivation of ‘Ca. Chx. allophototropha’ To culture novel anoxygenic phototrophs, we sampled Lake 227, a seasonally anoxic and ferruginous Boreal Shield lake at the International Institute for Sustainable Development Experimental Lakes Area (IISD-ELA; near Kenora, Canada). Lake 227 develops up to ~100 μM concentrations of dissolved ferrous iron in its anoxic water column (31), and anoxia is more pronounced than expected naturally due to the long-term experimental eutrophication of the lake (32). The lake’s physico-chemistry has been described in detail previously (31). We collected water from the illuminated portion of the upper anoxic zone of Lake 227 in September 2017, at 3.875 and 5 m depth, and transported this water anoxically and chilled in 120 mL glass serum bottles, sealed with black rubber stoppers (Geo-Microbial Technology Company; Ochelata, Oklahoma, USA), to the laboratory. Water was supplemented with 2% v/v of a freshwater medium containing 8 mM ferrous chloride (33) and was distributed anoxically into 120 mL glass serum bottles, also sealed with black rubber stoppers (Geo-Microbial Technology Company), that had a headspace of dinitrogen gas at 1.5 atm final pressure.
    [Show full text]
  • Menaquinone As Pool Quinone in a Purple Bacterium
    Menaquinone as pool quinone in a purple bacterium Barbara Schoepp-Cotheneta,1, Cle´ ment Lieutauda, Frauke Baymanna, Andre´ Verme´ gliob, Thorsten Friedrichc, David M. Kramerd, and Wolfgang Nitschkea aLaboratoire de Bioe´nerge´tique et Inge´nierie des Prote´ines, Unite´Propre de Recherche 9036, Institut Fe´de´ ratif de Recherche 88, Centre National de la Recherche Scientifique, F-13402 Marseille Cedex 20, France; bLaboratoire de Bioe´nerge´tique Cellulaire, Unite´Mixte de Recherche 163, Centre National de la Recherche Scientifique–Commissariat a`l’E´ nergie Atomique, Universite´ delaMe´ diterrane´e–Commissariat a`l’E´ nergie Atomique 1000, Commissariat a` l’E´ nergie Atomique Cadarache, Direction des Sciences du Vivant, De´partement d’Ecophysiologie Ve´ge´ tale et Microbiologie, F-13108 Saint Paul Lez Durance Cedex, France; cInstitut fu¨r Organische Chemie und Biochemie, Albert-Ludwigs-Universita¨t Freiburg, Albertstr. 21, D-79104 Freiburg, Germany; and dInstitute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340 Edited by Pierre A. Joliot, Institut de Biologie Physico-Chimique, Paris, France, and approved March 31, 2009 (received for review December 23, 2008) Purple bacteria have thus far been considered to operate light- types of pool-quinones, such as ubi-, plasto-, mena-, rhodo-, driven cyclic electron transfer chains containing ubiquinone (UQ) as caldariella- or sulfolobus-quinones (to cite only the best-studied liposoluble electron and proton carrier. We show that in the purple cases) have been identified so far individually in different species ␥-proteobacterium Halorhodospira halophila, menaquinone-8 or coexisting in single organisms (2–4). (MK-8) is the dominant quinone component and that it operates in Menaquinone (MK) is the most widely distributed quinone on the QB-site of the photosynthetic reaction center (RC).
    [Show full text]
  • Towards Unveiling the Photoactive Yellow Proteins: Characterization of a Halophilic Member and a Proteomic Approach to Study Light Responses
    Department of Biochemistry, Physiology and Microbiology Laboratory for Protein Biochemistry and Biomolecular Engineering Towards unveiling the Photoactive Yellow Proteins: characterization of a halophilic member and a proteomic approach to study light responses Samy Memmi Thesis submitted to fulfill the requirements for the degree of ‘Doctor in Biochemistry’ May 2008 Promotor: Prof. Dr. Jozef Van Beeumen Co-promotor: Prof. Dr. Bart Devreese Table of contents List of publications i List of abbreviations ii Abstract iv Chapter one 1 Principles in photobiology 1 1.1 Introduction 1 1.2 The nature of light 1 1.3 Fundamentals in protein photochemistry 3 1.4 References 3 Chapter two 2 Biological photosensors 4 2.1 Light as a source of energy 4 2.2 Light as a source of information 5 2.2.1 Red-/green-light photoperception 7 2.2.1.1 Sensory rhodopsins 7 2.2.1.2 (Bacterio)phytochromes 9 2.2.2 Blue-light sensing 11 2.2.2.1 Cryptochromes 11 2.2.2.2 LOV proteins 12 2.2.2.3 BLUF domain proteins 14 2.3 References 16 Chapter three 3 Photoactive Yellow Proteins 22 3.1 History 22 3.2 Photochemical reactions 23 3.3 PYP properties 26 3.3.1 Structural features 26 3.3.2 Mutational analysis 28 3.4 Phylogenetic distribution 33 3.5 Biosynthesis 38 3.6 Pyp genes as molecular scouts in search of potential TAL biocatalysts? 40 3.7 Genetic context 43 3.7.1 Rhodobacter gene context 44 3.8 References 46 Chapter four 4 Photoactive Yellow Protein from the halophilic bacterium Salinibacter ruber 53 Chapter five 5 PYP-phytochrome-related proteins 77 5.1 Introduction 77 5.2 Properties 78 5.3 Function 81 5.4 References 84 Chapter six 6 A proteomic study of Ppr-mediated photoresponses in Rhodospirillum centenum reveals a role as regulator of polyketide synthesis 86 Abstracts of other publications 111 Summary (Dutch) 114 Dankwoord 117 List of publications List of publications Memmi, S.; Kyndt, J.A.; Meyer, T.E.; Devreese, B.; Cusanovich, M.; Van Beeumen, J.
    [Show full text]
  • Photosynthesis Is Widely Distributed Among Proteobacteria As Demonstrated by the Phylogeny of Puflm Reaction Center Proteins
    fmicb-08-02679 January 20, 2018 Time: 16:46 # 1 ORIGINAL RESEARCH published: 23 January 2018 doi: 10.3389/fmicb.2017.02679 Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins Johannes F. Imhoff1*, Tanja Rahn1, Sven Künzel2 and Sven C. Neulinger3 1 Research Unit Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 Max Planck Institute for Evolutionary Biology, Plön, Germany, 3 omics2view.consulting GbR, Kiel, Germany Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Edited by: Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the Marina G. Kalyuzhanaya, phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria San Diego State University, United States employing this photosystem in nature. Almost complete pufLM gene sequences and Reviewed by: the derived protein sequences from 152 type strains and 45 additional strains of Nikolai Ravin, phototrophic Proteobacteria employing photosystem II were compared. The results Research Center for Biotechnology (RAS), Russia give interesting and comprehensive insights into the phylogeny of the photosynthetic Ivan A. Berg, apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as Universität Münster, Germany major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from *Correspondence: Caulobacterales (Brevundimonas subvibrioides).
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • Biomolecules
    biomolecules Review Phylogenetic Distribution, Ultrastructure, and Function of Bacterial Flagellar Sheaths Joshua Chu 1, Jun Liu 2 and Timothy R. Hoover 3,* 1 Department of Microbiology, Cornell University, Ithaca, NY 14853, USA; [email protected] 2 Microbial Sciences Institute, Department of Microbial Pathogenesis, Yale University, West Haven, CT 06516, USA; [email protected] 3 Department of Microbiology, University of Georgia, Athens, GA 30602, USA * Correspondence: [email protected]; Tel.: +1-706-542-2675 Received: 30 January 2020; Accepted: 26 February 2020; Published: 27 February 2020 Abstract: A number of Gram-negative bacteria have a membrane surrounding their flagella, referred to as the flagellar sheath, which is continuous with the outer membrane. The flagellar sheath was initially described in Vibrio metschnikovii in the early 1950s as an extension of the outer cell wall layer that completely surrounded the flagellar filament. Subsequent studies identified other bacteria that possess flagellar sheaths, most of which are restricted to a few genera of the phylum Proteobacteria. Biochemical analysis of the flagellar sheaths from a few bacterial species revealed the presence of lipopolysaccharide, phospholipids, and outer membrane proteins in the sheath. Some proteins localize preferentially to the flagellar sheath, indicating mechanisms exist for protein partitioning to the sheath. Recent cryo-electron tomography studies have yielded high resolution images of the flagellar sheath and other structures closely associated with the sheath, which has generated insights and new hypotheses for how the flagellar sheath is synthesized. Various functions have been proposed for the flagellar sheath, including preventing disassociation of the flagellin subunits in the presence of gastric acid, avoiding activation of the host innate immune response by flagellin, activating the host immune response, adherence to host cells, and protecting the bacterium from bacteriophages.
    [Show full text]
  • Gram Negative Bacteria Have Evolved a Series of Secretion Systems Which
    A Bioinformatics Analysis of Bacterial Type-III Secretion System Genes and Proteins By Christopher Michael Bailey A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Division of Immunity and Infection The School of Medicine The University of Birmingham November 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Type-III secretion systems (T3SSs) are responsible for the biosynthesis of flagella, and the interaction of many animal and plant pathogens with eukaryotic cells. T3SSs consist of multiple proteins which assemble to form an apparatus capable of exporting proteins through both membranes of Gram-negative bacteria in one step. Proteins conserved amongst T3SSS can be used for analysis of these systems using computational homology searching. By using tools including BLAST and HMMER in conjunction phylogenetic analysis this thesis examines the range of T3SSs, both in terms of the proteins they contain, and also the bacteria which contain them. In silico analysis of several of the conserved components of T3SSs shows similarities between them and other secretion systems, as well as components of ATPases.
    [Show full text]