The Draft Genome of the Small, Spineless Green Alga
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Colony Formation in Three Species of the Family Scenedesmaceae
Colony formation in three species of the family Scenedesmaceae (Desmodesmus subspicatus, Scenedesmus acutus, Tetradesmus dimorphus) exposed to sodium dodecyl sulfate and its interference with grazing of Daphnia galeata Yusuke Oda ( [email protected] ) Shinshu University https://orcid.org/0000-0002-6555-1335 Masaki Sakamoto Toyama Prefectural University Yuichi Miyabara Shinshu University Research Article Keywords: Sodium dodecyl sulfate, Info-disruption, Colony formation, Scenedesmaceae, Daphnia Posted Date: March 30th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-346616/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Colony formation in three species of the family Scenedesmaceae (Desmodesmus subspicatus, 2 Scenedesmus acutus, Tetradesmus dimorphus) exposed to sodium dodecyl sulfate and its interference 3 with grazing of Daphnia galeata 4 5 Yusuke Oda*,1, Masaki Sakamoto2, Yuichi Miyabara3,4 6 7 1Department of Science and Technology, Shinshu University, Suwa, Nagano, Japan 8 2Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, Toyama, 9 Japan 10 3Suwa Hydrobiological Station, Faculty of Science, Shinshu University, Suwa, Nagano, Japan 11 4Institute of Mountain Science, Shinshu University, Suwa, Nagano, Japan 12 13 *Corresponding author: Y. O da 14 15 Y. O d a 16 Phone: +81-90-9447-9029 17 Email: [email protected] 18 ORCID: 0000-0002-6555-1335 19 20 21 22 23 Acknowledgments 24 This study was supported by a Grant-in-Aid for Japan Society for the Promotion of Sciences (JSPS) 25 Fellows (Grant No. JP20J11681). We thank Natalie Kim, PhD, from Edanz Group (https://en-author- 26 services.edanz.com/ac) for editing a draft of this manuscript. -
The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK. -
Abstract Evaluation of the Green Microalga
ABSTRACT EVALUATION OF THE GREEN MICROALGA MONORAPHIDIUM SP. DEK19 GROWTH UTILIZING ETHANOL PLANT SIDE STREAMS AND POTENTIAL FOR BIOFUEL PRODUCTION David Michael Colson, MS Department of Biological Sciences Northern Illinois University, 2017 Gabriel Holbrook, Director This research was conducted to evaluate the potential for growth of Monoraphidium sp. Dek19 using side streams from an ethanol plant for culture medium. Additionally, the potential of using enzymes to break down the cell wall material to release fermentable sugars and oil was examined. The ethanol streams selected were methanator influent, methanator effluent, and thin stillage. This species of microalgae has been previously studied and found to have the ability to grow in and remediate the effluent water from the DeKalb Sanitary District (DSD). The Monoraphidium sp. Dek19 was grown in various concentrations of the ethanol plant side streams concurrently with algae cultures grown in the DSD effluent. The algae cultures were grown in 250ml flasks to determine the optimal concentrations of the ethanol streams. The concentrations with the growth rate and cell counts closest to or higher than the DSD effluents were selected for further examination. These concentrations were repeated to evaluate the most optimal growth conditions using the ethanol streams in comparison to the DSD effluent grown algae. The selected growth condition for the ethanol streams was determined to be using the methanator effluent as the base water component with the thin stillage added to a 2% concentration. The 2% concentration showed an average increase in cell count to be 8.49% higher than the control cell count. The methanator influent was discarded as a base water component, as the growth of the algae was 40.18% less than that of the control. -
Transcriptional Landscapes of Lipid Producing Microalgae Benoît M
Transcriptional landscapes of lipid producing microalgae Benoît M. Carrères 2019 Transcriptional landscapes of lipid producing microalgae Benoî[email protected]:~$ ▮ Transcriptional landscapes of lipid producing microalgae Benoît Manuel Carrères Thesis committee Promotors Prof. Dr Vitor A. P. Martins dos Santos Professor of Systems and Synthetic Biology Wageningen University & Research Prof. Dr René H. Wij$els Professor of Bioprocess Engineering Wageningen University & Research Co-promotors Dr Peter J. Schaa% Associate professor* Systems and Synthetic Biology Wageningen University & Research Dr Dirk E. Martens Associate professor* Bioprocess Engineering Wageningen University & Research ,ther mem-ers Prof. Dr Alison Smith* University of Cam-ridge Prof. Dr. Dic+ de Ridder* Wageningen University & Research Dr Aalt D.). van Di#+* Wageningen University & Research Dr Ga-ino Sanche/(Pere/* Genetwister* Wageningen This research 0as cond1cted under the auspices of the .rad1ate School V2A. 3Advanced studies in Food Technology* Agro-iotechnology* Nutrition and Health Sciences). Transcriptional landscapes of lipid producing microalgae Benoît Manuel Carrères Thesis su-mitted in ful8lment of the re9uirements for the degree of doctor at Wageningen University -y the authority of the Rector Magnificus, Prof. Dr A.P.). Mol* in the presence of the Thesis' ommittee a%%ointed by the Academic Board to be defended in pu-lic on Wednesday 2; Novem-er 2;<= at 1.>; p.m in the Aula. Benoît Manuel Carrères 5ranscriptional landsca%es of lipid producing -
Distribution of the Water-Soluble Astaxanthin Binding Carotenoprotein (Astap) in Scenedesmaceae
marine drugs Article Distribution of the Water-Soluble Astaxanthin Binding Carotenoprotein (AstaP) in Scenedesmaceae Hiroki Toyoshima 1, Ami Miyata 1, Risako Yoshida 1, Taichiro Ishige 2, Shinichi Takaichi 3 and Shinji Kawasaki 1,3,* 1 Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] (H.T.); [email protected] (A.M.); [email protected] (R.Y.) 2 NODAI Genome Research Centre, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] 3 Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5477-2764 Abstract: Photooxidative stress-inducible water-soluble astaxanthin-binding proteins, designated as AstaP,were identified in two Scenedesmaceae strains, Coelastrella astaxanthina Ki-4 and Scenedesmus obtusus Oki-4N; both strains were isolated under high light conditions. These AstaPs are classified as a novel family of carotenoprotein and are useful for providing valuable astaxanthin in water-soluble form; however, the distribution of AstaP orthologs in other microalgae remains unknown. Here, we exam- ined the distribution of AstaP orthologs in the family Scenedesmaceae with two model microalgae, Chlamydomonas reinhardtii and Chlorella variabilis. The expression of AstaP orthologs under photooxida- Citation: Toyoshima, H.; Miyata, A.; tive stress conditions was detected in cell extracts of Scenedesmaceae strains, but not in model algal Yoshida, R.; Ishige, T.; Takaichi, S.; strains. Aqueous orange proteins produced by Scenedesmaceae strains were shown to bind astaxanthin. -
Permian–Triassic Non-Marine Algae of Gondwana—Distributions
Earth-Science Reviews 212 (2021) 103382 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Review Article Permian–Triassic non-marine algae of Gondwana—Distributions, natural T affinities and ecological implications ⁎ Chris Maysa,b, , Vivi Vajdaa, Stephen McLoughlina a Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Monash University, School of Earth, Atmosphere and Environment, 9 Rainforest Walk, Clayton, VIC 3800, Australia ARTICLE INFO ABSTRACT Keywords: The abundance, diversity and extinction of non-marine algae are controlled by changes in the physical and Permian–Triassic chemical environment and community structure of continental ecosystems. We review a range of non-marine algae algae commonly found within the Permian and Triassic strata of Gondwana and highlight and discuss the non- mass extinctions marine algal abundance anomalies recorded in the immediate aftermath of the end-Permian extinction interval Gondwana (EPE; 252 Ma). We further review and contrast the marine and continental algal records of the global biotic freshwater ecology crises within the Permian–Triassic interval. Specifically, we provide a case study of 17 species (in 13 genera) palaeobiogeography from the succession spanning the EPE in the Sydney Basin, eastern Australia. The affinities and ecological im- plications of these fossil-genera are summarised, and their global Permian–Triassic palaeogeographic and stra- tigraphic distributions are collated. Most of these fossil taxa have close extant algal relatives that are most common in freshwater, brackish or terrestrial conditions, and all have recognizable affinities to groups known to produce chemically stable biopolymers that favour their preservation over long geological intervals. -
Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach
microorganisms Article Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach Veronika Sommer 1,2, Tatiana Mikhailyuk 3, Karin Glaser 1 and Ulf Karsten 1,* 1 Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; [email protected] (V.S.); [email protected] (K.G.) 2 upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany 3 National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine; [email protected] * Correspondence: [email protected] Received: 4 September 2020; Accepted: 22 October 2020; Published: 27 October 2020 Abstract: Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community “biocrust” comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. -
Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts. -
Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected]. -
Abstract Use of the Green Microalga Monoraphidium Sp. Dek19 to Remediate Wastewater
ABSTRACT USE OF THE GREEN MICROALGA MONORAPHIDIUM SP. DEK19 TO REMEDIATE WASTEWATER: SALINITY STRESS AND SCALING TO MESOCOSM CULTURES Anthony Robert Kephart, M.S. Department of Biological Sciences Northern Illinois University, 2016 Gabriel Holbrook, Director The purpose of this thesis was to investigate the growth of the green microalga Monoraphidium sp. Dek19 in the context of phycoremediation under conditions representative of wastewater media of a Midwest wastewater treatment facility. Microalgae were grown in effluent collected from four different wastewater streams at the DeKalb Sanitary District (DSD), DeKalb, Illinois, USA in volumes from 1 L to 380 L. It was determined through preliminary modeling of public data that Monoraphidium sp. Dek19 will likely outcompete local heterospecifics in final effluent wastewaters at the DSD 51.8% of the year. It was also determined that neither nitrogen nor phosphorus should become a limiting nutrient throughout the year. Study of the response of Monoraphidium sp. Dek19 to salinity stress was also completed. Salt stress caused a significant increase in lipid accumulation in salt stressed cultures compared to control cultures (37.0-50.5% increase) with a reduction in biomass productivity. Increases in photosynthetic pigments per cell were seen under salt stress, though the ratio of chlorophyll a and b remained constant. Finally, nitrate uptake was not greatly affected by salinity stress except when biomass accumulation became a corollary for uptake (nitrogen saturation). Luxury uptake of phosphate was significantly affected by wastewater salinity (p<0.001). High sodium potentially interrupts phosphate stress response proteins, slowing internalization of phosphate. Phosphate removal was still possible as some protein binding proteins appear to operate independent of sodium. -
The Draft Genome of Hariotina Reticulata (Sphaeropleales
Protist, Vol. 170, 125684, December 2019 http://www.elsevier.de/protis Published online date 19 October 2019 ORIGINAL PAPER Protist Genome Reports The Draft Genome of Hariotina reticulata (Sphaeropleales, Chlorophyta) Provides Insight into the Evolution of Scenedesmaceae a,b,2 c,d,2 b e f Yan Xu , Linzhou Li , Hongping Liang , Barbara Melkonian , Maike Lorenz , f g a,g e,1 a,g,1 Thomas Friedl , Morten Petersen , Huan Liu , Michael Melkonian , and Sibo Wang a BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China b BGI Education Center, University of Chinese Academy of Sciences, Beijing, China c China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China d Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark e University of Duisburg-Essen, Campus Essen, Faculty of Biology, Universitätsstr. 5, 45141 Essen, Germany f Department ‘Experimentelle Phykologie und Sammlung von Algenkulturen’ (EPSAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany g Department of Biology, University of Copenhagen, Copenhagen, Denmark Submitted October 9, 2019; Accepted October 13, 2019 Hariotina reticulata P. A. Dangeard 1889 (Sphaeropleales, Chlorophyta) is a common member of the summer phytoplankton of meso- to highly eutrophic water bodies with a worldwide distribution. Here, we report the draft whole-genome shotgun sequencing of H. reticulata strain SAG 8.81. The final assembly comprises 107,596,510 bp with over 15,219 scaffolds (>100 bp). This whole-genome project is publicly available in the CNSA (https://db.cngb.org/cnsa/) of CNGBdb under the accession number CNP0000705. © 2019 Elsevier GmbH. All rights reserved. Key words: Scenedesmaceae; genome; algae; comparative genomics. -
BMC Evolutionary Biology Biomed Central
BMC Evolutionary Biology BioMed Central Research article Open Access The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands Jean-Charles de Cambiaire, Christian Otis, Claude Lemieux and Monique Turmel* Address: Département de biochimie et de microbiologie, Université Laval, Québec, Canada Email: Jean-Charles de Cambiaire - [email protected]; Christian Otis - [email protected]; Claude Lemieux - [email protected]; Monique Turmel* - [email protected] * Corresponding author Published: 25 April 2006 Received: 14 February 2006 Accepted: 25 April 2006 BMC Evolutionary Biology 2006, 6:37 doi:10.1186/1471-2148-6-37 This article is available from: http://www.biomedcentral.com/1471-2148/6/37 © 2006 de Cambiaire et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features.