First Identification of the Chlorophyte Algae Pseudokirchneriella Subcapitata (Korshikov) Hindák in Lake Waters of India

Total Page:16

File Type:pdf, Size:1020Kb

First Identification of the Chlorophyte Algae Pseudokirchneriella Subcapitata (Korshikov) Hindák in Lake Waters of India Nature Environment and Pollution Technology p-ISSN: 0972-6268 Vol. 19 No. 1 pp. 409-412 2020 An International Quarterly Scientific Journal e-ISSN: 2395-3454 Original Research Paper Open Access First Identification of the Chlorophyte Algae Pseudokirchneriella subcapitata (Korshikov) Hindák in Lake Waters of India Vidya Padmakumar and N. C. Tharavathy Department of Studies and Research in Biosciences, Mangalore University, Mangalagangotri, Mangaluru-574199, Dakshina Kannada, Karnataka, India ABSTRACT Nat. Env. & Poll. Tech. Website: www.neptjournal.com The species Pseudokirchneriella subcapitata is a freshwater microalga belonging to Chlorophyceae. It is one of the best-known bio indicators in eco-toxicological research. It has been increasingly Received: 13-06-2019 prevalent in many fresh water bodies worldwide. They have been since times used in many landmark Accepted: 23-07-2019 toxicological analyses due to their ubiquitous nature and acute sensitivity to substances. During a survey Key Words: of chlorophytes in effluent impacted lakes of Attibele region of Southern Bangalore,Pseudokirchneriella Bioindicator subcapitata was identified from the samples collected from the Giddenahalli Lake as well as Zuzuvadi Ecotoxicology Lake. This is the first identification of this species in India. Analysis based on micromorphology confirmed Lakes of India the status of the organism to be Pseudokirchneriella subcapitata. Pseudokirchneriella subcapitata INTRODUCTION Classification: Pseudokirchneriella subcapitata was previously called as Empire: Eukaryota Selenastrum capricornatum (NIVA-CHL 1 strain). But Kingdom: Plantae according to Nygaard & Komarek et al. (1986, 1987), Subkingdom: Viridiplantae this alga does not belong to the genus Selenastrum instead to Raphidocelis (Hindak 1977) and was renamed Infrakingdom: Chlorophyta Raphidocelis subcapitata (Korshikov 1953). Hindak Phylum: Chlorophyta in 1988 made the name Kirchneriella subcapitata Subphylum: Chlorophytina Korshikov, and it was his type species of his new Genus Class: Chlorophyceae Kirchneria. But by the year 1990, Hindak realized that the name Kirchneria had already been in use for two Order: Sphaeropleales other botanicals and hence further modified the name to Family: Selenastraceae Pseudokirchneriella subcapitata. Therefore, the species Genus: Pseudokirchneriella hence was correctly renamed as Pseudokirchneriella subcapitata (Korshikov) Hindak. It has a uniform morphology and does not form chains. Colonies formed are non-mucilaginous with 4-16 cells form- Though ubiquitous, this species has been recorded only in recent national and state lists which employed extensive ing matrix attaching their dorsal sides to each cell. Each cell analyses and hence a general indication of the distribution has a single chloroplast. It is an extremely sensitive species as Pseudokirchneriella subcapitata states its presence which acts as a bio indicator detecting toxins and nutrient in Europe: Netherlands (Veen et al. 2015), Scandinavia, levels in extensively minute quantities. Hence it is considered Slovakia, Spain and Korea (Cambra Sanchez et al. 1998). one of the most important organisms in bioassays of water quality, algecides and environmental assessments. It has an Pseudokirchneriella subcapitata is a crescent shaped/ exponentially high growth rate allowing large quantities to sickle shaped unicellular alga with an approximate 40-60 be grown in limited period of time (Guiry & Guiry 2017). µm3 in dimension. It belongs to the class Chlorophyceae (green algae). In March 2018, a water sample was collected from the 410 Vidya Padmakumar and N.C. Tharavathy Lake Giddenahalli, and Lake Zuzuvadi, as part of algal diver- allowed to settle and the 200 mL of concentrated settled sity studies and water quality assessment in fresh water lakes subsample was separated and preserved in Lugol’s Iodine of Tamil Nadu-Karnataka border zones of the south end of solution for identification of algae. Bangalore region. The dominant species in both the samples Enumeration of the algae along with the morphological collectedKorshikov, were identified O.A. and1987 confirmed. The F asreshwater Pseudokirch -Algaestudies of werethe done Ukranian using an OlympusSSR. V. microscope Subclass at 40x and neriella subcapitata by micro morphological analyses. The 100x and Utermohl’s settling chamber at 200x magnification discovery ofProtococcineae this species in fresh Vacuolales water samples and in ProtococcalesIndia is for abundance. Bishen was Singh used. Mahendra Pal Singh, the first reported occurrence. Pseudokirchneriella subcapitata was noted to be found in MATERIALSDehradun AND METHODS and Koeltz Scientific Books, pp.abundance 412.) compared to other algae and hence came into im- mediate notice due to its unique morphological characteristics. Lake Giddenahalli (Fig. 1) is a shallow (4 ft max depth) olig- Further isolation of the algal species was done using Agar otrophicNygaard, lake in the G. Attibele and Komarek, region of Karnataka J. 1986 (12.7825°N,. Opera Botanica , pp. 90. plating technique for studies on micromorphology and to estab- 77.7593°E). It is surrounded by industries that produce bulk lish correct identity documentation of the discovered species. drugsNygaard, and plastics. G. It and is a Komarek,lake with a circumferenceJ. 1987 Opera of apBotanica- , pp. 46. proximately 900 meters facing the Hosur-Bangalore National RESULTS Highway No. 7 on one side. LakeVeen, Zuzuvadi A., (Fig.Hof, 2) isC.H.J., a eutrophic Kouwets, lake located F.A.C. in the andThe concentrationBerkhout, T.of the2015. algae RijkswaterstaatPseudokirchneriella sub- Hosur district of Tamil Nadu (12.7706°N, 77.7817°E). It is capitata in the samples collected in March 2018 from the 5 also located Waterdienst,amidst a set of industries Informatihuis at the Sipcot Water Industrial [Taxa lake waterGiddenahalli management and Zuzuvadi the was Netherlands6.3 × 10 cells/mL and area (Phase 2). It has a circumference of 1.9 kms with one 5.4 × 105cells/mL respectively. The strain obtained from both the lakes confirmed to species descriptions suggested from side of the lake(TWN)]. facing the residential villa colony ‘Upkar Royal Gardens’. natural populations as explained by Hindak (1990). A two-litre sample of water from both the lakes collected The observed micro morphological characteristics that duringVigneault, March 2018, B. usingand Campbell,a 100 µ plankton P.G.C. net 2005.as part Uptakeof pertained of cadmium for confirmation by freshwater of the species green type algae: included the algal diversity studies and water quality assessment of the following: Unicellular and solitary species-forming non- freshwater lakesEffects in the of area.pH and The aquatic samples humiccollected substances. were mucilaginous Journal of colonies Phycology (few-celled, 41: 55 clusters)-61. during cell Fig. 1: Lake Giddenahalli - An overview. Fig. 1: Lake Giddenahalli - An overview. Vol. 19, No. 1, 2020 • Nature Environment and Pollution Technology 9 IDENTIFICATION OF PSEUDOKIRCHNERIELLA SUBCAPITATA IN LAKE WATERS 411 Fig. 2: Lake Zuzuvadi - An overview. Fig.Fig. 2:2: Lake Zuzuvadi Zuzuvadi - A -n Aoverview.n overview. Fig. 3: The alga Pseudokirchneriella subcapitata. Fig. 3: The alga Pseudokirchneriella subcapitata. division occasionally. Cells are helical shaped with semi DISCUSSION circularly curved during the vegetative phase twisting one This study has been successful in providing micro morphological and half turns. The diameter of the 154-360° arc ranges Fig. 3: The alga Pseudokirchneriellaclarifications subcapitata. for the presence of Pseudokirchneriella from 4.8-10.8µm, width from 1.6-4.4µm and depth/width 10 subcapitata in the freshwater lakes of the Indian Subcontinent. ratio being 1.7-4.1 (Fig. 3). The chloroplast is parietal, It is seen to be a ubiquitous species but still has received devoid of pyrenoid. Reproduction is generally by division of the mother cell into 2, 4 and 8 autospores (Nygaard & only recent mentions in National as well as State lists of few Komarek 1986). It is often described as a common species countries. It has been recorded in the Netherlands by Veen in planktonic environments representing both oligotrophic et al. (2015) and Slovakia, Scandinavia, Spain10 and Korea by Cambra Sanchez et al. (1998), which are a few to mention. and eutrophic fresh water ecosystems (Vigneault & Campbell 2005). Studies on different lakes in many other countries have led to Nature Environment and Pollution Technology • Vol. 19, No. 1, 2020 412 Vidya Padmakumar and N.C. Tharavathy the mention of the species in national and state level lists that REFERENCES are issued in public interest in many countries. Cambra Sanchez, J., Alvarez Cobelas, M. and Aboal Sanjurjo, M. 1998. This species has been of wide use in eco toxicological Floristic and bibliographic list of chlorophytes (Chlorophyta) of studies and algal toxicity tests. Records of the Karnataka the Iberian Peninsula, Balearic Islands and Canary Islands. Spanish Association of Limnology, Burgos. Biodiversity Board and the authorities were referred for Guiry, M.D. and Guiry, G.M. 2017. Algaebase, world-wide electronic clarification and establishment of this work being the first publication. Galway: National University of Ireland, Retrieved from identification of occurrence of the algae in Indian fresh water https://www.algaebase.org ecosystems. Hindak, F. 1977. Studies on the Clorococcal algae (Chlorophyceae) I Biologicke Prace 6. XXIV, Bratislava. Over the last decade, large number
Recommended publications
  • Universidad Autónoma De Nuevo León Facultad De Ciencias Biológicas
    UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS TESIS TAXONOMÍA, DISTRIBUCIÓN E IMPORTANCIA DE LAS ALGAS DE NUEVO LEÓN POR DIANA ELENA AGUIRRE CAVAZOS COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS CON ACENTUACIÓN EN MANEJO Y ADMINISTRACIÓN DE RECURSOS VEGETALES MAYO, 2018 TAXONOMÍA, DISTRIBUCIÓN E IMPORTANCIA DE LAS ALGAS DE NUEVO LEÓN Comité de Tesis Presidente: Dr. Sergio Manuel Salcedo Martínez. Secretario: Dr. Sergio Moreno Limón. Vocal 1: Hugo Alberto Luna Olvera. Vocal 2: Dr. Marco Antonio Alvarado Vázquez. Vocal 3: Dra. Alejandra Rocha Estrada. TAXONOMÍA, DISTRIBUCIÓN E IMPORTANCIA DE LAS ALGAS DE NUEVO LEÓN Dirección de Tesis Director: Dr. Sergio Manuel Salcedo Martínez. AGRADECIMIENTOS A Dios, por guiar siempre mis pasos y darme fortaleza ante las dificultades. Al Dr. Sergio Manuel Salcedo Martínez, por su disposición para participar como director de este proyecto, por sus consejos y enseñanzas que siempre tendré presente tanto en mi vida profesional como personal; pero sobre todo por su dedicación, paciencia y comprensión que hicieron posible la realización de este trabajo. A la Dra. Alejandra Rocha Estrada, El Dr. Marco Antonio Alvarado Vázquez, el Dr. Sergio Moreno Limón y el Dr. Hugo Alberto Luna Olvera por su apoyo y aportaciones para la realización de este trabajo. Al Dr. Eberto Novelo, por sus valiosas aportaciones para enriquecer el listado taxonómico. A la M.C. Cecilia Galicia Campos, gracias Cecy, por hacer tan amena la estancia en el laboratorio y en el Herbario; por esas pláticas interminables y esas “riso terapias” que siempre levantaban el ánimo. A mis entrañables amigos, “los biólogos”, “los cacos”: Brenda, Libe, Lula, Samy, David, Gera, Pancho, Reynaldo y Ricardo.
    [Show full text]
  • Akashiwo Sanguinea
    Ocean ORIGINAL ARTICLE and Coastal http://doi.org/10.1590/2675-2824069.20-004hmdja Research ISSN 2675-2824 Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay Helen Michelle de Jesus Affe1,2,* , Lorena Pedreira Conceição3,4 , Diogo Souza Bezerra Rocha5 , Luis Antônio de Oliveira Proença6 , José Marcos de Castro Nunes3,4 1 Universidade do Estado do Rio de Janeiro - Faculdade de Oceanografia (Bloco E - 900, Pavilhão João Lyra Filho, 4º andar, sala 4018, R. São Francisco Xavier, 524 - Maracanã - 20550-000 - Rio de Janeiro - RJ - Brazil) 2 Instituto Nacional de Pesquisas Espaciais/INPE - Rede Clima - Sub-rede Oceanos (Av. dos Astronautas, 1758. Jd. da Granja -12227-010 - São José dos Campos - SP - Brazil) 3 Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas - Programa de Pós-graduação em Botânica (Av. Transnordestina s/n - Novo Horizonte - 44036-900 - Feira de Santana - BA - Brazil) 4 Universidade Federal da Bahia - Instituto de Biologia - Laboratório de Algas Marinhas (Rua Barão de Jeremoabo, 668 - Campus de Ondina 40170-115 - Salvador - BA - Brazil) 5 Instituto Internacional para Sustentabilidade - (Estr. Dona Castorina, 124 - Jardim Botânico - 22460-320 - Rio de Janeiro - RJ - Brazil) 6 Instituto Federal de Santa Catarina (Av. Ver. Abrahão João Francisco, 3899 - Ressacada, Itajaí - 88307-303 - SC - Brazil) * Corresponding author: [email protected] ABSTRAct The objective of this study was to evaluate variations in the composition and abundance of the phytoplankton community after an exceptional harmful bloom of Akashiwo sanguinea that occurred in Todos os Santos Bay (BTS) in early March, 2007.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Abstract Use of the Green Microalga Monoraphidium Sp. Dek19 to Remediate Wastewater
    ABSTRACT USE OF THE GREEN MICROALGA MONORAPHIDIUM SP. DEK19 TO REMEDIATE WASTEWATER: SALINITY STRESS AND SCALING TO MESOCOSM CULTURES Anthony Robert Kephart, M.S. Department of Biological Sciences Northern Illinois University, 2016 Gabriel Holbrook, Director The purpose of this thesis was to investigate the growth of the green microalga Monoraphidium sp. Dek19 in the context of phycoremediation under conditions representative of wastewater media of a Midwest wastewater treatment facility. Microalgae were grown in effluent collected from four different wastewater streams at the DeKalb Sanitary District (DSD), DeKalb, Illinois, USA in volumes from 1 L to 380 L. It was determined through preliminary modeling of public data that Monoraphidium sp. Dek19 will likely outcompete local heterospecifics in final effluent wastewaters at the DSD 51.8% of the year. It was also determined that neither nitrogen nor phosphorus should become a limiting nutrient throughout the year. Study of the response of Monoraphidium sp. Dek19 to salinity stress was also completed. Salt stress caused a significant increase in lipid accumulation in salt stressed cultures compared to control cultures (37.0-50.5% increase) with a reduction in biomass productivity. Increases in photosynthetic pigments per cell were seen under salt stress, though the ratio of chlorophyll a and b remained constant. Finally, nitrate uptake was not greatly affected by salinity stress except when biomass accumulation became a corollary for uptake (nitrogen saturation). Luxury uptake of phosphate was significantly affected by wastewater salinity (p<0.001). High sodium potentially interrupts phosphate stress response proteins, slowing internalization of phosphate. Phosphate removal was still possible as some protein binding proteins appear to operate independent of sodium.
    [Show full text]
  • The Draft Genome of Hariotina Reticulata (Sphaeropleales
    Protist, Vol. 170, 125684, December 2019 http://www.elsevier.de/protis Published online date 19 October 2019 ORIGINAL PAPER Protist Genome Reports The Draft Genome of Hariotina reticulata (Sphaeropleales, Chlorophyta) Provides Insight into the Evolution of Scenedesmaceae a,b,2 c,d,2 b e f Yan Xu , Linzhou Li , Hongping Liang , Barbara Melkonian , Maike Lorenz , f g a,g e,1 a,g,1 Thomas Friedl , Morten Petersen , Huan Liu , Michael Melkonian , and Sibo Wang a BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China b BGI Education Center, University of Chinese Academy of Sciences, Beijing, China c China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China d Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark e University of Duisburg-Essen, Campus Essen, Faculty of Biology, Universitätsstr. 5, 45141 Essen, Germany f Department ‘Experimentelle Phykologie und Sammlung von Algenkulturen’ (EPSAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany g Department of Biology, University of Copenhagen, Copenhagen, Denmark Submitted October 9, 2019; Accepted October 13, 2019 Hariotina reticulata P. A. Dangeard 1889 (Sphaeropleales, Chlorophyta) is a common member of the summer phytoplankton of meso- to highly eutrophic water bodies with a worldwide distribution. Here, we report the draft whole-genome shotgun sequencing of H. reticulata strain SAG 8.81. The final assembly comprises 107,596,510 bp with over 15,219 scaffolds (>100 bp). This whole-genome project is publicly available in the CNSA (https://db.cngb.org/cnsa/) of CNGBdb under the accession number CNP0000705. © 2019 Elsevier GmbH. All rights reserved. Key words: Scenedesmaceae; genome; algae; comparative genomics.
    [Show full text]
  • The Draft Genome of the Small, Spineless Green Alga
    Protist, Vol. 170, 125697, December 2019 http://www.elsevier.de/protis Published online date 25 October 2019 ORIGINAL PAPER Protist Genome Reports The Draft Genome of the Small, Spineless Green Alga Desmodesmus costato-granulatus (Sphaeropleales, Chlorophyta) a,b,2 a,c,2 d,e f g Sibo Wang , Linzhou Li , Yan Xu , Barbara Melkonian , Maike Lorenz , g b a,e f,1 Thomas Friedl , Morten Petersen , Sunil Kumar Sahu , Michael Melkonian , and a,b,1 Huan Liu a BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China b Department of Biology, University of Copenhagen, Copenhagen, Denmark c Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark d BGI Education Center, University of Chinese Academy of Sciences, Beijing, China e State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China f University of Duisburg-Essen, Campus Essen, Faculty of Biology, Universitätsstr. 2, 45141 Essen, Germany g Department ‘Experimentelle Phykologie und Sammlung von Algenkulturen’, University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany Submitted October 9, 2019; Accepted October 21, 2019 Desmodesmus costato-granulatus (Skuja) Hegewald 2000 (Sphaeropleales, Chlorophyta) is a small, spineless green alga that is abundant in the freshwater phytoplankton of oligo- to eutrophic waters worldwide. It has a high lipid content and is considered for sustainable production of diverse compounds, including biofuels. Here, we report the draft whole-genome shotgun sequencing of D. costato-granulatus strain SAG 18.81. The final assembly comprises 48,879,637 bp with over 4,141 scaffolds. This whole-genome project is publicly available in the CNSA (https://db.cngb.org/cnsa/) of CNGBdb under the accession number CNP0000701.
    [Show full text]
  • Proposal for Practical Multi-Kingdom Classification of Eukaryotes Based on Monophyly 2 and Comparable Divergence Time Criteria
    bioRxiv preprint doi: https://doi.org/10.1101/240929; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proposal for practical multi-kingdom classification of eukaryotes based on monophyly 2 and comparable divergence time criteria 3 Leho Tedersoo 4 Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia 5 Contact: email: [email protected], tel: +372 56654986, twitter: @tedersoo 6 7 Key words: Taxonomy, Eukaryotes, subdomain, phylum, phylogenetic classification, 8 monophyletic groups, divergence time 9 Summary 10 Much of the ecological, taxonomic and biodiversity research relies on understanding of 11 phylogenetic relationships among organisms. There are multiple available classification 12 systems that all suffer from differences in naming, incompleteness, presence of multiple non- 13 monophyletic entities and poor correspondence of divergence times. These issues render 14 taxonomic comparisons across the main groups of eukaryotes and all life in general difficult 15 at best. By using the monophyly criterion, roughly comparable time of divergence and 16 information from multiple phylogenetic reconstructions, I propose an alternative 17 classification system for the domain Eukarya to improve hierarchical taxonomical 18 comparability for animals, plants, fungi and multiple protist groups. Following this rationale, 19 I propose 32 kingdoms of eukaryotes that are treated in 10 subdomains. These kingdoms are 20 further separated into 43, 115, 140 and 353 taxa at the level of subkingdom, phylum, 21 subphylum and class, respectively (http://dx.doi.org/10.15156/BIO/587483).
    [Show full text]
  • Identification of a Dual Orange/Far-Red and Blue Light Photoreceptor From
    ARTICLE https://doi.org/10.1038/s41467-021-23741-5 OPEN Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton Yuko Makita1,13, Shigekatsu Suzuki2,13, Keiji Fushimi3,4,5,13, Setsuko Shimada1,13, Aya Suehisa1, Manami Hirata1, Tomoko Kuriyama1, Yukio Kurihara1, Hidefumi Hamasaki1,6, Emiko Okubo-Kurihara1, Kazutoshi Yoshitake7, Tsuyoshi Watanabe8, Masaaki Sakuta 9, Takashi Gojobori10, Tomoko Sakami11, Rei Narikawa 3,4,5,12, ✉ Haruyo Yamaguchi 2, Masanobu Kawachi2 & Minami Matsui 1,6 1234567890():,; Photoreceptors are conserved in green algae to land plants and regulate various develop- mental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a crypto- chrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/ blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities. 1 Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan. 2 Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan. 3 Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan. 4 Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan. 5 Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
    [Show full text]
  • New Records and Rare Taxa for the Freshwater Algae of Turkey from the Tatar Dam Reservoir (Elazığ)
    Turkish Journal of Botany Turk J Bot (2018) 42: 533-542 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1710-55 New records and rare taxa for the freshwater algae of Turkey from the Tatar Dam Reservoir (Elazığ) 1, 2 3 3 Memet VAROL *, Saul BLANCO , Kenan ALPASLAN , Gökhan KARAKAYA 1 Department of Basic Aquatic Sciences, Faculty of Fisheries, İnönü University, Malatya, Turkey 2 Institute of the Environment, León, Spain 3 Aquaculture Research Institute, Elazığ, Turkey Received: 28.10.2017 Accepted/Published Online: 03.04.2018 Final Version: 24.07.2018 Abstract: Recently, the number of algological studies in Turkish inland waters has increased remarkably. However, taxonomic and floristic studies on algae in the Euphrates basin are still scarce. This study contributes new information to the knowledge of the Turkish freshwater algal flora. Phytoplankton samples were collected from the Tatar Dam Reservoir in the Euphrates Basin between January 2016 and December 2016. Two taxa were recorded for first time and 14 rare taxa for the freshwater algae of Turkey were identified in this study. The new records belong to the phylum Bacillariophyta, whereas taxa considered as rare belong to the phyla Chlorophyta, Cyanobacteria, Rhodophyta, Charophyta, Euglenophyta, and Bacillariophyta. The morphology and taxonomy of these taxa are briefly described in the paper and original light microscopy illustrations are provided. Key words: Freshwater algae, new records, rare taxa, Tatar Dam Reservoir, Turkey 1. Introduction 2. Materials and methods Algae are the undisputed primary producers in aquatic 2.1. Study area ecosystems. They play also an important role in biological The Tatar Dam Reservoir is located on the border of Elazığ monitoring programs since these organisms reflect the and Tunceli provinces in eastern Anatolia (Figure 1).
    [Show full text]
  • Effect of Phosphorus on the Toxicity of Zinc to the Microalga Raphidocelis WANG NX, LI Y, DENG XH, MIAO AJ, JI R & YANG LY
    An Acad Bras Cienc (2020) 92(Suppl. 2): e20190050 DOI 10.1590/0001-3765202020190050 Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences Printed ISSN 0001-3765 I Online ISSN 1678-2690 www.scielo.br/aabc | www.fb.com/aabcjournal BIOLOGICAL SCIENCES Effect of phosphorus on the toxicity of zinc Running title:PHOSPHORUS to the microalga Raphidocelis subcapitata EFFECT UNDER ZINC TOXICITY FOR ALGAE SUZELEI RODGHER, THAIS M. CONTADOR, GISELI S. ROCHA & Academy Section: BIOLOGICAL EVALDO L.G. ESPINDOLA SCIENCES Abstract: The aim of this study was to evaluate the effect of phosphorus (P) on the toxicity of zinc (Zn) for the alga Raphidocelis subcapitata. P was provided in three concentrations: 2.3 x 10-4 mol L-1, 2.3 x 10-6 mol L−1 and 1.0 x 10-6 mol L−1. Algal cells were acclimated to the e20190050 specifi c P concentrations before the start of the experiment. The chemical equilibrium software MINEQL+ 4.61 was employed to calculate the Zn2+ concentration. After acclimated, the algal cells were inoculated into media containing different Zn concentrations (0.09 92 x 10-6 mol L-1 to 9.08 x 10-6 mol L-1). The study showed that besides the reduction in algal (Suppl. 2) growth rates, phosphorus had an important infl uence on the toxicity of zinc for microalga. 92(Suppl. 2) The inhibitory Zn2+ concentration values for R. subcapitata were 2.74 x 10-6 mol L-1, 0.58 x 10-6 mol L-1 and 0.24 x 10-6 mol L-1 for the microalgae acclimated at P concentrations of 2.3 x 10-4 mol L-1, 2.3 x 10-6 mol L-1 and 1.0 x 10-6 mol L-1, respectively.
    [Show full text]
  • TRADITIONAL GENERIC CONCEPTS VERSUS 18S Rrna GENE PHYLOGENY in the GREEN ALGAL FAMILY SELENASTRACEAE (CHLOROPHYCEAE, CHLOROPHYTA) 1
    J. Phycol. 37, 852–865 (2001) TRADITIONAL GENERIC CONCEPTS VERSUS 18S rRNA GENE PHYLOGENY IN THE GREEN ALGAL FAMILY SELENASTRACEAE (CHLOROPHYCEAE, CHLOROPHYTA) 1 Lothar Krienitz2 Institut für Gewässerökologie und Binnenfischerei, D-16775 Stechlin, Neuglobsow, Germany Iana Ustinova Institut für Botanik und Pharmazeutische Biologie der Universität, Staudtstrasse 5, D-91058 Erlangen, Germany Thomas Friedl Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abteilung Experimentelle Phykologie und Sammlung von Algenkulturen, Universität Göttingen, Untere Karspüle 2, D-37037 Göttingen, Germany and Volker A. R. Huss Institut für Botanik und Pharmazeutische Biologie der Universität, Staudtstrasse 5, D-91058 Erlangen, Germany Coccoid green algae of the Selenastraceae were in- few diacritic characteristics and that contain only a vestigated by means of light microscopy, TEM, and small number of species) and to reestablish “large” 18S rRNA analyses to evaluate the generic concept in genera of Selenastraceae such as Ankistrodesmus. this family. Phylogenetic trees inferred from the 18S Key index words: 18S rRNA, Ankistrodesmus, Chloro- rRNA gene sequences showed that the studied spe- phyta, Kirchneriella, Monoraphidium, molecular system- cies of autosporic Selenastraceae formed a well- atics, morphology, Podohedriella, pyrenoid, Quadrigula, resolved monophyletic clade within the DO group of Selenastraceae Chlorophyceae. Several morphological characteris- tics that are traditionally used as generic features Abbreviations: LM, light microscopy
    [Show full text]
  • Fourier Transform Infrared with Attenuated Total Reflectance Applied to the Discrimination of Freshwater Planktonic Coccoid Green Microalgae
    RESEARCH ARTICLE Fourier Transform Infrared with Attenuated Total Reflectance Applied to the Discrimination of Freshwater Planktonic Coccoid Green Microalgae Guilherme Pavan de Moraes*, Armando Augusto Henriques Vieira Laboratory of Phycology, Department of Botany, Universidade Federal de Sa˜o Carlos (UFSCar), Sa˜o Carlos, Sa˜o Paulo, Brazil *[email protected] Abstract OPEN ACCESS Despite the recent advances on fine taxonomic discrimination in microorganisms, Citation: Moraes GPd, Vieira AAH (2014) Fourier Transform Infrared with Attenuated Total namely using molecular biology tools, some groups remain particularly problematic. Reflectance Applied to the Discrimination of Freshwater Planktonic Coccoid Green Fine taxonomy of green algae, a widely distributed group in freshwater ecosystems, Microalgae. PLoS ONE 9(12): e114458. doi:10. remains a challenge, especially for coccoid forms. In this paper, we propose the use 1371/journal.pone.0114458 of the Fourier Transform Infrared (FTIR) spectroscopy as part of a polyphasic Editor: Heidar-Ali Tajmir-Riahi, University of Quebect at Trois-Rivieres, Canada approach to identify and classify coccoid green microalgae (mainly order Received: August 12, 2014 Sphaeropleales), using triplicated axenic cultures. The attenuated total reflectance Accepted: October 19, 2014 (ATR) technique was tested to reproducibility of IR spectra of the biological material, a primary requirement to achieve good discrimination of microalgal Published: December 26, 2014 strains. Spectral window selection was also tested, in conjunction with the first Copyright: ß 2014 Moraes, Vieira. This is an open-access article distributed under the terms of derivative treatment of spectra, to determine which regions of the spectrum the Creative Commons Attribution License, which permits unrestricted use, distribution, and repro- provided better separation and clustering of strains.
    [Show full text]