Propagation Protocol for Jacquemontia Reclinata

Total Page:16

File Type:pdf, Size:1020Kb

Propagation Protocol for Jacquemontia Reclinata Beach jacquemontia (Jacquemontia reclinata House [Convolvulaceae]) is an endangered endemic plant from southeast Florida that can be propagated by seeds Jacquemontia Choisy is a tropical and or cuttings. Freshly harvested seeds from cultivated and wild plants can germinate subtropical American genus that easily in a greenhouse under South Florida ambient conditions. A higher germination belongs to the morning-glory family, success after short-term seed storage suggests an after-ripening effect; however, Convolvulaceae. There are 80 to 100 orthodox methods are acceptable for long-term storage. Soaking treatments do not species in this genus, and J. reclinata House, affect overall germination. Cuttings can produce new plants when treated with also known as beach cluster-vine or beach rooting hormone and planted in perlite. Arbuscular mycorrhizae fungi inoculation of jacquemontia, is closely related to 3 other cultivated plants is recommended for outplanting into habitats lacking natural threatened or endangered jacquemontias that fungal inoculum. These propagation techniques have yielded plants used for occur in southern Florida: J. curtisii Hallier, J. reintroduction and recovery activities of the species. havanensis (Jacq.) Urban, and J- pentanthos (Jacq.) G. Don. Jacquemontia reclinata can he Roncal J, Fisher J, Wright SJ, Frances A, Griffin K, Maschinski J, Fidelibus MW. 2006. distinguished from the other jacquemontias by Propagation protocol for Jacquemontia reclinato House, a federally endangered species of the presence of tiny hairs along the margins of South Florida. Native Plants Journal 7(3): 301-306. its outer sepals and by its rather broad succulent leaves (Austin 1979). KEY WORDS Jacquemontia reclinata (Figure I) is a coastal dune, coastal strand, Convolvulaceae, ex situ collection, soaked perennial vine with a stem branched at the seeds, storage behavior base and a stout taproot (Small 1934), although we have also observed 1.4 cm (0.56 in) diameter and < 2 m (6.6 ft) long roots NOMENCLATURE protruding in a radial direction and a USDA NRCS (2005) fibrous root mass (~15 x) Figure 1. Jacquemontia reclinata House (Convolvulaceae) blooming in Bill Baggs Cape Florida State Park, Florida. Photo by Samuel J Wright 301 NATIVEPLANTS I FALL 2006 10 cm [6 x 4 in]) close to the surface coupled with stochastic events, or salt water (see germination sidebar). (Figure 2). Branches are slender and seriously threaten J. reclinata's Germination of seeds is easily elongate, widely radiating, woody at the persistence. These factors led to listing attained on commercially available base, and may twine over other plants J. reclinata as federally endangered soilless media (for example, Metromix (Small 1934; Robertson 1971). in 1993. 360, VJ Growers Supply, Apopka, The leaves are entire, spirally arranged, Fairchild Tropical Botanic Garden Florida) or Fairchild's standard potting more or less succulent, and finely has developed propagation methods mix (10% perlite, 40% Canadian peat, pubescent, at least when young (Small to aid in conservation and recovery 20% composted bark, and 30% sand). In 1934). Jacquemontia reclinata's white efforts of J. reclinata. Knowledge of pots, soil is gently tapped down to to light-pink flowers may be germination and propagation create a flat surface and then watered. present from November to May protocols is required to produce After the excess water drains, (Robertson 1971) or year-round (Austin plants for reintroduction and nonsoaked seeds are sown and and others 1991). Twenty-two species augmentation, as well as to establish top-dressed with about 1 cm (0.4 in) of of insects—mostly small bees and bee and maintain ex situ populations of chicken grit or sand. The top-dressing flies, and less frequently wasps, living plants and seeds. Here we grit reduces compaction from butterflies, and ants—are known to visit present our standard propagation con- watering, reduces moss and weed the flowers and may pollinate them ditions for J. reclinata based on the growth, and prevents seeds from (Pinto-Torres 2004). Few seedlings or results of seed and vegetative washing out of the pot (Carrara 2005). young plants are found near adults in propagation experiments. Adding pea-sized rock (The Bushel Stop, the wild. Although rarely observed, Lake Worth, Florida) to the medium in a seedlings are typically found in the 1:1 ratio (v:v) increases aeration and shade of adjacent shrubs and trees, SEED PROPAGATION drainage and reduces plant mortality and they send lateral stems from their by the root rot pathogen Fusarium rootstocks into more exposed areas Jacquemontia reclinata fruits suitable for solari. To minimize plant roots when maturity is reached. propagation are light brown-colored intertwining and then being disturbed Currently, there are 10 known popu- capsules about 4 to 5 mm (0.16 in) long, during transplanting, we prefer pots over lations of J. reclinata, which range in generally with 4 seeds (2.5 to 3 mm flats and transplant seedlings before size from 1 to 245 plants. These [0.11 in] long) per capsule (Robertson they are 9 wk of age. populations are within a 145-km (90-mi) 1971), which are shed throughout the Once sown, pots are placed on a stretch of coastline in southeast Florida, flowering season. Our experience is that greenhouse bench that receives 30% between Dade and Palm Beach there are 343 seeds per gram. sun under South Florida ambient counties (Wunderlin 1998; USFWS From our work, we have discovered conditions (25 °C to 35 °C [77 °F to 95 1999; Coile 2000). Within its range, J. several things about J. reclinata seeds °F], 54% to 87% relative humidity, –11 reclinata is found on disturbed or open that help us achieve more successful to 12 hours photoperiod) and watered sunny areas of coastal sand dunes, germination. First, we must ascertain 3 times per wk. Seeds germinate mostly on the crest and lee side seed source because different readily under these greenhouse (Austin 1979), and on open areas of germination behavior and requirements conditions, indicating the lack of maritime hammocks (Robertson 1971) and storage effects have been identified primary dormancy in this species. from 1 to 9 m (3.3 to 29.7 ft) above sea between cultivated and wild seedlots Jacquemontia reclinata seeds do level (Maschinski and others 2003). It (see sidebars), as is the case with other not require light to germinate; however, may also invade and restabilize the species (Rojas-Arechiga and others we recommend the use of light above habitats after a tropical storm, 2001; Singh and l)eswal 2002). Second, because seeds exposed to light have hurricane, or tire disturbance (USFWS seeds from cultivated and wild plants more uniform germination. We found 1999). can be stored successfully under a that 1-y-old seeds placed on filter paper The primary habitat of this species variety of conditions, and short-term in Petri dishes, exposed to 30% sunlight has been destroyed by commercial and storage can actually increase or kept dark by wrapping the dish with residential development, including park- germination (see storage sidebar). Our aluminum foil, and placed under ing lots and picnic areas, and by beach preferred storage technique for seeds greenhouse conditions described above, erosion (USFWS 1999). In some from cultivated plants is 3 mo at 12 °C yielded the same germination (40%) locations, J. reclinata is negatively (54 °F) and from wild plants is 1 mo at after 15 d. affected by competition with native and ambient conditions (23 °C [73 °F] and nonnative species (USFWS 1999). 60% to 84% relativehumidity). For a About 700 individuals remain in the longer storage time (for example, 42 wild, most of which (79%) occur in 3 mo), we recommend using a –20 °C (-4 302 populations(Maschinski and others °F) freezer. Third, the yellow pigment 2005). The small geographical range, released from seeds during soaking habitat fragmentation, low recruitment does not appear to affect germination, rate, and small population sizes nor does soaking seeds in fresh water NATIVEPLANTS I FALL 2006 PROPAGATION PROTOCOL FOR JACQUEMONTIA RECLINATA VEGETATIVE PROPAGATION MYCORRHIZAL ACKNOWLEDGMENTS REQUIREMENT Seeds may not always be available This research was funded by the Florida because of seasonality. Also, because of Wild J. reclinata plants have typical Department of Agriculture and Con- changing environmental factors (for Arum-type arbuscular mycorrhizal fungi sumer Services, the US Fish and example, canopy closure), existing J. (AMF) in their roots. AMF significantly Wildlife Service, and by the Institute of reclinata habitat may not have suitable increase the dry weight and total phos- Library and Museum Services. The conditions for flowering and seed phorus content of seedlings grown on authors, all of whom worked at production. Because of these factors, native soil under greenhouse conditions Fairchild Tropical Botanic Garden genetic preservation of declining (Fisher and Jayachandran 2002). when research was conducted, are populations may be possible only Jacquemontia reclinata is not an grateful to Jennifer Possley, Kristie through clonal propagation. obligate mycotroph because additions Wendelberger, Sonya Thompson, Therefore, it is critical to develop of phosphate without AMF also Lauren Linares, Ken Neugent, Randy vegetative propagation methods. promoted seedling growth (Fisher and Ploetz, Christopher Kernan, The Florida Immediately after removing cuttings Jayachandran 2002). Therefore, for our Native Plant Society, Miami Dade College from the donor plant, which can be done experiments, we do not add AMF to our students, and Miami-Dade Natural Areas at any time of the day, we dip them first in pots. AMF inoculation of cultivated Management for their help in different tap water and then in Rootone® plants, however, would be desirable for stages of this work. Susan Carrara and (GardenTech, Lexington, Kent ucky), wrap outplanting into habitats free of natural Dena Garvue contributed to the seed stor- them in a wet paper towel, enclose them AMF inoculum, such as coastal dredge age experiments.
Recommended publications
  • Jacquemontia Reclinata Grown in Containers
    REFEREED RESEARCH ARTICLE Shade limited root mass and carbohydrate reserves of the federally endangered Beach Photo by Joyce MaschinskiClustervine | Inset photo by Hannah Thorton Jacquemontia reclinata grown in containers ABSTRACT Anecdotal evidence suggested that germination and seedling Samuel J Wright and Matthew W Fidelibus | growth of the federally endangered beach clustervine (Jacque- montia reclinata [Convolvulaceae]) were best in the shade, but mature plants usually occur in coastal strand areas that are open or have low vegetation. We conducted an experiment using potted seedlings grown without shade, or under low, KEY WORDS moderate, or heavy shade enclosures. Shade did not affect revegetation, coastal strand, propagation, light shoot growth, or leaf or stem dry mass. Plants subjected to all levels of shade, however, had 40% to 70% less root dry NOMENCLATURE mass and about 50% lower root-to-shoot ratios than non- ITIS (2002) shaded plants. Moreover, the roots of non-shaded plants had 2 to 4 times more soluble sugars and starch than plants grown in shade. These findings suggest that when water and Figure 1. Federally endangered beach clustervine (Jacquemontia reclinata nutrition are not limiting, J. reclinata seedlings are best grown [Convolvulaceae]) blooming in its natural habitat. without shade. 27 NATIVEPLANTS | SPRING 2004 each clustervine (Jacquemontia reclinata House) is a reclinata has not been tested, although seedlings of a related perennial vine of the morning glory family (Con-volvu- plant, small-flower morning glory
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Cocoa Beach Maritime Hammock Preserve Management Plan
    MANAGEMENT PLAN Cocoa Beach’s Maritime Hammock Preserve City of Cocoa Beach, Florida Florida Communities Trust Project No. 03 – 035 –FF3 Adopted March 18, 2004 TABLE OF CONTENTS SECTION PAGE I. Introduction ……………………………………………………………. 1 II. Purpose …………………………………………………………….……. 2 a. Future Uses ………….………………………………….…….…… 2 b. Management Objectives ………………………………………….... 2 c. Major Comprehensive Plan Directives ………………………..….... 2 III. Site Development and Improvement ………………………………… 3 a. Existing Physical Improvements ……….…………………………. 3 b. Proposed Physical Improvements…………………………………… 3 c. Wetland Buffer ………...………….………………………………… 4 d. Acknowledgment Sign …………………………………..………… 4 e. Parking ………………………….………………………………… 5 f. Stormwater Facilities …………….………………………………… 5 g. Hazard Mitigation ………………………………………………… 5 h. Permits ………………………….………………………………… 5 i. Easements, Concessions, and Leases …………………………..… 5 IV. Natural Resources ……………………………………………..……… 6 a. Natural Communities ………………………..……………………. 6 b. Listed Animal Species ………………………….…………….……. 7 c. Listed Plant Species …………………………..…………………... 8 d. Inventory of the Natural Communities ………………..………….... 10 e. Water Quality …………..………………………….…..…………... 10 f. Unique Geological Features ………………………………………. 10 g. Trail Network ………………………………….…..………..……... 10 h. Greenways ………………………………….…..……………..……. 11 i Adopted March 18, 2004 V. Resources Enhancement …………………………..…………………… 11 a. Upland Restoration ………………………..………………………. 11 b. Wetland Restoration ………………………….…………….………. 13 c. Invasive Exotic Plants …………………………..…………………... 13 d. Feral
    [Show full text]
  • Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments.
    [Show full text]
  • A Preliminary List of the Vascular Plants and Wildlife at the Village Of
    A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths.
    [Show full text]
  • INTERAGENCY BRAZILIAN PEPPERTREE (Schinus Terebinthifolius) MANAGEMENT PLAN for FLORIDA
    INTERAGENCY BRAZILIAN PEPPERTREE (Schinus terebinthifolius) MANAGEMENT PLAN FOR FLORIDA 2ND EDITION Recommendations from the Brazilian Peppertree Task Force Florida Exotic Pest Plant Council April, 2006 J. P. Cuda1, A. P. Ferriter2, V. Manrique1, and J.C. Medal1, Editors J.P. Cuda1, Brazilian Peppertree Task Force Chair 1Entomology and Nematology Department, University of Florida, IFAS Gainesville, FL. 32611-0620 2Geosciences Department, Boise State University, Boise, ID 83725 1 The Brazilian Peppertree Management Plan was developed to provide criteria to make recommendations for the integrated management of Brazilian peppertree in Florida. This is the second edition of the Brazilian Peppertree management Plan for Florida. It should be periodically updated to reflect changes in management philosophies and operational advancements. Mention of a trade name or a proprietary product does not constitute a guarantee or warranty of the product by the Brazilian Pepper Task Force or the Florida Exotic Pest Plant Council. There is no express or implied warranty as to the fitness of any product discussed. Any product trade names that are listed are for the benefit of the reader and the list may not contain all products available due to changes in the market. Cover photo and design credits: Terry DelValle, Duval County Extension Service; the late Daniel Gandolfo, USDA, ARS, South American Biological Control Laboratory; Ed Hanlon and Phil Stansly, UF/IFAS Southwest Florida Research and Education Center; Krish Jayachandran, Florida International University,
    [Show full text]
  • Noteworthy Distributions and Additions in Southwestern Convolvulaceae
    NOTEWORTHY DISTRIBUTIONS AND ADDITIONS IN SOUTHWESTERN CONVOLVULACEAE Daniel F. Austin Arizona-Sonora Desert Museum Tucson, AZ 85734 [email protected] ABSTRACT Since 1998 when the Convolvulaceae was published for the Vascular Plants of Arizona, Calystegia sepium ssp. angulata Brummitt and Convolvulus simuans L. M. Perry have been added to the flora and another species, Jacquemontia agrestis (Choisy) Meisner, has been located that had not been found since 1945. Descriptions, keys, and discussions of these are given to place them in the flora. Additionally, these and Dichondra argentea Willdenow, D. brachypoda Wooton & Standley, D. sericea Swartz, Ipomoea aristolochiifolia (Kunth) G. Don, I. cardiophylla A. Gray, I. ×leucantha Jacquin, and I. thurberi A. Gray, with new noteworthy distributions records in the region, are discussed and mapped. All taxa documented by recent collections are illustrated to facilitate identification. DISTRIBUTION PATTERNS AND ADDITIONS TO THE ARIZONA FLORA Three notable disjunct records have been discovered within Arizona since the treatment of the Convolvulaceae was published for the state (Austin 1998a), Calystegia sepium ssp. angulata Brummitt, Convolvulus simulans L.M. Perry and Jacquemontia agrestis (Choisy) Meisner. Additionally, Ipomoea aristolochiifolia (Kunth) G. Don has been found just south of the border in Mexico. All of these are significant disjunctions in the family, but there are others that have been documented for years and little discussed. Although these are not the only disjunctions within the Convolvulaceae in the region, they are representative of floristic patterns in this and other families. The following discussion updates the known status of the Convolvulaceae in Arizona and compares several species to the floras from which they were derived.
    [Show full text]
  • A Vascular Flora and Annotated Checklist Are Provided for the Salero Ranch, Some 6500 Hectares of Private Land in Central Santa Cruz County, Arizona
    DIVERSITY IN A GRASSLAND: FLORA OF THE SALERO RANCH, SANTA CRUZ COUNTY, ARIZONA Susan Davis Carnahan University of Arizona Herbarium Tucson AZ 85721 [email protected] ABSTRACT: A vascular flora and annotated checklist are provided for the Salero Ranch, some 6500 hectares of private land in central Santa Cruz County, Arizona. The study area has a history of silver mining and cattle grazing dating back hundreds of years. It is located in the Madrean Sky Islands region near the U.S.–Mexico border and includes parts of the Grosvenor Hills and the foothills of the Santa Rita Mountains. The elevation varies from 1150 to 1934 m, a range of 784 m, and the terrain is rocky, sloped, fractured, and faulted, creating many microhabitats. Scrub or semidesert grassland is the dominant vegetation type; evergreen oak woodland (encinal) is also present. This flora is specimen-based; more than 1640 collections were made between 2013 and 2019 to document 788 species and infraspecific taxa distributed in 445 genera and 103 families. The largest families are Asteraceae (129 taxa at or below the specific level), Poaceae (115), Fabaceae (72), Euphorbiaceae (27), and Malvaceae (27). The largest genera are Muhlenbergia, Euphorbia, Cyperus, Bouteloua, and Dalea. Non-native plants (69) comprise 8.8% of the flora; nearly half (34) of the non-natives are grasses. Significant records include two species new to the United States (Polystemma sp., Apocynaceae; Solanum houstonii, Solanaceae), two species new to Arizona (Ipomoea muricata, Convolvulaceae; Sida glabra, Malvaceae), and new localities for several species with limited distributions in the state. Factors contributing to the floristic diversity are elevational range, topographic complexity, species-rich vegetative communities, and sampling effort.
    [Show full text]
  • Conservation, Aquifer Recharge and Drainage Element
    CONSERVATION, AQUIFER RECHARGE AND DRAINAGE ELEMENT Introduction It is the intent of this Element to identify, conserve, appropriately use, protect and restore the biological, geological and hydrological resources of Miami-Dade County. Since the adoption of the Comprehensive Development Master Plan (CDMP) in 1975, Miami-Dade County has been committed to protection of environmentally sensitive wetlands and aquifer recharge and water storage areas. Within the past decade, protecting and restoring environmentally sensitive uplands has been recognized as important to the County's present and future. Since 1975, Miami-Dade County has sought to channel growth toward those areas that are most intrinsically suited for development. This Element and the proposed natural resources objectives, policies and maps in the Land Use Element and Coastal Management Element continue that established trend. The environmental sensitivity of Miami-Dade County is underscored by the fact that the urban portion lies between two national parks, Everglades and Biscayne National Parks, and the Florida Keys National Marine Sanctuary. The close proximity of an expanding urbanized area to national and State resource-based parks, and over 6,000 acres of natural areas within County parks, presents a unique challenge to Miami-Dade County to provide sound management. The County has addressed this challenge in several ways including working closely with other public and private sector agencies and groups to obtain a goal of sustainability. The close relationship of tourism
    [Show full text]
  • The Landscape Manual
    THE LANDSCAPE MANUAL COVER PHOTO ARGELIO HERNANDEZ MIAMI-DADE COUNTY COMMUNICATIONS DEPARTMENT THE LANDSCAPE MANUAL Prepared by the Miami-Dade County Department of Planning and Zoning Seventh Edition, April 2002 Revised and Expanded Reprinted 10/2005 THIS MANUAL IS DEDICATED TO THE MEMORY OF BILL KUGE WHO FOR MANY YEARS IMPROVED THE QUALITY OF MIAMI-DADE COUNTY THROUGH HIS ARTICULATE AND CREATIVE SITE PLAN REVIEWS. TABLE OF CONTENTS Introduction ......................................................ix Calculations of Landscape Code Requirements Single Family RU-1 ................................................2 Single Family RU-1M(A).............................................4 Private School/Day Care ............................................6 Multi-Family....................................................8 Shopping Center .................................................10 Industrial .....................................................12 Service Station .................................................14 Parking Lot Landscape ...............................................16 View Triangles .....................................................24 Buffers .........................................................27 Xeriscape ........................................................32 Irrigation ........................................................36 Energy Conservation.................................................40 Tree Sizes .......................................................44 Trees in the Road Corridor .............................................46
    [Show full text]
  • Brazilian Peppertree Integrated Management Guide (2019)
    Brazilian Peppertree Integrated Management Guide 2019 James P. Cuda1, Stephen F. Enloe2, Kenneth T. Gioeli3, Carey R. Minteer4, Patricia Prade4 1Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0620 2Agronomy Department, Center for Aquatic and Invasive Plants, Gainesville, FL 32653-0610 3UF/IFAS Extension, St. Lucie County, Ft. Pierce, FL 34945-3045 4UF/IFAS Indian River Research and Education Center, Ft. Pierce, FL 34945-3138 Contents Introduction 3 About Brazilian Peppertree 3 Goals of Brazilian Peppertree IPM 3 Importance of Public Education 6 Identification 7 How to Identify Brazilian Peppertree 7 Look-Alikes 7 Biology 8 Distribution 9 US and Florida Distributions of 9 Brazilian Peppertree Impacts 10 Economic 10 Environmental 10 Health 10 Regulatory Authority 11 Laws and Regulations Management Options 12 Physical Control 12 Mechanical Control 13 Biological Control 13 Chemical (Herbicidal) Control 14 Glossary 16 Acknowledgements 17 Footnote 17 Resources for More Information 17 Appendix 18 Yellow Brazilian peppertree leaf-galler 18 Brazilian peppertree thrips 23 Brazilian Peppertree Control 29 2 Photo credit: UF/IFAS INTRODUCTION About Brazilian Peppertree Brazilian peppertree (Schinus terebinthifolia Raddi, Anacardiaceae) has become a ‘poster child’ for invasive plants in Florida landscapes. It was popularized as an ornamental following its introduction into Florida during the late 19th and early 20th centuries. The lag period between the introduction of Brazilian peppertree, and its aggressive spread is likely a result of hybridization, natural selection of well adapted genotypes, and release from natural enemies. As its name would suggest, Brazilian peppertree is native to South America, where it is found in Brazil, Argentina and Paraguay.
    [Show full text]
  • Host Choice in Rotylenchulus Species
    Available online at www.ijpab.com Rathore Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.6878 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) Research Article Host Choice in Rotylenchulus Species Y. S. Rathore* Principal Scientist (Retd.), Indian Institute of Pulses Research, Kanpur-208 024 (U.P.) India *Corresponding Author E-mail: [email protected] Received: 12.09.2018 | Revised: 9.10.2018 | Accepted: 16.10.2018 ABSTRACT The reniformis nematodes of the genus Rotylenchulus (Haplolaimidae: Nematoda) are sedentary semi-endoparasites of numerous crops. There are ten species out of which R. reniformis and R. parvus are important, and three species (R. amanictus, R. clavicadatus, R. leptus) are monophagous: two on monocots and one on Rosids. In general, Rotylenchulus species are capable of feeding from very primitive Magnoliids to plants of advanced category. Preference was distinctly observed towards the plants in Rosids (42.779%) followed by monocots (23.949%) and Asterids (21.755%). The SAI values were also higher for these groups of plants. The study on lineages further revealed intimate affinity to febids (25.594%), followed by commelinids (18.647%), malvids (16.088%), lamiids (11.883%), and campanulids (9.141%). Poales contribution within commelinids was 65.353%. Maximum affinity of Rotylenchulus species was observed by their association with plants from families Poaceae (7), followed by Fabaceae (6), Malvaceae (6), Asteraceae (4), Oleaceae (4), Soanaceae (4) and so on. Key words: Agiosperms, Gymnosperms, APG IV system, Reniform nemtodes, Monocots, Rosids, Asterids INTRODUCTION number of crops, whereas the other eight Plant parasitic nematodes pose a great species are of limited importance.
    [Show full text]